2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响

蒋子琴 杨莹辉 陈强 徐倩 徐浪 黄小梅

蒋子琴,杨莹辉,陈强,徐倩,徐浪,黄小梅. 2021. 2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响. 地震学报,43(6):724−738 doi: 10.11939/jass.20200140
引用本文: 蒋子琴,杨莹辉,陈强,徐倩,徐浪,黄小梅. 2021. 2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响. 地震学报,43(6):724−738 doi: 10.11939/jass.20200140
Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2021. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica,43(6):724−738 doi: 10.11939/jass.20200140
Citation: Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2021. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica43(6):724−738 doi: 10.11939/jass.20200140

2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响

doi: 10.11939/jass.20200140
详细信息
    通讯作者:

    蒋子琴,e-mail:jzqswjtu@163.com

  • 中图分类号: P315.72+5;P315.72+7

Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake

  • 摘要: 收集了覆盖监测区域的Sentinel-1卫星雷达影像,利用短基线集干涉测量技术提取2017年伊朗萨波尔扎哈布MW7.3地震后283天的地表时序形变,通过二步法反演得到其震后余滑分布,之后采用差分干涉技术获取了2018年贾万鲁德MW6.0地震的同震形变场,并将反演所得的发震断层参数作为应力计算的接收断层参数,来分析2017年强震及其震后活动对2018年贾万鲁德MW6.0地震的触发影响。结果表明:萨波尔扎哈布地震的震后形变主要由孕震断层面的余滑运动所致,震后283天的余滑模型的累积滑移量达到0.7 m;2018年贾万鲁德地震的发震断层走向为355.6°,倾角为89.4°,同震断层破裂以右旋走滑为主,兼具部分正断层运动。计算的库仑应力变化表明2017年MW7.3主震及其震后余滑对2018年MW6.0地震的发生具有一定的促进作用,MW6.0地震的发生可能与区域板块活动性相关。

     

  • 图  1  2017 年和 2018 年两次伊朗地震震源区的构造背景及余震分布

    Figure  1.  Tectonic settings of the source regions of the two Iran earthquakes in 2017 and 2018 and aftershock distribution

    图  2  2017年萨波尔扎哈布MW7.3地震的震后形变场

    (a) 升轨视线向型变量;(b) 降轨视线向型变量

    Figure  2.  Post-seismic deformation of the Sarpol Zahab MW7.3 earthquake in 2017

    (a) Ascending LOS deformation;(b) Descending LOS deformation

    图  3  点形变序列(a)及震后余滑的地震矩M0和矩震级MW随时间的变化(b)

    Figure  3.  Point deformation sequences (a) and variation of the earthquake moment M0 and the moment magnitude MW of the afterslip (b) with post-seismic time

    图  4  2017年萨波尔扎哈布MW7.3地震的震后余滑分布

    Figure  4.  The afterslip distribution of Sarpol Zahab MW7.3 earthquake in 2017

    图  5  2017年萨波尔扎哈布MW7.3地震震后余滑的模拟形变场和残差。(b) 降轨形变场

    Figure  5.  The simulated post-seismic deformation fields and the residuals based on the afterslip of the Sarpol Zahab MW7.3 earthquake in 2017。(b) The descending deformation field

    图  6  贾万鲁德MW6.0地震升轨(上)、降轨(下)的同震形变场及其模拟残差

    (a) 观测形变场;(b) 模拟形变场;(c) 残差

    Figure  6.  Co-seismic deformation fields and simulation residuals of ascending (upper) and descending (lower) of the Javanrud MW6.0 earthquake

    The black line is the fault trace,yellow star represents the epicenter of the Javanrud MW6.0 earthquake. (a) Observed InSAR deformation field;(b) Simulated deformation;(c) Residual

    图  7  InSAR反演所得的贾万鲁德MW6.0地震的断层滑动模型

    (a) 断层滑动空间分布;(b) 断层滑动平面分布,黄色星形代表2018年MW6.0地震震源在断层面上的投影位置

    Figure  7.  Fault slip model of the Javanrud MW6.0 earthquake constrained by InSAR observations

    (a) 3D view of the fault slip;(b) Slip distribution on the fault plane,where yellow star represents the projected location of the hypocenter of the 2018 MW 6.0 earthquake

    图  8  2017年萨波尔扎哈布MW7.3地震及其震后余滑在2018年贾万鲁德MW 6.0地震发震断层上触发的应力改变

    (a,b) MW7.3地震对 MW6.0地震触发的应力变化分布;(c,d) MW 7.3地震的震后余滑对MW6.0地震触发的应力变化分布;(e,f) 本文计算使用的2017年MW7.3地震同震断层模型(Yang et al,2018)。图中黄色和红色星形分别代表2018年MW6.0和2017年MW7.3地震震源在其断层面上的投影位置

    Figure  8.  The stress triggering effects on 2018 MW6.0 earthquake generated by the 2017 MW7.3 earthquake and its afterslip

    (a,b) The CFS change on the seismogenic fault plane of the MW6.0 earthquake triggered by the MW7.3 earthquake;(c,d) The CFS change on the fault plane triggered by the MW7.3 earthquake afterslip;(e,f) The co-seismic fault model of the 2017 MW7.3 earthquake used in the calculation of CFS change (Yang et al,2018)。 The yellow and red stars represent the projected location of the hypocenter of the 2018 MW6.0 and the 2017 MW7.3 earthquakes

    图  9  2017年MW7.3 地震的同震及震后断层滑动分布

    Figure  9.  The co- and post-seismic fault slip distribution of the 2017 MW7.3 earthquake

    表  1  Sentinel-1A卫星的SAR影像参数

    Table  1.   Parameters of Sentinel-1A satellite SAR images

    轨道方向监测时段影像数量/幅波长/cm飞行角/°入射角/°分辨率/m
    升轨2017-11-23—2018-08-14125.6−9.739.25×20
    降轨2017-11-19—2018-08-22135.6−167.043.95×20
    下载: 导出CSV

    表  2  Sentinel-1B卫星SAR影像参数

    Table  2.   Parameters of the Sentinel-1B satellite SAR images

    卫星类型轨道方向获取时间飞行角/°入射角/°垂直基线/m
    震前日期震后日期
    Sentinel-1B升轨2018-08-152018-08-27−12.933.850.6
    Sentinel-1B降轨2018-08-162018-08-28−166.939.2−22.6
    下载: 导出CSV
  • [1] 郝平,傅征祥,田勤俭,刘杰,刘桂萍. 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究[J]. 地震学报,26(1):30–37. doi: 10.3321/j.issn:0253-3782.2004.01.004
    [2] Hao P,Fu Z X,Tian Q J,Liu J,Liu G P. 2004. Large aftershocks triggering by Coulomb failure stress following the 2001 MS=8.1 great Kunlun earthquake[J]. Acta Seismologica Sinica,26(1):30–37 (in Chinese).
    [3] 贺克锋,赵斌,杜瑞林. 2019. 利用长期GPS数据研究2008年汶川地震震后形变[J]. 大地测量与地球动力学,39(2):122–126.
    [4] He K F,Zhao B,Du R L. 2019. Post-seismic deformation associated with the 2008 Wenchuan earthquake by long-term GPS data[J]. Journal of Geodesy and Geodynamics,39(2):122–126 (in Chinese).
    [5] 冀战波,王琼,王海涛,解朝娣. 2014. 2008年新疆于田MS7.3地震对后续地震的完全库仑应力触发作用[J]. 地震学报,36(6):997–1009.
    [6] Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    [7] 李健,詹文欢,朱俊江,孙杰,冯英辞,姜莲婷,郭磊,唐琴琴. 2017. 1990年菲律宾MW7.7级强震对马尼拉俯冲带静态应力触发影响[J]. 海洋地质与第四纪地质,37(6):93–99.
    [8] Li J,Zhan W H,Zhu J J,Sun J,Feng Y C,Jiang L T,Guo L,Tang Q Q. 2017. A preliminary study on static stress triggering effects on Manila subduction zone by the Philippine MW7.7 earthquake 1990[J]. Marine Geology &Quaternary Geology,37(6):93–99 (in Chinese).
    [9] 单斌,李佳航,韩立波,房立华,杨嵩,金笔凯,郑勇,熊熊. 2012. 2010年MS7.1级玉树地震同震库仑应力变化以及对2011年MS5.2级囊谦地震的影响[J]. 地球物理学报,55(9):3028–3042. doi: 10.6038/j.issn.0001-5733.2012.09.021
    [10] Shan B,Li J H,Han L B,Fang L H,Yang S,Jin B K,Zheng Y,Xiong X. 2012. Coseismic Coulomb stress change caused by 2010 MS=7.1 Yushu earthquake and its influence to 2011 MS=5.2 Nangqên earthquake[J]. Chinese Journal of Geophysics,55(9):3028–3042 (in Chinese).
    [11] 万永革,吴忠良,周公威,黄静. 2000. 几次复杂地震中不同破裂事件之间的“应力触发”问题[J]. 地震学报,22(6):568–576. doi: 10.3321/j.issn:0253-3782.2000.06.002
    [12] Wan Y G,Wu Z L,Zhou G W,Huang J. 2000. “Stress triggering” between different rupture events in several earthquakes[J]. Acta Seismologica Sinica,22(6):568–576 (in Chinese).
    [13] 万永革,沈正康,兰从欣. 2005. 兰德斯地震断层面及其附近余震产生的位移场研究[J]. 地震学报,27(2):139–146. doi: 10.3321/j.issn:0253-3782.2005.02.003
    [14] Wan Y G,Shen Z K,Lan C X. 2005. Study on displacement field generated by aftershocks in Landers seismic fault plane and its adjacent areas[J]. Acta Seismologica Sinica,27(2):139–146 (in Chinese).
    [15] 万永革,沈正康,盛书中,徐晓枫. 2009. 2008年汶川大地震对周围断层的影响[J]. 地震学报,31(2):128–139. doi: 10.3321/j.issn:0253-3782.2009.02.002
    [16] Wan Y G,Shen Z K,Sheng S Z,Xu X F. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults[J]. Acta Seismologica Sinica,31(2):128–139 (in Chinese).
    [17] 文磊,张光亚,李曰俊,温志新,张强,赵岩. 2015. 扎格罗斯褶皱冲断带构造变形特征[J]. 地质科学,50(2):653–664. doi: 10.3969/j.issn.0563-5020.2015.02.020
    [18] Wen L,Zhang G Y,Li Y J,Wen Z X,Zhang Q,Zhao Y. 2015. Structure-deformation features of the Zagros fold and thrust belt[J]. Chinese Journal of Geology,50(2):653–664 (in Chinese).
    [19] 杨百存,秦四清,薛雷,张珂. 2018. 2017年伊拉克MW7.3地震的类型界定及其震后趋势分析[J]. 地球物理学报,61(2):616–624. doi: 10.6038/cjg2018L0737
    [20] Yang B C,Qin S Q,Xue L,Zhang K. 2018. Identification of seismic type of 2017 Iraq MW7.3 earthquake and analysis of its post-quake trend[J]. Chinese Journal of Geophysics,61(2):616–624 (in Chinese).
    [21] 张庆云,李永生,张景发. 2020. 2017年伊朗MW7.3地震震源机制反演及三维形变场获取[J]. 武汉大学学报(信息科学版),45(2):196–204.
    [22] Zhang Q Y,Li Y S,Zhang J F. 2020. Focal mechanism inversion and 3D deformation field acquisition of Iran MW7.3 earthquake in 2017[J]. Geomatics and Information Science of Wuhan University,45(2):196–204 (in Chinese).
    [23] Deng J S,Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective[J]. J Geophys Res,102(B5):9859–9886. doi: 10.1029/96JB03897
    [24] Feng W P,Samsonov S,Almeida R,Yassaghi A,Li J H,Qiu Q,Li P,Zheng W J. 2018. Geodetic constraints of the 2017 MW7.3 Sarpol Zahab,Iran earthquake,and its implications on the structure and mechanics of the northwest Zagros thrust-fold belt[J]. Geophys Res Lett,45(14):6853–6861. doi: 10.1029/2018GL078577
    [25] Guo R M,Zheng Y,Xu J Q,Riaz M S. 2019. Transient viscosity and afterslip of the 2015 MW8.3 Illapel,Chile,earthquake[J]. Bull Seismol Soc Am,109(6):2567–2581. doi: 10.1785/0120190114
    [26] Hatzfeld D,Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and geodynamic implications[J]. Rev Geophys,48(2):RG2005.
    [27] He P,Wen Y M,Xu C J,Chen Y G. 2019. High-quality three-dimensional displacement fields from new-generation SAR imagery:Application to the 2017 Ezgeleh,Iran,earthquake[J]. J Geod,93(4):573–591. doi: 10.1007/s00190-018-1183-6
    [28] Hsu Y J,Simons M,Avouac J P,Galetzka J,Sieh K,Chlieh M,Natawidjaja D,Prawirodirdjo L,Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake,Sumatra[J]. Science,312(5782):1921–1926. doi: 10.1126/science.1126960
    [29] Jahani S,Callot J P,Letouzey J,Frizon de Lamotte D. 2009. The eastern termination of the Zagros fold-and-thrust belt,Iran:Structures,evolution,and relationships between salt plugs,folding,and faulting[J]. Tectonics,28(6):TC6004.
    [30] Jónsson S,Segall P,Pedersen R,Björnsson G. 2003. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature,424(6945):179–183. doi: 10.1038/nature01776
    [31] King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
    [32] Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res,109(B2):B02303.
    [33] Lohman R B, Simons M. 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data down sampling[J]. Geochem, Geophys, Geosyst, 6(1): Q01007.
    [34] Marone C J,Scholtz C H,Bilham R. 1991. On the mechanics of earthquake afterslip[J]. J Geophys Res,96(B5):8441–8452. doi: 10.1029/91JB00275
    [35] Mora O,Mallorqui J J,Broquetas A. 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Trans Geosci Remote Sens,41(10):2243–2253. doi: 10.1109/TGRS.2003.814657
    [36] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
    [37] Peltzer G,Rosen P,Rogez F,Hudnut K. 1998. Poroelastic rebound along the Landers 1992 earthquake surface rupture[J]. J Geophys Res:Solid Earth,103(B12):30131–30145. doi: 10.1029/98JB02302
    [38] Taymaz T, Nilfouroushan F, Yolsal-Çevikbilen S, Eken T. 2018. Co-seismic crustal deformation of the 12 November 2017 MW7.4 Sar-Pol-Zahab (Iran) earthquake: Integration of analysis based on DInSAR and seismological observations[C]//Proceedings of 2018 EGU General Assembly. Vienna, Austria: EGU.
    [39] USGS. 2017. M7.3: 29 km S of Halabjah, Iraq[EB/OL]. [2017-11-12]. https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg/moment-tensor.
    [40] USGS. 2018. M 6.0: 32 km SW of Javanrud, Iran[EB/OL]. [2018-08-25]. https://earthquake.usgs.gov/earthquakes/eventpage/us1000ghda/moment-tensor.
    [41] Yang C S,Han B Q,Zhao C Y,Du J T,Zhang D X,Zhu S N. 2019. Co- and post-seismic deformation mechanisms of the MW7.3 Iran earthquake (2017) revealed by Sentinel-1 InSAR observations[J]. Remote Sens,11(4):418. doi: 10.3390/rs11040418
    [42] Yang Y H,Chen Q,Xu Q,Liu G X,Hu J C. 2018a. Source model and Coulomb stress change of the 2015 MW7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations[J]. J Geod,93(3):333–351.
    [43] Yang Y H,Hu J C,Yassaghi A,Tsai M C,Zare M,Chen Q,Wang Z G,Rajabi A M,Kamranzad F. 2018b. Midcrustal thrusting and vertical deformation partitioning constraint by 2017 MW7.3 Sarpol Zahab earthquake in Zagros mountain belt,Iran[J]. Seismol Res Lett,89(6):2204–2213. doi: 10.1785/0220180022
    [44] Zhao B,Bürgmann R,Wang D,Tan K,Du R,Zhang R. 2017. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the MW7.9 Gorkha,Nepal,earthquake[J]. J Geophys Res:Solid Earth,122(10):8376–8401. doi: 10.1002/2017JB014366
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  47
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-12-06

目录

    /

    返回文章
    返回