一种适用于地方震事件的S波到时自动拾取方法

张红才 廖诗荣 陈智勇 黄玲珠

张红才,廖诗荣,陈智勇,黄玲珠. 2021. 一种适用于地方震事件的S波到时自动拾取方法. 地震学报,43(3):338−349 doi: 10.11939/jass.20200112
引用本文: 张红才,廖诗荣,陈智勇,黄玲珠. 2021. 一种适用于地方震事件的S波到时自动拾取方法. 地震学报,43(3):338−349 doi: 10.11939/jass.20200112
Zhang H C,Liao S R,Chen Z Y,Huang L Z. 2021. An automatic S phase picking algorithm for local earthquake events. Acta Seismologica Sinica,43(3):338−349 doi: 10.11939/jass.20200112
Citation: Zhang H C,Liao S R,Chen Z Y,Huang L Z. 2021. An automatic S phase picking algorithm for local earthquake events. Acta Seismologica Sinica43(3):338−349 doi: 10.11939/jass.20200112

一种适用于地方震事件的S波到时自动拾取方法

doi: 10.11939/jass.20200112
基金项目: 地震科技星火计划(XH20028Y)和国家自然科学基金(E0810)共同资助
详细信息
    通讯作者:

    张红才,e-mail:zhanghc@fjea.gov.cn

  • 中图分类号: P315.0

An automatic S phase picking algorithm for local earthquake events

  • 摘要: 基于特征值分解方法,本文讨论了一种适用于地方震事件S波震相到时拾取的自动处理算法。该算法计算参数少、简便快捷、易于实现,通过选用七个不同长度的时间窗,有效地减小了窗长选择不合理所引起的震相拾取误差。利用福建地震台网记录的9 855条三分向波形记录进行测试,结果表明:本文方法的S波平均拾取偏差为(0.003±1.34) s,其中79.6%的记录拾取偏差小于0.5 s,4.1%的记录拾取偏差超过2.0 s,说明本文方法能够满足日常工作基本需求。综上分析认为,波形记录质量是影响拾取算法结果精度的最主要因素,信噪比较高的记录,其S波到时拾取偏差显著优于信噪比较低的记录,对信噪比较低的部分记录进行带通滤波预处理后,S波震相拾取精度也有所提升。

     

  • 图  1  本文S波拾取方法算例示意图

    事件发震时刻为2015-01-02 00:33:56.89,震中距为3.8 km的GTSK台站记录,窗长为0.2 s。图(a−c)为三分向波形记录;图(d)为特征值时程;图(e)为特征函数f t);图(f)为峰度系数时程Kt);图(g)为求取差分后特征函数ΔKt

    Figure  1.  An example of S phase picking by using the algorithm of this study

    The origin time of the event is 00:33:56.89 on 2 January 2015. The wavforms were recorded by the station GTSK with epicentral distance 3.8 km,and window length is taken as 0.2 s. Figs. (a) to (c) are three-component seismic records;Fig. (d) shows the history of three eigenvalues;Fig. (e) is the characteristic function ft);Fig. (f) shows time history of Kurtosis coefficient Kt),and Fig. (g) shows the differential characteristic function ΔKt

    图  2  本文所用台站记录随震中距和震级分布

    Figure  2.  Epicentral distance and magnitude distribution for earthquake records used in this study

    图  3  本文研究所用台站空间分布

    Figure  3.  Spatial distribution of records used in this study

    图  4  应用本文方法的S波震相到时拾取偏差统计

    图(a)为各记录S震相拾取偏差散点图,图(b)和(c)为S震相拾取偏差统计直方图

    Figure  4.  Statistics of S phase arrival time pick errors by using our method

    Fig. (a) gives S phase picking error for each record,Figs. (b) and (c) show the histogram of the phase picking error

    图  5  分区域S波震相到时拾取偏差结果统计

    (a) 仙游震群;(b) 台湾海峡南部震群;(c) 其它事件

    Figure  5.  Statistics of S phase arrival time picking error in different regions

    (a) Xianyou sequence;(b) Southern Taiwan Strait sequence;(c) Other events

    图  6  S波震相到时拾取偏差较大的波形记录

    (a) 低信噪比记录结果;(b) 图(a)中记录1—20 Hz带通滤波后的结果;(c) 多事件叠加记录结果;(d) EW向异常记录结果

    Figure  6.  Waveforms with large S phase arrival time picking error

    (a) The result for a low SNR record;(b) The result for the record in Fig. (a) after 1−20 Hz band-pass filtering;(c) The result for a multi-event record;(d) The result for an abnormal record in EW component

    图  7  地震记录信噪比的分布

    (a) 拾取偏差大于2.0 s的406条记录;(b) 拾取偏差小于2.0 s的9449条记录

    Figure  7.  SNR distribution of seismic records

    (a) 406 records with S phase picking errors larger than ±2.0 s;(b) 9449 records with S phase picking errors less than ±2.0 s

    图  8  不同信噪比记录S波震相拾取偏差分布

    (a) 信噪比小于2.0的记录;(b) 信噪比大于2.0的记录

    Figure  8.  Pi chart of S phase detection error for different SNR records

    (a) Records with SNR less than 2.0;(b) Records with SNR larger than 2.0

    图  9  应用本文方法所得的S-P到时差与人工拾取结果对比及其信噪比分布

    (a) 所有记录;(b) 仙游震群;(c) 台湾海峡震群;(d) 其它事件

    Figure  9.  Comparison of the arrival time differences for S−P by our method with those by manual picking and SNR distributions

    (a) All records;(b) Xianyou sequence;(c) Taiwan Strait sequence;(d) Other events

    图  10  图6a中信噪比较低记录带通滤波前(a)、后(b)的S波到时拾取

    各子图意思同图1,事件发震时间为2015-01-08 05:48:44.56,台站ZPCH的震中距为99.8 km,窗长为1.0 s

    Figure  10.  S phase picking for a low SNR record in Fig. 6a before (a) and after (b) band-pass filtering

    Each subfigure has the same meaning as Fig. 1. The event occurred at 05:48:44.56 on 8 January 2015,which was recorded by the station ZPCH with epicentral distance 99.8 km. And time window length is taken as 1.0 s

    表  1  不同信噪比记录的S波到时拾取偏差统计

    Table  1.   Statistic on S phase picking error for different SNR records

    SNR记录数量偏差均值/s偏差中值/s偏差标准差/s
    <22 9530.1350.0401.92
    2—56 416−0.0510.0500.99
    ≥5486−0.2020.0400.96
    下载: 导出CSV
  • [1] 李安,杨建思,彭朝勇,郑钰,刘莎. 2020. 基于样本增强的卷积神经网络震相拾取方法[J]. 地震学报,42(2):163–176. doi: 10.11939/jass.20190070
    [2] Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement[J]. Acta Seismologica Sinica,42(2):163–176 (in Chinese). doi: 10.11939/jass.20190070(inChinese)
    [3] 刘希强,周蕙兰,郑治真,沈萍,杨选辉,马延路. 1998. 基于小波包变换的弱震相识别方法[J]. 地震学报,20(4):373–380. doi: 10.3321/j.issn:0253-3782.1998.04.005
    [4] Liu X Q,Zhou H L,Zheng Z Z,Shen P,Yang X H,Ma Y L. 1998. Identification method of weak seismic phases on the basis of wavelet packet transform[J]. Acta Seismologica Sinica,20(4):373–380 (in Chinese).
    [5] 刘希强,周蕙兰,沈萍,杨选辉,马延路,李红. 2000. 用于三分向记录震相识别的小波变换方法[J]. 地震学报,22(2):125–131. doi: 10.3321/j.issn:0253-3782.2000.02.002
    [6] Liu X Q,Zhou H L,Shen P,Yang X H,Ma Y L,Li H. 2000. Identification method of seismic phase in three-component seismograms on the basis of wavelet transform[J]. Acta Seismologica Sinica,22(2):125–131 (in Chinese).
    [7] 马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 14–39.
    [8] Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: China Earthquake Administration, Institute of Engineering Mechanics: 14–39 (in Chinese).
    [9] 马强,金星,李山有,陈绯雯,廖诗荣,韦永祥. 2013. 用于地震预警的P波震相到时自动拾取[J]. 地球物理学报,56(7):2313–2321. doi: 10.6038/cjg20130718
    [10] Ma Q,Jin X,Li S Y,Chen F W,Liao S R,Wei Y X. 2013. Automatic P-arrival detection for earthquake early warning[J]. Chinese Journal of Geophysics,56(7):2313–2321 (in Chinese). doi: 10.6038/cjg20130718(inChinese)
    [11] 赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042. doi: 10.6038/cjg2019M0495
    [12] Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
    [13] Akaike H. 1974. A new look at the statistical model identification[J]. IEEE Trans Automat Control,19(6):716–723. doi: 10.1109/TAC.1974.1100705
    [14] Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
    [15] Amoroso O,Maercklin N,Zollo A. 2012. S-wave identification by polarization filtering and waveform coherence analyses[J]. Bull Seismol Soc Am,102(2):854–861. doi: 10.1785/0120110140
    [16] Anant K S,Dowla F U. 1997. Wavelet transform methods for phase identification in three-component seismograms[J]. Bull Seismol Soc Am,87(6):1598–1612.
    [17] Baer M,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events[J]. Bull Seismol Soc Am,77(4):1437–1445. doi: 10.1785/BSSA0770041437
    [18] Chu C K P,Mendel J M. 1994. First break refraction event picking using fuzzy logic systems[J]. IEEE Trans Fuzzy Syst,2(4):255–266. doi: 10.1109/91.324805
    [19] Cichowicz A. 1993. An automatic S-phase picker[J]. Bull Seismol Soc Am,83(1):180–189.
    [20] Dai H C,MacBeth C. 1995. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophys J Int,120(3):758–774. doi: 10.1111/j.1365-246X.1995.tb01851.x
    [21] Flinn E A. 1965. Signal analysis using rectilinearity and direction of particle motion[J]. Proc IEEE,53(12):1874–1876. doi: 10.1109/PROC.1965.4462
    [22] Jurkevics A. 1988. Polarization analysis of three-component array data[J]. Bull Seismol Soc Am,78(5):1725–1743.
    [23] Küperkoch L,Meier T,Brüstle A,Lee J,Friederich W. 2012. Automated determination of S-phase arrival times using autoregressive prediction:Application to local and regional distances[J]. Geophys J Int,188(2):687–702. doi: 10.1111/j.1365-246X.2011.05292.x
    [24] Kong Q K,Trugman D T,Ross Z E,Bianco M J,Meade B J,Gerstoft P. 2019. Machine learning in seismology:Turning data into insights[J]. Seismol Res Lett,90(1):3–14. doi: 10.1785/0220180259
    [25] Lois A,Sokos E,Martakis N,Paraskevopoulos P,Tselentis G A. 2013. A new automatic S-onset detection technique:Application in local earthquake data[J]. Geophysics,78(1):KS1–KS11. doi: 10.1190/GEO2012-0050.1
    [26] Lomax A,Satriano C,Vassallo M. 2012. Automatic picker developments and optimization:FilterPicker:A robust,broadband picker for real-time seismic monitoring and earthquake early warning[J]. Seismol Res Lett,83(3):531–540. doi: 10.1785/gssrl.83.3.531
    [27] Perol T,Gharbi M,Denolle M. 2018. Convolutional neural network for earthquake detection and location[J]. Sci Adv,4(2):e1700578. doi: 10.1126/sciadv.1700578
    [28] Ross Z E,Meier M A,Hauksson E,Heaton T H. 2018a. Generalized seismic phase detection with deep learning[J]. Bull Seismol Soc Am,108(5A):2894–2901. doi: 10.1785/0120180080
    [29] Ross Z E,Meier M A,Hauksson E. 2018b. P wave arrival picking and first-motion polarity determination with deep learning[J]. J Geophys Res:Solid Earth,123(6):5120–5129. doi: 10.1029/2017JB015251
    [30] Ruud B O,Husebye E S. 1992. A new three-component detector and automatic single-station bulletin production[J]. Bull Seismol Soc Am,82(1):221–237.
    [31] Saragiotis C D,Hadjileontiadis L J,Panas S M. 2002. PAI-S/K:A robust automatic seismic P phase arrival identification scheme[J]. IEEE Trans Geosci Remote Sens,40(6):1395–1404. doi: 10.1109/TGRS.2002.800438
    [32] Vidale J E. 1986. Complex polarization analysis of particle motion[J]. Bull Seismol Soc Am,76(5):1393–1405.
    [33] Zhu L J, Peng Z G, McClellan J. 2018. Deep learning for seismic event detection of earthquake aftershocks[C]//52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE: 1121–1125.
    [34] Zhu W Q,Beroza G C. 2018. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys Int J,216(1):261–273. doi: 10.1093/gji/ggy42
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  38
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-11-02
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回