[1] Alford, R. M., Kelly, K. R. and Boore, D. M., 1974. Accuracy of finite——difference modeling of the acoustic wave equation. Geophysics, 39, 834——842.
[2] Alterman, Z. S and Loewenthal, D., 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. R. astr. Soc., 20, 101——126. [3] Boore, D. M., 1969. Finite——Difference Solutions to the Equatirnu of Elastic Wave Propagation, with Applications to Lone Waves (?uer Ih'pping Interfaces. Ph. D., Thesis, M. I. T., Mass. [4] Boore, D. M., 1970. Love waves in nonuniform wave guides: Finite——difference calculations. J. Geophys. Res., 75, 1512——1527. [5] Boore, D. M., 1972. Finite——difference methods for seismic wave propagation in heterogeneous materials. In: Alder, B., Fernback, S. and Rotenberg, M. (editors), Methods in Computational Physics, Vol. if, Academic Press. [6] Clayton. R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Sei.s. Soc. Amer., 67, 1529——1540. [7] Javaherian, A., 1982. Eliminatirm of Spuriatts Re_flecti}na from Finite——Difference Synthetic Seismograms with Applicutitnts to the San Andrews Fault Zone. Ph. D. Thesis, University of Texas at Dallas. [8] Kelly, K. R., Ward. R. W., Treitlel, S. and Alford, M., 1976. Synthetic seismograms: A finite——difference approach. Geophysics, 41, 2——27.
[1] Alford, R. M., Kelly, K. R. and Boore, D. M., 1974. Accuracy of finite——difference modeling of the acoustic wave equation. Geophysics, 39, 834——842.
[2] Alterman, Z. S and Loewenthal, D., 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. R. astr. Soc., 20, 101——126. [3] Boore, D. M., 1969. Finite——Difference Solutions to the Equatirnu of Elastic Wave Propagation, with Applications to Lone Waves (?uer Ih'pping Interfaces. Ph. D., Thesis, M. I. T., Mass. [4] Boore, D. M., 1970. Love waves in nonuniform wave guides: Finite——difference calculations. J. Geophys. Res., 75, 1512——1527. [5] Boore, D. M., 1972. Finite——difference methods for seismic wave propagation in heterogeneous materials. In: Alder, B., Fernback, S. and Rotenberg, M. (editors), Methods in Computational Physics, Vol. if, Academic Press. [6] Clayton. R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Sei.s. Soc. Amer., 67, 1529——1540. [7] Javaherian, A., 1982. Eliminatirm of Spuriatts Re_flecti}na from Finite——Difference Synthetic Seismograms with Applicutitnts to the San Andrews Fault Zone. Ph. D. Thesis, University of Texas at Dallas. [8] Kelly, K. R., Ward. R. W., Treitlel, S. and Alford, M., 1976. Synthetic seismograms: A finite——difference approach. Geophysics, 41, 2——27. |