玉溪盆地三维速度结构建模

张振, 陈学良, 高孟潭, 李铁飞, 鞠永伟

张振, 陈学良, 高孟潭, 李铁飞, 鞠永伟. 2017: 玉溪盆地三维速度结构建模. 地震学报, 39(6): 930-940. DOI: 10.11939/jass.2017.06.011
引用本文: 张振, 陈学良, 高孟潭, 李铁飞, 鞠永伟. 2017: 玉溪盆地三维速度结构建模. 地震学报, 39(6): 930-940. DOI: 10.11939/jass.2017.06.011
Zhang Zhen, Chen Xueliang, Gao Mengtan, Li Tiefei, Ju Yongwei. 2017: 3-D modeling of velocity structure for the Yuxi basin. Acta Seismologica Sinica, 39(6): 930-940. DOI: 10.11939/jass.2017.06.011
Citation: Zhang Zhen, Chen Xueliang, Gao Mengtan, Li Tiefei, Ju Yongwei. 2017: 3-D modeling of velocity structure for the Yuxi basin. Acta Seismologica Sinica, 39(6): 930-940. DOI: 10.11939/jass.2017.06.011

玉溪盆地三维速度结构建模

基金项目: 

国家自然科学基金 51278470

国家自然科学基金 51678537

国家公益性行业专项 201408002

国家科技支撑计划 2012BAK15B01

国家自然科学基金(51278470,51678537)、国家公益性行业专项(201408002)和国家科技支撑计划(2012BAK15B01)联合资助

详细信息
    作者简介:

    张振  中国地震局地球物理研究所岩土工程专业在读硕士研究生. 2015年鲁东大学土木工程学院土木工程专业毕业,获工学学士学位.现主要从事浅层地表的三维速度结构建模及可视化、长周期地震动的模拟以及地震动三维可视化展示方面的研究

    通讯作者:

    陈学良, e-mail: chenxl@cea-igp.ac.cn

  • 中图分类号: P315.9

3-D modeling of velocity structure for the Yuxi basin

  • 摘要: 本文以玉溪盆地为例,提出了一种包含数据预处理、模型建立、模型修正和模型检验的建模方法.基于各类数据间不同的可信度,给出了消除各类数据间速度偏差的折减函数.为避免以往模型修正过程中对地震波形数据的依赖以及对地脉动H/V谱进行模拟等复杂问题,本文提出了一种改进的模型修正方法,即根据基阶瑞雷波H/V谱与实测地脉动H/V谱形状变化相似的原则,对模型进行修正.修正依据为:在玉溪盆地中,单个地脉动测点所在位置处的地下速度结构中各沉积层面的深度均增加约15 m时,由该点的地下速度结构得到的基阶瑞雷波H/V谱的波峰周期和波谷周期均增加约0.1 s,且二者分别由盆地内沉积层的深层和浅层的速度结构所控制.由于地脉动数据的获取较方便,因此该模型修正方法具有广泛的适用性,由该方法修正后的玉溪盆地三维速度结构模型经检验具有较高的准确度.
    Abstract: To achieve ground motion prediction, it is necessary to build a 3-D velocity structure model of sedimentary basin. Taking the Yuxi basin as an example, we provide a modeling procedure, including data preprocessing, model building, model updating and model testing. Based on the different credibility of various data, we propose a function that can eliminate the velocity deviation among various data. In this paper, an improved model updating method is proposed in order to avoid the dependence on the seismic waveform data and the simulation of the microtremors spectral ratio of horizontal to vertical component (H/V spectra). We apply the theory that the H/V spectral shape of the fundamental-mode Rayleigh, including its peak and trough periods, is similar to that of the microtremors to update the 3-D velocity structure model. When the depth of each sedimentary layer in the velocity structure under a single microtremors measuring point is increased by about 15 m, the H/V spectral peak and trough periods of the fundamental-mode Rayleigh wave will both increase about 0.1 s, moreover, the two periods are controlled by deep or shallow velocity structures of the sedimentary layers in basin respectively. Because of the convenient acquisition of the microtremors data, the model updating method has extensive applicability. The 3-D velocity structure model of the Yuxi basin modified by the model updating method has been confirmed a high accuracy after inspection.
  • 中国地震局地球物理研究所鲁来玉研究员和陈石研究员分别在面波频散曲线计算和速度结构模型三维可视化展示方面给予了指导,中央级公益性科研院所业务专项(021904)提供了本文所用玉溪盆地的建模数据,作者在此一并表示感谢.
  • 图  1   玉溪盆地资料

    Figure  1.   Information of the Yuxi basin

    图  2   地震勘探数据与钻孔数据之间的速度偏差dv (黑色圆点)随深度x的变化曲线

    Figure  2.   Curve of velocity deviation dv of seismic exploration data from borehole data versus depth x

    图  3   模型修正前(a)、后(b)本文示例中地脉动测点所在场地的地脉动H/V谱(H/V)m(实线)和基阶瑞雷波H/V谱(H/V)R0(虚线)

    Figure  3.   The H/V spectra of microtremors (H/V)m (solid lines) and those of fundamental-mode Rayleigh (H/V)R0 (dashed lines) at the site used for exmaple before (a) and after (b) model updating

    图  4   场地A-F的地脉动H/V谱(H/V)m(实线)和基阶瑞雷波H/V谱(H/V)R0(虚线)

    Figure  4.   The H/V spectra of microtremors (H/V)m (solid lines) and those of fundamental-mode Rayleigh (H/V)R0 (dashed lines) at sites A-F

    图  5   玉溪盆地三维速度结构. x轴为经度方向,y轴为纬度方向,z轴为深度方向

    Figure  5.   The 3-D velocity structures of the Yuxi basin

    x-axis is the longitude direction, y-axis is the latitude direction, and z-axis is the depth direction

  • 陈棋福, 刘澜波, 王伟君, Rohrbach E. 2008.利用地脉动探测北京城区的地震动场地响应[J].科学通报, 53(18): 2229-2235. doi: 10.3321/j.issn:0023-074X.2008.18.013

    Chen Q F, Liu L B, Wang W J, Rohrbach E. 2009. Site effects on earthquake ground motion based on microtremors measurements for metropolitan Beijing[J]. Chinese Science Bulletin, 54(2): 280-287. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200902014&dbname=CJFD&dbcode=CJFQ

    高孟潭, 俞言祥, 张晓梅, 吴健, 胡平, 丁彦慧. 2002.北京地区地震动的三维有限差分模拟[J].中国地震, 18(4): 356-364. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204004&dbname=CJFD&dbcode=CJFQ

    Gao M T, Yu Y X, Zhang X M, Wu J, Hu P, Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China, 18(4): 356-364 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD200204004.htm

    郭明珠, 谢礼立, 凌贤长. 2004.弹性介质面波地脉动单点谱比法研究[J].岩土工程学报, 26(4): 450-453. http://www.oalib.com/paper/4370280

    Guo M Z, Xie L L, Ling X Z. 2004. Research on spectral ratio of horizontal to vertical component for elastic model and surface microtremors[J]. Chinese Journal of Geotechnical Engineering, 26(4): 450-453 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC200404003.htm

    何正勤, 丁志峰, 贾辉, 叶太兰. 2007.用微动中的面波信息探测地壳浅部的速度结构[J].地球物理学报, 50(2): 492-498. http://www.doc88.com/p-9512110300275.html

    He Z Q, Ding Z F, Jia H, Ye T L. 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492-498 (in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-dqwx200702020.htm

    何正勤, 安好收, 沈坤, 鲁来玉, 胡刚, 叶太兰. 2013.用地震反射法对玉溪盆地普渡河断裂的探测[J].地震学报, 35(6): 836-847. http://www.dzxb.org/Magazine/Show?id=28891

    He Z Q, An H S, Shen K, Lu L Y, Hu G, Ye T L. 2013. Detection of Puduhe fault in Yuxi basin of Yunnan by seismic reflection method[J]. Acta Seismologica Sinica, 35(6): 836-847 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28891

    王伟君, 刘澜波, 陈棋福, 张杰. 2009.应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J].地球物理学报, 52(6): 1515-1525. https://es.scribd.com/document/265808204/I

    Wang W J, Liu L B, Chen Q F, Zhang J. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 52(6): 1515-1525 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200906014.htm

    王伟君, 陈棋福, 齐诚, 谭毅培, 张项, 周青云. 2011.利用噪声HVSR方法探测近地表结构的可能性和局限性:以保定地区为例[J].地球物理学报, 54(7): 1783-1797. http://d.wanfangdata.com.cn/Periodical_dqwlxb201107012.aspx

    Wang W J, Chen Q F, Qi C, Tan Y P, Zhang X, Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method: A case in Baoding area of Hebei Province, China[J]. Chinese Journal of Geophysics, 54(7): 1783-1797 (in Chinese). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract8060.shtml

    徐佩芬, 侍文, 凌苏群, 郭慧丽, 李志华. 2012.二维微动剖面探测"孤石":以深圳地铁7号线为例[J].地球物理学报, 55(6): 2120-2128. doi: 10.6038/j.issn.0001-5733.2012.06.034

    Xu P F, Shi W, Ling S Q, Guo H L, Li Z H. 2012. Mapping spherically weathered "Boulders" using 2D microtremor profiling method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201206033.htm

    朱广生, 桂志先, 熊新斌, 段天友, 唐宗黄, 吴永刚. 1995.密度与纵横波速度关系[J].地球物理学报, 38(增刊1): 260-264. http://www.cqvip.com/QK/94718X/1995A01/1668153.html

    Zhu G S, Gui Z X, Xiong X B, Duan T Y, Tang Z H, Wu Y G. 1995. Relationship between density and P-wave, S-wave velocities[J]. Acta Geophysica Sinica, 38(S1): 260-264 (in Chinese). http://www.cqvip.com/QK/94718X/1995A01/1668153.html

    Aoi S, Honda R, Morikawa N, Sekiguchi H, Suzuki H, Hayakawa Y, Kunugi T, Fujiwara H. 2008. Three-dimensional finite difference simulation of long-period ground motions for the 2003 Tokachi-oki, Japan, earthquake[J]. J Geophys Res Solid Earth, 113(B7): B07302. doi: 10.1029/2007JB005452/citedby

    Arai H, Tokimatsu K. 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bull Seismol Soc Am, 94(1): 53-63. doi: 10.1785/0120030028

    Arai H, Tokimatsu K. 2005. S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum[J]. Bull Seismol Soc Am, 95(5): 1766-1778. doi: 10.1785/0120040243

    Barnaba C, Marello L, Vuan A, Palmieri F, Romanelli M, Priolo E, Braitenberg C. 2010. The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis[J]. Geophys J Int, 180(2): 715-733. doi: 10.1111/gji.2010.180.issue-2

    Claprood M, Asten M W. 2010. Statistical validity control on SPAC microtremor observations recorded with a restricted number of sensors[J]. Bull Seismol Soc Am, 100(2): 776-791. doi: 10.1785/0120090133

    Claprood M, Asten M W, Kristek J. 2011. Using the SPAC microtremor method to identify 2D effects and evaluate 1D shear-wave velocity profile in valleys[J]. Bull Seismol Soc Am, 101(2): 826-847. doi: 10.1785/0120090232

    Delgado J, Casado C L, Giner J, Estévez A, Cuenca A, Molina S. 2000. Microtremors as a geophysical exploration tool: Applications and limitations[J]. Pure Appl Geophys, 157(9): 1445-1462. doi: 10.1007/PL00001128

    Dhakal Y P, Sasatani T, Takai N. 2011. Validation of the deep velocity structure of the Tokachi basin based on 3-D simulation of long-period ground motions[J]. Pure Appl Geophys, 168(10): 1599-1620. doi: 10.1007/s00024-010-0237-3

    Dhakal Y P, Yamanaka H. 2013. An evaluation of 3-D velocity models of the Kanto basin for long-period ground motion simulations[J]. J Seismol, 17(3): 1073-1102. doi: 10.1007/s10950-013-9373-4

    Dolenc D. 2005. Microseisms observations in the Santa Clara Valley, California[J]. Bull Seismol Soc Am, 95(3): 1137-1149. doi: 10.1785/0120040060

    Graves R W, Pitarka A, Somerville P G. 1998. Ground-motion amplification in the Santa Monica area: Effects of shallow basin-edge structure[J]. Bull Seismol Soc Am, 88(5): 1224-1242. https://pubs.geoscienceworld.org/bssa/article-lookup/88/5/1224

    Guéguen P, Cornou C, Garambois S, Banton J. 2007. On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: Application to the Grenoble Valley (France), a small apex ratio basin[J]. Pure Appl Geophys, 164(1): 115-134. doi: 10.1007/s00024-006-0151-x

    Harkrider D G. 1964. Surface waves in multilayered elastic media. 1. Rayleigh and Love waves from buried sources in a multilayered elastic half-space[J]. Bull Seismol Soc Am, 54(2): 627-679. https://pubs.geoscienceworld.org/bssa/article-lookup/54/2/627

    Harkrider D G. 1970. Surface waves in multilayered elastic media. Part Ⅱ. Higher mode spectra and spectral ratios from point sources in plane layered Earth models[J]. Bull Seismol Soc Am, 60(6): 1937-1987. http://authors.library.caltech.edu/60571

    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am, 43(1): 17-34. doi: 10.1029/SP030p0086/summary

    Huang H C, Wu C F. 2006. Estimations of the S-wave velocity structures in Chia-Yi City, Taiwan, using the array records of microtremors[J]. Earth Planets Space, 58(11): 1455-1462. doi: 10.1186/BF03352644

    Iwaki A, Iwata T. 2010. Simulation of long-period ground motion in the Osaka sedimentary basin: Performance estimation and the basin structure effects[J]. Geophys J Int, 181(2): 1062-1076. http://adsabs.harvard.edu/abs/2010geoji.181.1062i

    Iwata T, Kagawa T, Petukhin A, Ohnishi Y. 2008. Basin and crustal velocity structure models for the simulation of strong ground motions in the Kinki area, Japan[J]. J Seismol, 12(2): 223-234. doi: 10.1007/s10950-007-9086-7

    Kawase H. 1996. The cause of the damage belt in Kobe: "The basin-edge effect" constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves[J]. Seismol Res Lett, 67(5): 25-34. doi: 10.1785/gssrl.67.5.25

    Kohler M D, Magistrale H, Clayton R W. 2003. Mantle heterogeneities and the SCEC reference three-dimensional seismic velocity model version 3[J]. Bull Seismol Soc Am, 93(2): 757-774. doi: 10.1785/0120020017

    Koketsu K, Miyake H, Afnimar, Tanaka Y. 2009. A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan[J]. Tectonophysics, 472(1/4): 290-300. http://www.sciencedirect.com/science/article/pii/S0040195108002539

    Komatitsch D, Liu Q Y, Tromp J, Süss P, Stidham C, Shaw J H. 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. Bull Seismol Soc Am, 94(1): 187-206. doi: 10.1785/0120030077

    Lunedei E, Albarello D. 2010. Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth[J]. Geophys J Int, 181(2): 1093-1108. doi: 10.1111/j.1365-246X.2010.04560.x/full

    Olsen K B, Archuleta R J, Matarese J R. 1995. Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault[J]. Science, 270(5242): 1628-1632. doi: 10.1126/science.270.5242.1628

    Olsen K B. 2000. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion[J]. Bull Seismol Soc Am, 90(6B): S77-S94. doi: 10.1785/0120000506

    Özalaybey S, Zor E, Ergintav S, Tapirdamaz M C. 2011. Investigation of 3-D basin structures in the İzmit Bay area (Turkey) by single-station microtremor and gravimetric methods[J]. Geophys J Int, 186(2): 883-894. doi: 10.1111/j.1365-246X.2011.05085.x

    Reinoso E, Ordaz M. 1999. Spectral ratios for Mexico City from free-field recordings[J]. Earthq Spectra, 15(2): 273-295. doi: 10.1193/1.1586041

    Rhie J, Dreger D. 2009. A simple method for simulating microseism H/V spectral ratio in 3D structure[J]. Geosci J, 13(4): 401-406. doi: 10.1007/s12303-009-0036-y

    Sánchez-Sesma F J, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo M A, Rodríguez-Castellanos A. 2011. A theory for microtremor H/V spectral ratio: Application for a layered medium[J]. Geophys J Int, 186(1): 221-225. doi: 10.1111/gji.2011.186.issue-1

    Shani-Kadmiel S, Tsesarsky M, Louie J N, Gvirtzman Z. 2011. Simulation of seismic-wave propagation through geome-trically complex basins: The Dead Sea basin[J]. Bull Seismol Soc Am, 102(4): 1729-1739. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/102/4/1729/325455/simulation-of-seismic-wave-propagation-through?redirectedFrom=fulltext

    Suzuki H, Morino M, Iwamoto K, Liu Y, Fujiwara H, Hayakawa Y. 2005. 3D subsurface structural model for strong motion simulation around Lake Biwa, southwest Japan[J]. Zisin, 58: 91-106 (in Japanese). doi: 10.4294/zisin1948.58.2_91

    Uebayashi H, Kawabe H, Kamae K. 2012. Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin[J]. Geophys J Int, 189(2): 1060-1074. doi: 10.1111/gji.2012.189.issue-2

  • 期刊类型引用(8)

    1. 冯锐. 明·华北挑战更严峻——漫步地震五千年(13). 地震科学进展. 2025(02): 108-124 . 百度学术
    2. 孟科,杨浩,赵启光,顾勤平. 幕府山—焦山断裂的空间展布和浅部构造特征研究. 防灾减灾工程学报. 2022(04): 866-873+880 . 百度学术
    3. 范玉璐,张鹏,高研,谭成轩,戚帮申,丰成君,李晓康. 长三角溧阳震区地应力环境及构造稳定性分析. 地球物理学进展. 2021(05): 1842-1852 . 百度学术
    4. 唐宝琳,朱涛,胡哲,周建国. 江宁地电台的电性结构及关于地电阻率观测值的解释. 地震学报. 2018(04): 481-490 . 本站查看
    5. 李昕冉. 智能地震灾害救援及信息采集管理系统. 内江科技. 2018(09): 53-54 . 百度学术
    6. 刘云超,张世涛. 云南香格里拉格咱地区整装勘查区环境影响指数评价. 安徽农业科学. 2016(21): 57-60 . 百度学术
    7. 熊振,李清河,张元生,侯康明,金淑梅,周彩霞. 郯庐断裂带鲁苏晥段未来强震可能发生地段初探. 地震地质. 2016(04): 964-977 . 百度学术
    8. 李家斌,孙华山,屈念念. 浅析保山—巍山地区均衡异常与地震活动的关系. 工程地球物理学报. 2015(01): 5-8 . 百度学术

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  577
  • PDF下载量:  36
  • 被引次数: 10
出版历程
  • 收稿日期:  2017-02-06
  • 修回日期:  2017-04-25
  • 发布日期:  2017-10-31

目录

    /

    返回文章
    返回