震源机制和场地条件在河北地震影响场判定中的应用研究

孙丽娜 齐玉妍 陈婷 王晓山

孙丽娜,齐玉妍,陈婷,王晓山. 2021. 震源机制和场地条件在河北地震影响场判定中的应用研究. 地震学报,43(4):1−13 doi: 10.11939/jiass20200133
引用本文: 孙丽娜,齐玉妍,陈婷,王晓山. 2021. 震源机制和场地条件在河北地震影响场判定中的应用研究. 地震学报,43(4):1−13 doi: 10.11939/jiass20200133
Sun L N,Qi Y Y,Chen T,Wang X S. 2021. Research on application of focal mechanism and site conditions in judgment of Hebei earthquake influence field. Acta Seismologica Sinica,43(4):1−13 doi: 10.11939/jiass20200133
Citation: Sun L N,Qi Y Y,Chen T,Wang X S. 2021. Research on application of focal mechanism and site conditions in judgment of Hebei earthquake influence field. Acta Seismologica Sinica43(4):1−13 doi: 10.11939/jiass20200133

震源机制和场地条件在河北地震影响场判定中的应用研究

doi: 10.11939/jiass20200133
基金项目: 河北省地震局强震发震构造与机理研究创新团队(DZ20180319009)和地震科技星火计划项目(DZ20190419025)联合资助
详细信息
    通讯作者:

    王晓山,e-mail:wxs@eq-he.ac.cn

  • 中图分类号: P315.9

Research on application of focal mechanism and site conditions in judgment of Hebei earthquake influence field

  • 摘要: 震后应急工作中地震影响场的判定和快速给出较为合理的地震烈度分布图,是震后应急救援的重要依据,对于政府了解灾情、部署工作以及估算灾害损失都尤为重要,所以本文以此为研究目的,力求震后快速给出准确的地震烈度分布图。本文收集整理了河北地区中强地震的实际等震线图,将其与加入了震源机制解影响参数的烈度衰减关系计算得到的理论等震线图进行对比。结果显示:随着震级的增大,由衰减关系计算得到的等震线图与实际地震等震线图在高烈度区(≥Ⅶ度)相似度更高。另外,根据震后24小时内余震频度的空间变化,对极震区理论等震线修正后,其与实际等震线更加贴合,即理论计算烈度与实际调查烈度值更加接近。最后,对河北地区划分网格,根据地震动衰减关系计算震例对各个网格中心点产生的影响—基岩PGA。提取场地类别属性,考虑场地放大因子,完成基岩PGA到地表PGA的转换。将地表PGA换算成烈度,并与实际地震等震线图进行对比分析。结果表明,考虑了场地放大效应的地震影响场在高烈度区与实际等震线相似度很高,且相似度超过基于震源机制解的烈度衰减关系方法。

     

  • 1  M≥6.0地震的理论计算等震线与实际等震线的对比图

    1.  Comparison between theoretical calculation isoseismal lines and actual isoseismal lines for M≥6.0 earthquakes

    (a) M6.0-6.5;(b) M6.6-7.0;(c) M7.1-7.5;(d) M7.8;(e) M8.0

    图  1  M≥6.0地震的理论计算等震线与实际等震线的对比图

    Figure  1.  Comparison between theoretical calculation isoseismal lines and actual isoseismal lines for M≥6.0 earthquakes

    (a) M6.0-6.5;(b) M6.6-7.0;(c) M7.1-7.5;(d) M7.8;(e) M8.0

    图  2  1976年唐山MS7.8地震主震后2小时(a)、6小时(b)、12小时(c)和24小时(d)内余震频度分布图

    Figure  2.  Distribution of aftershock frequency within 2 hours (a),6 hours (b),12 hours (c) and 24 hours (d) after Tangshan MS7.8 earthquake in 1976

    图  3  理论等震线极震区修正前(a)后(b)对比图

    Figure  3.  Comparison of theoretical isoseismal areas before (a) and after (b) correction

    图  4  河北地区场地分类图

    Figure  4.  Site classification map of Hebei area

    图  5  1966年宁晋东南M7.6地震(a)和1976年唐山MS7.8地震(b)的地震影响场对比图

    Figure  5.  Comparison of influence fields between the 1966 Ningjin southeast M7.2 earthquake (a) and the 1976 Tangshan MS7.8 earthquake (b)

    表  1  研究区内选取的震例

    Table  1.   The selected earthquake cases in the studied area

    编号 发震时间
    年-月-日
    震中位置精度类别震中烈度震源深度/kmMS震源机制类型震中参考位置
    北纬/°东经/°
    1 1618-11-16 39.80 114.50 2 $6\tfrac{1}{2}$ 正断 河北蔚县附近
    2 1624-04-17 39.50 118.80 3 $6\tfrac{1}{2}$ 走滑 河北滦县
    3 1628-10-07 40.70 114.20 2 $6\tfrac{1}{2}$ 走滑兼正断 河北怀安西洋河堡
    4 1665-04-16 39.90 116.60 2 $6\tfrac{1}{2}$ 逆冲-走滑 北京通县西
    5 1679-09-02 40.00 117.00 2 8.0 走滑 河北三河平谷
    6 1720-07-12 40.40 115.50 2 $6\tfrac{3}{4}$ 走滑 河北沙城
    7 1730-09-30 40.00 116.20 2 $6\tfrac{1}{2}$ 走滑 北京西北郊
    8 1830-06-12 36.40 114.30 2 $7\tfrac{1}{2}$ 走滑 河北磁县
    9 1882-12-02 38.10 115.50 2 6.0 正断 河北深县
    10 1945-09-23 39.70 118.70 $6\tfrac{1}{4}$ 走滑 河北滦县
    11 1966-03-08 37.35 114.92 Ⅸ+ 6.8 走滑 河北隆尧东
    12 1966-03-22 37.50 115.10 2 9 7.2 走滑 河北宁晋东南
    13 1966-03-26 37.68 115.27 1 Ⅶ+ 15 6.2 走滑 河北束鹿南
    14 1967-03-27 38.50 116.50 6.3 走滑 河北河间、大城
    15 1976-07-28 39.60 118.20 22 7.8 走滑 河北唐山
    16 1976-07-28 39.90 118.70 22 7.1 走滑 河北滦县
    17 1976-11-15 39.33 117.50 17 6.9 逆断 天津宁河西
    18 1977-05-12 39.20 117.70 1 19 6.2 走滑 天津汉沽附近
    19 1998-01-10 41.12 114.43 10 6.2 逆断 河北张北
    下载: 导出CSV

    表  2  研究区选用的地震烈度衰减系数

    Table  2.   Seismic intensity attenuation coefficients used in the studied area

    发震方式C1C2C3a0σ
    走滑型长轴5.291 01.438 0−4.305 4250.622 4
    短轴3.148 81.338 7−3.272 4140.649 2
    全震例长轴5.861 91.390 2−4.451 5250.586 2
    短轴2.954 91.349 4−3.106 4100.615 3
    注:C1C2C3为回归系数,a0表示距离饱和因子,σ表示衰减关系的误差。
    下载: 导出CSV

    表  3  华北地区地震动衰减关系系数

    Table  3.   Attenuation coefficients of ground motion in North China

    系数与
    方差
    椭圆长轴 椭圆短轴
    M<6.5M≥6.5 M<6.5M≥6.5
    A 2.024 3.565 1.204 2.789
    B 0.673 0.435 0.664 0.420
    C 2.329 2.329 2.016 2.016
    D 2.088 2.088 0.944 0.944
    E 0.399 0.399 0.447 0.447
    σ 0.245 0.245 0.245 0.245
    下载: 导出CSV

    表  4  适用于中国场地分类的场地放大系数

    Table  4.   Site magnification factors for site classification in China

    场地类型放大系数
    基岩地震动参数值/(cm·s−2
    ≤100200300400≥500
    1.01.01.01.01.0
    1.41.31.21.11.0
    2.11.61.21.01.0
    2.51.71.20.90.9
    下载: 导出CSV

    表  5  烈度与水平向峰值加速度的对应关系

    Table  5.   Corresponding relationship between intensity and horizontal peak acceleration

    烈度水平向地面峰值加速度/(cm·s−2
    45—89
    90—177
    178—353
    354—707
    下载: 导出CSV
  • [1] 白仙富,戴雨芡,赵恒. 2014. 地震影响场应急评估方法研究[J]. 自然灾害学报,23(4):91–102.
    [2] Bai X F,Dai Y Q,Zhao H. 2014. Study on the emergency evaluation of earthquake influence field[J]. Journal of Natural Disasters,23(4):91–102 (in Chinese).
    [3] 陈鲲,俞言祥,高孟潭. 2010. 考虑场地效应的ShakeMap系统研究[J]. 中国地震,26(1):92–102. doi: 10.3969/j.issn.1001-4683.2010.01.009
    [4] Chen K,Yu Y X,Gao M T. 2010. Research on ShakeMap system in terms of the site effect[J]. Earthquake Research in China,26(1):92–102 (in Chinese).
    [5] 国家地震局震害防御司. 1995. 中国历史强震目录[M]. 北京: 地震出版社: 158–414.
    [6] Department of Earthquake Disaster Prevention, State Seismological Administration. 1995. Catalogue of Historical Strong Earthquakes in China[M]. Beijing: Seismological Press: 158–414 (in Chinese).
    [7] 郝敏,谢礼立. 2006. 集集地震等震线和PGA、PGV等值线关系的研究[J]. 地震工程与工程振动,26(1):18–21. doi: 10.3969/j.issn.1000-1301.2006.01.003
    [8] Hao M,Xie L L. 2006. Study on the relationship between isoseismal and isolines of PGA and PGV for Chi-Chi earthquake[J]. Earthquake Engineering and Engineering Vibration,26(1):18–21 (in Chinese).
    [9] 胡聿贤,张敏政. 1984. 缺乏强震观测资料地区地震动参数的估算方法[J]. 地震工程与工程振动,4(1):1–11.
    [10] Hu Y X,Zhang M Z. 1984. A method of predicting,ground motion parameters for regions with poor ground motion data[J]. Earthquake Engineering and Engineering Vibration,4(1):1–11 (in Chinese).
    [11] 李志强,袁一凡,李晓丽,何萍. 2008. 对汶川地震宏观震中和极震区的认识[J]. 地震地质,30(3):768–777. doi: 10.3969/j.issn.0253-4967.2008.03.015
    [12] Li Z Q,Yuan Y F,Li X L,He P. 2008. Some insights into the macro-epicenter and meizo seismal region of Wenchuan earthquake[J]. Seismology and Geology,30(3):768–777 (in Chinese).
    [13] 龙锋,闻学泽,徐锡伟. 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系[J]. 地震地质,28(4):511–535. doi: 10.3969/j.issn.0253-4967.2006.04.001
    [14] Long F,Wen X Z,Xu X W. 2006. Empirical relationships between magnitude and rupture length,and rupture area,for seismogenic active faults in North China[J]. Seismology and Geology,28(4):511–535 (in Chinese).
    [15] 吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
    [16] Lü H S, Zhao F X. 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67–76 (in Chinese).
    [17] 沈正康,万永革,甘卫军,李铁明,曾跃华. 2004. 华北地区700年来地壳应力场演化与地震的关系研究[J]. 中国地震,20(3):211–228. doi: 10.3969/j.issn.1001-4683.2004.03.001
    [18] Shen Z K,Wan Y G,Gan W J,Li T M,Zeng Y H. 2004. Crustal stress evolution of the last 700 years in North China and earthquake occurrence[J]. Earthquake Research in China,20(3):211–228 (in Chinese).
    [19] 石建梁,闫庆民,葛秋莹. 2011. 用椭圆衰减关系模型计算任意场点烈度及地震动参数的数值方法[J]. 内陆地震,25(1):21–28. doi: 10.3969/j.issn.1001-8956.2011.01.004
    [20] Shi J L,Yan Q M,Ge Q Y. 2011. An algorithm for arbitrary engineering site earthquake intensity or motion parameter using ellipsoid attenuation model[J]. Inland Earthquake,25(1):21–28 (in Chinese).
    [21] 孙艳萍,陈文凯,周中红,张苏平,何少林,李少华. 2014. 甘肃地区地震烈度影响场评价及其与地形因子的关系[J]. 地震工程学报,36(3):697–704. doi: 10.3969/j.issn.1000-0844.2014.03.0697
    [22] Sun Y P,Chen W K,Zhuo Z H,Zhang S P,He S L,Li S H. 2014. Evaluation of seismic intensity influence field in Gansu Province and its relationship with terrain factors[J]. China Earthquake Engineering Journal,36(3):697–704 (in Chinese).
    [23] 田家勇,兰晓雯,谢周敏,陆鸣,时振梁. 2010. 地形对地震烈度衰减的影响[J]. 震灾防御技术,5(3):281–287. doi: 10.3969/j.issn.1673-5722.2010.03.002
    [24] Tian J Y,Lan X W,Xie Z M,Lu M,Shi Z L. 2010. Influence of topography on seismic intensity attenuation[J]. Technology for Earthquake Disaster Prevention,5(3):281–287 (in Chinese).
    [25] 王想,王亚茹,宫猛,郭蕾,王晓山. 2017. 华北第5活动幕平静时段背景下平静异常综合判定[J]. 地震地磁观测与研究,38(1):21–27. doi: 10.3969/j.issn.1003-3246.2017.01.004
    [26] Wang X,Wang Y R,Gong M,Guo L,Wang X S. 2017. Comprehensive judgment of calm anomaly under the background of quiet time of the fifth activity in North China[J]. Seismological and Geomagnetic Observation and Research,38(1):21–27 (in Chinese).
    [27] 巫建伟,陈崇成,吴小竹,林剑峰,黄昭,张锦福,郑师春,张颖. 2013. 基于GeoKSCloud的地震影响场分析云服务研究—以福建省为例[J]. 地球信息科学学报,15(5):695–704.
    [28] Wu J W,Chen C C,Wu X Z,Lin J F,Huang Z,Zhang J F,Zheng S C,Zhang Y. 2013. Cloud service for seismic influence field analysis based on GeoKSCloud:A case study in Fujian Province[J]. Journal of Geo-Information Science,15(5):695–704 (in Chinese). doi: 10.3724/SP.J.1047.2013.00695
    [29] 许卫晓. 2011. 烈度分布快速评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所: 21–22.
    [30] Xu W X. 2011. The Study of Methods for Rapid Assessment of Seismic Intensity Distribution[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 21–22 (in Chinese).
    [31] 张彦琪,范柱国,陈坤华,崔建文,李世成,冉华. 2013. Shakemap场地校正方法及其在云南地震动强度和烈度速报中的应用[J]. 地震研究,36(1):108–115. doi: 10.3969/j.issn.1000-0666.2013.01.017
    [32] Zhang Y Q,Fan Z G,Chen K H,Cui J W,Li S C,Ran H. 2013. Shakemap site correction method and its application in the rapid prediction of ground motion intensity and seismic intensity in Yunnan[J]. Journal of Seismological Research,36(1):108–115 (in Chinese).
    [33] 张彦琪. 2014. 基于强震动台网的云南烈度速报场地影响校正研究[D]. 昆明: 昆明理工大学: 12–13.
    [34] Zhang Y Q. 2014. The Study on Site Conditions and Amplification of Seismic Intensity Based on Ground Motion Intensity Network in Yunnan[D]. Kunming: Kunming University of Science and Technology: 12–13 (in Chinese).
    [35] 郑韵. 2015. 震源机制和余震序列在地震应急烈度快速判定中的应用研究[D]. 北京: 中国地震局地震预测研究所: 1–2.
    [36] Zheng Y. 2015. The Application of Focal Mechanism and Aftershock Sequence in Fast Judgement of Earthquake Emergency Intensity[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration: 1–2 (in Chinese).
    [37] 郑韵,姜立新,杨天青,刘杰. 2016. 基于震源机制解的分区地震烈度衰减关系研究[J]. 震灾防御技术,11(2):349–359. doi: 10.11899/zzfy20160218
    [38] Zheng Y,Jiang L X,Yang T Q,Liu J. 2016. Study on seismic intensity attenuation relationship with regions via focal mechanism solutions[J]. Technology for Earthquake Disaster Prevention,11(2):349–359 (in Chinese).
    [39] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检疫总局. 2010. 建筑抗震设计规范(GB50011—2010)[S]. 北京: 中国建筑工业出版社: 5
    [40] Ministry of housing and urban-rural development of the People’s Republic of China, General administration of quality supervision, inspection and quarantine of the People’s Republic of China. 2010. Code for Seismic Design of Buildings (GB50011—2010)[S]. Beijing: China Building Industry Press: 5.
    [41] 中国国家标准化管理委员会, 中华人民共和国国家质量监督检验检疫总局. 2008. 中国地震烈度表(GB/T17742—2008)[S]. 北京: 中国标准出版社: 8.
    [42] China standardization administration, General administration of quality supervision, inspection and quarantine of the People’s Republic of China. 2008. The Chinese Seismic Intensity ScaleGB/T 17742—2008)[S]. Beijing: China Standard Press: 8.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  46
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2021-03-25
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回