四川地区地震背景噪声特征分析

谢江涛 林丽萍 赵敏 谌亮

谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析. 地震学报,43(5):533−550 doi: 10.11939/jass.20200148
引用本文: 谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析. 地震学报,43(5):533−550 doi: 10.11939/jass.20200148
Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region. Acta Seismologica Sinica,43(5):533−550 doi: 10.11939/jass.20200148
Citation: Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region. Acta Seismologica Sinica43(5):533−550 doi: 10.11939/jass.20200148

四川地区地震背景噪声特征分析

doi: 10.11939/jass.20200148
基金项目: 国家重点研发计划(2018YFC1504002,2018YFC1503305)资助
详细信息
    通讯作者:

    谢江涛,e-mail:jiangtaoxie@outlook.com

  • 中图分类号: P315. 3+1

Characteristics of seismic ambient noise in Sichuan region

  • 摘要: 选取四川省数字测震台网2015年1月1日至2018年12月31日期间60个固定台站的三分量连续波形记录,计算了台站噪声加速度功率谱密度及相应的概率密度函数分布,统计了不同频率下的噪声功率谱密度值分布,对不同区域、不同频率下背景噪声水平的变化特征予以分析。结果表明:大部分地震台站的高频段噪声由于受到台站附近人为的、规律的作息生活和生产方式的影响,呈现明显的季节性变化和日变化,即夏季噪声水平升高,冬季降低,在农历春节期间达到全年最低值,地理空间分布特征不明显;第二类地脉动冬季噪声水平升高,夏季降低,季节性变化明显,平均变化为1—5 dB,且冬季峰值出现的频率向长周期方向移动1—2 s,呈现明显的地理空间分布特征,川东地区平均噪声水平最高,攀西地区次之,川西高原最低;与第二类地脉动相比,第一类地脉动观测到的噪声能量较弱,季节性变化不明显,地理空间分布的噪声水平差异明显减小;在20 s以上的长周期部分,台站噪声未呈明显的季节性和地理空间分布差异。此外,将地震计安置在山洞和井下,可以有效地降低台站周围干扰源、温度和压强对高频段和长周期观测的影响,噪声水平低于地表安装方式。

     

  • 图  1  四川省数字测震台网固定台站分布图

    Figure  1.  Distribution of permanent stations in Sichuan digital seismic network

    图  2  四川台网金鸡寺(JJS)和天全(TQU)地震台2015年1月1日至2018年12月31日三分量连续观测数据的噪声功率谱密度(PSD)的概率密度函数(PDF)分布图

    Figure  2.  PSD-PDF distribution of three-component ambient noise at the stations JJS and TQU in Sichuan seismic network recorded from January 1,2015 to December 31,2018

    图  3  四川台网金鸡寺(JJS)台(a)和天全(TQU)台(b)三分量统计中值和最小值功率谱密度(PSD)曲线

    Figure  3.  The three-component median and minimum PSD curves for the stations JJS (a) and TQU (b) in Sichuan seismic network

    图  4  华蓥山台(HYS)台(a)和道孚(DFU)台(b)垂直分量噪声功率谱密度(PSD)值的日变化

    Figure  4.  Diurnal variations of vertical-component ambient noise PSD for the station HYS (a) and DFU (b)

    图  5  地震台站垂直分量夜晚时段的噪声水平及其与白天的噪声水平变化值

    Figure  5.  The vertical-component noise levels of the seismic stations at nighttime (color) and their difference from daytime (circles) in the selected period bands

    (a) 3—10 Hz;(b) 10—20 Hz;(c) 20—40 Hz

    图  6  2015年1月1日至2018年12月31日道孚(DFU)地震台三分量噪声加速度功率谱密度(PSD)值随时间的变化分布

    Figure  6.  PSD spectrogram of ambient noise obtained from continuous three-component records at station DFU from January 1,2015 to December 31,2018

    图  7  2015年1月1日至2018年12月31日道孚(DFU)地震台中心周期Tc为0.32 s和4.6951 s时三分量背景噪声功率谱密度(PSD)值随时间的变化

    Figure  7.  PSD values of ambient noise at the central periods Tc 0.32 s and 4.695 1 s obtained from continuous three-component records for the station DFU in Sichuan seismic network from January 1,2015 to December 31,2018

    图  8  四川台网各台站夏季(a)和冬季(b) 0.1—0.5 Hz频段的垂直分量噪声水平分布

    Figure  8.  Distribution of vertical-component noise level in Sichuan seismic network in the frequency band 0.1—0.5 Hz during summer (a) and winter (b)

    图  9  道孚(DFU)台(a)和金鸡寺(JJS)台(b)垂直分量夏季和冬季噪声功率谱密度(PSD)的概率密度函数(PDF)分布及中值、最小值PSD曲线

    Figure  9.  The PDF distribution of PSD for vertical-component seismic noise in summer and winter for the stations DFU (a) and JJS (b) and the median and minimum PSD curves

    图  10  四川台网地震台站垂直分量不同周期的噪声水平空间分布

    Figure  10.  Geographic distribution of vertical-component noise level for different periods at the seismic stations in Sichuan seismic network

    (a) f =25.000 0 Hz;(b) f =9.638 8 Hz;(c) f =2.026 3 Hz;(d) f =0.328 5 Hz

    10  四川台网地震台站垂直分量不同周期的噪声水平空间分布

    10.  Geographic distribution of vertical-component noise level for different periods at the seismic stations in Sichuan Seismic Network

    (e) f =0.195 3 Hz;(f) f =0.097 7 Hz;(g) f =0.063 3 Hz;(h) f =0.048 8 Hz;(i) f =0.041 1 Hz;(j) f =0.020 5 Hz

    表  1  四川数字测震台网各台站垂直分量夜晚时段的噪声水平及昼夜变化值

    Table  1.   The vertical-component noise level at nighttime for the seismic stations of Sichuan digital seismic networks and their difference from daytime

    序号台站
    名称
    台站
    代码
    3—10 Hz 频带10—20 Hz 频带20—40 Hz 频带
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    1 安县 AXI −127.27 2.25 −118.32 5.21 −109.54 2.15
    2 安岳 AYU −131.74 8.00 −136.56 16.16 −138.21 14.52
    3 宝兴 BAX −130.44 8.31 −117.78 6.22 −120.61 10.66
    4 巴塘 BTA −129.44 10.80 −128.70 13.22 −129.35 11.84
    5 丙乙底 BYD −140.19 12.60 −140.18 9.43 −134.32 6.09
    6 巴中 BZH −131.37 10.40 −134.36 11.41 −134.25 11.08
    7 成都 CD2 −125.10 2.56 −128.30 2.02 −129.47 0.62
    8 苍溪 CXI −131.53 10.28 −135.32 8.14 −129.87 2.86
    9 道孚 DFU −143.91 12.94 −148.38 9.48 −146.51 2.91
    10 峨眉山 EMS −121.74 9.20 −123.48 11.10 −130.33 13.96
    11 姑咱 GZA −130.59 4.06 −125.17 5.59 −124.94 3.35
    12 甘孜 GZI −129.86 12.40 −137.94 13.45 −135.92 7.78
    13 会理 HLI −123.38 9.63 −124.19 7.98 −128.13 9.39
    14 花马石 HMS −133.13 5.94 −136.34 7.78 −134.90 3.90
    15 黑水 HSH −133.09 7.44 −126.52 8.01 −128.26 3.66
    16 汉王山 HWS −136.54 5.29 −134.05 4.37 −135.98 4.09
    17 华蓥山 HYS −125.08 1.27 −118.83 1.77 −122.46 2.25
    18 红原 HYU −142.59 14.29 −133.77 13.00 −134.80 12.41
    19 金鸡寺 JJS −134.91 7.22 −133.69 10.42 −133.33 2.69
    20 筠连 JLI −139.43 10.59 −131.01 12.04 −133.60 14.78
    21 九龙 JLO −138.43 7.17 −138.66 10.98 −142.43 11.01
    22 剑门关 JMG −138.83 8.68 −138.19 9.74 −133.98 5.33
    23 井研 JYA −135.63 6.94 −143.38 14.73 −144.64 11.14
    24 九寨沟 JZG −143.93 10.13 −138.60 10.88 −139.05 9.52
    25 雷波 LBO −131.24 10.66 −127.53 7.02 −132.99 6.24
    26 泸沽湖 LGH −149.44 14.08 −140.25 17.69 −140.59 15.58
    27 理塘 LTA −142.38 15.07 −131.62 12.86 −131.36 12.89
    28 泸州 LZH −131.22 9.94 −126.66 7.42 −130.66 9.66
    29 马边 MBI −131.59 13.84 −127.66 13.60 −131.69 13.40
    30 蒙顶山 MDS −135.24 10.02 −137.06 14.35 −138.71 10.78
    31 马尔康 MEK −141.97 9.81 −137.25 9.69 −138.41 8.31
    32 美姑 MGU −134.78 12.20 −125.74 9.81 −128.07 15.16
    33 木里 MLI −135.31 12.81 −126.96 10.05 −131.70 8.18
    34 冕宁 MNI −108.62 1.71 −114.16 4.25 −124.79 7.96
    35 茂县 MXI −134.25 11.63 −134.37 10.36 −133.92 6.51
    36 普格 PGE −128.34 11.18 −133.24 11.94 −138.73 12.89
    37 平武 PWU −142.46 6.76 −131.86 5.99 −129.30 3.36
    38 攀枝花 PZH −134.60 11.94 −123.00 14.34 −127.04 11.74
    39 青川 QCH −142.28 11.17 −138.21 12.09 −135.66 7.61
    40 若尔盖 REG −132.80 8.29 −122.80 5.49 −122.06 6.80
    41 壤塘 RTA −138.34 13.67 −132.06 14.16 −133.48 13.50
    42 石棉 SMI −129.27 5.63 −128.19 9.15 −134.12 6.46
    43 石门坎 SMK −141.35 11.93 −138.73 11.61 −136.89 6.15
    44 松潘 SPA −130.44 5.59 −133.89 5.33 −128.07 1.97
    45 天全 TQU −131.84 9.86 −128.01 13.52 −138.34 11.40
    46 旺苍 WAC −134.56 7.56 −137.98 13.32 −137.63 13.41
    47 汶川 WCH −129.50 4.09 −129.94 5.84 −135.15 5.22
    48 五马坪 WMP −142.63 3.89 −145.97 2.85 −140.49 0.93
    49 乡城 XCE −137.05 8.75 −136.27 6.85 −128.68 0.65
    50 西充 XCO −134.28 9.76 −134.11 9.14 −132.33 8.64
    51 宣汉 XHA −133.50 11.09 −116.23 1.91 −110.09 1.65
    52 小金 XJI −130.91 8.22 −125.06 10.11 −128.29 9.12
    53 玄生坝 XSB −136.00 5.82 −134.56 7.61 −133.86 5.26
    54 油罐顶 YGD −133.25 5.53 −130.74 4.95 −127.52 2.33
    55 雅江 YJI −137.74 9.25 −132.05 10.21 −132.70 10.10
    56 盐亭 YTI −134.13 7.75 −133.68 10.24 −129.88 10.63
    57 园艺场 YYC −128.69 6.71 −130.78 7.70 −131.39 8.14
    58 盐源 YYU −144.94 9.33 −140.59 18.68 −135.41 18.48
    59 油榨坪 YZP −142.15 4.39 −138.50 4.90 −136.64 3.87
    60 仲家沟 ZJG −121.31 2.11 −122.69 1.81 −118.80 −2.69
    最小值/dB −149.44 1.27 −148.38 1.77 −146.51 −2.69
    最大值/dB −108.62 15.07 −114.16 18.68 −109.54 18.48
    平均值/dB −134.11 8.67 −131.67 9.33 −132.01 7.84
    中 值/dB −134.19 9.23 −132.65 9.72 −133.16 8.05
    下载: 导出CSV
  • [1] 葛洪魁,陈海潮,欧阳飚,杨微,张梅,袁松湧,王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,56(3):857–868. doi: 10.6038/cjg20130315
    [2] Ge H K,Chen H C,Ouyang B,Yang W,Zhang M,Yuan S Y,Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics,56(3):857–868 (in Chinese).
    [3] 吴建平,欧阳飚,王未来,姚志祥,袁松涌. 2012. 华北地区地震环境噪声特征研究[J]. 地震学报,34(6):818–829. doi: 10.3969/j.issn.0253-3782.2012.06.008
    [4] Wu J P,Ouyang B,Wang W L,Yao Z X,Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica,34(6):818–829 (in Chinese).
    [5] 谢江涛,林丽萍,谌亮,赵敏. 2018. 地震台站台基噪声功率谱概率密度函数Matlab实现[J]. 地震地磁观测与研究,39(2):84–89. doi: 10.3969/j.issn.1003-3246.2018.02.012
    [6] Xie J T,Lin L P,Chen L,Zhao M. 2018. The program of probability density function of power spectral density curves from seismic noise of a station based on Matlab[J]. Seismological and Geomagnetic Observation and Research,39(2):84–89 (in Chinese).
    [7] 谢江涛,林丽萍,赵敏,黄春梅,李荪海. 2019. 应急流动观测组网技术在康定6.3级地震中的应用[J]. 华南地震,39(3):23–31. doi: 10.13512/j.hndz.2019.03.004
    [8] Xie J T,Lin L P,Zhao M,Huang C M,Li S H. 2019. The application of emergency portable seismological observation network technology in Kangding MS6.3 earthquake[J]. South China Journal of Seismology,39(3):23–31 (in Chinese).
    [9] 谢江涛,林丽萍,谌亮. 2020. 九寨沟MS7.0地震应急流动台站噪声水平分析[J]. 大地测量与地球动力学,40(9):962–969. doi: 10.14075/j.jgg.2020.09.017
    [10] Xie J T,Lin L P,Chen L. 2020. Ambient noise level of MS7.0 Jiuzhaigou earthquake emergency mobile stations[J]. Journal of Geodesy and Geodynamics,40(9):962–969 (in Chinese).
    [11] Aster R C,McNamara D E,Bromirski P D. 2008. Multidecadal climate-induced variability in microseisms[J]. Seismol Res Lett,79(2):194–202. doi: 10.1785/gssrl.79.2.194
    [12] Beauduin R,Lognonné P,Montagner J P,Cacho S,Karczewski J F,Morand M. 1996. The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station[J]. Bull Seismol Soc Am,86(6):1760–1769. doi: 10.1785/BSSA0860061760
    [13] Bormann P, Wielandt E. 2013. Seismic signals and noise[G]//New Manual of Seismological Observatory Practice 2 (NMSOP2). Potsdam: Deutsches GeoForschungsZentrum: 1–62.
    [14] Brenguier F,Campillo M,Takeda T,Aoki Y,Shapiro N M,Briand X,Emoto K,Miyake H. 2014. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops[J]. Science,345(6192):80–82. doi: 10.1126/science.1254073
    [15] Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009. doi: 10.1029/2004GC000768
    [16] Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268
    [17] Burtin A,Bollinger L,Vergne J,Cattin R,Nábělek J L. 2008. Spectral analysis of seismic noise induced by rivers:A new tool to monitor spatiotemporal changes in stream hydrodynamics[J]. J Geophys Res:Solid Earth,113(B5):B05301. doi: 10.1029/2007JB005034
    [18] de la Torre T L,Sheehan A F. 2005. Broadband seismic noise analysis of the Himalayan Nepal Tibet Seismic Experiment[J]. Bull Seismol Soc Am,95(3):1202–1208. doi: 10.1785/0120040098
    [19] Demuth A,Ottemöller L,Keers H. 2016. Ambient noise levels and detection threshold in Norway[J]. J Seismol,20(3):889–904. doi: 10.1007/s10950-016-9566-8
    [20] Denolle M A,Dunham E M,Prieto G A,Beroza G C. 2013. Ground motion prediction of realistic earthquake sources using the ambient seismic field[J]. J Geophys Res:Solid Earth,118(5):2102–2118. doi: 10.1029/2012JB009603
    [21] Denolle M A,Dunham E M,Prieto G A,Beroza G C. 2014. Strong ground motion prediction using virtual earthquakes[J]. Science,343(6169):399–403. doi: 10.1126/science.1245678
    [22] Gerstoft P,Tanimoto T. 2007. A year of microseisms in southern California[J]. Geophys Res Lett,34(20):L20304. doi: 10.1029/2007GL031091
    [23] Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177
    [24] Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic ocean[J]. Proc Roy Soc A:Math Phys Eng Sci,464(2091):777–793. doi: 10.1098/rspa.2007.0277
    [25] Lecocq T,Hicks S P,Noten K V,Wijk K V,Koelemeijer P,Plaen R S M D,Massin F,Hillers G,Anthony R E,Apoloner M T,Arroyo-Solórzano M,Assink J D,Büyükakpınar P,Cannata A,Cannavo F,Carrasco S,Caudron C,Chaves E J,Cornwell D G,Craig D,Ouden O F C D,Diaz J,Donner S,Evangelidis C P,Evers L,Fauville B,Fernandez G A,Giannopoulos D,Gibbons S J,Girona T,Grecu B,Grunberg M,Hetényi G,Horleston A,Inza A,Irving J C E,Jamalreyhani M,Kafka A,Koymans M R,Labedz C R,Larose E,Lindsey N J,Mckinnon M,Megies T,Miller M S,Minarik W,Moresi L,Márquez-Ramírez V H,Möllhoff M,Nesbitt I M,Niyogi S,Ojeda J,Oth A,Proud S,Pulli J,Retailleau L,Rintamäki A E,Satriano C,Savage M K,Shani-Kadmiel S,Sleeman R,Sokos E,Stammler K,Stott A E,Subedi S,Sørensen M B,Taira T,Tapia M,Turhan F,Pluijm B V D,Vanstone M,Vergne J,Vuorinen T A T,Warren T,Wassermann J,Xiao H. 2020. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures[J]. Science,369(6509):1338–1343. doi: 10.1126/science.abd2438
    [26] Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,243(857):1–35. doi: 10.1098/rsta.1950.0012
    [27] Marzorati S,Bindi D. 2006. Ambient noise levels in north central Italy[J]. Geochem Geophys Geosyst,7(9):Q09010. doi: 10.1029/2006GC001256
    [28] McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
    [29] Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: U.S. Geological Survey, 93-322: 1−95.
    [30] Rastin S J,Unsworth C P,Gledhill K R,McNamara D E. 2012. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bull Seismol Soc Am,102(1):98–113. doi: 10.1785/0120110064
    [31] Ringler A T,Hutt C R. 2010. Self-noise models of seismic instruments[J]. Seismol Res Lett,81(6):972–983. doi: 10.1785/gssrl.81.6.972
    [32] Sabra K G,Gerstoft P,Roux P,Kuperman W A,Fehler M C. 2005. Extracting time-domain Green’s function estimates from ambient seismic noise[J]. Geophys Res Lett,32(3):L03310. doi: 10.1029/2004GL021862
    [33] Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614. doi: 10.1029/2004GL019491
    [34] Sleeman R,Melichar P. 2012. A PDF representation of the STS-2 self-noise obtained from one year of data recorded in the Conrad observatory,Austria[J]. Bull Seismol Soc Am,102(2):587–597. doi: 10.1785/0120110150
    [35] Stutzmann E,Roult G,Astiz L. 2000. Geoscope station noise levels[J]. Bull Seismol Soc Am,90(3):690–701. doi: 10.1785/0119990025
    [36] Stutzmann E,Schimmel M,Patau G,Maggi A. 2009. Global climate imprint on seismic noise[J]. Geochem Geophys Geosyst,10(11):Q11004. doi: 10.1029/2009GC002619
    [37] Tasič I,Runovc F. 2012. Seismometer self-noise estimation using a single reference instrument[J]. J Seismol,16(2):183–194. doi: 10.1007/s10950-011-9257-4
    [38] Traer J,Gerstoft P,Bromirski P D,Shearer P M. 2012. Microseisms and hum from ocean surface gravity waves[J]. J Geophys Res:Solid Earth,117:B11307. doi: 10.1029/2012JB009550
    [39] Traer J,Gerstoft P. 2014. A unified theory of microseisms and hum[J]. J Geophys Res:Solid Earth,119(4):3317–3339. doi: 10.1002/2013JB010504
    [40] Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    [41] Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287
    [42] Webb S C. 2002. Seismic noise on land and on the sea floor[G]//International Geophysics. International Handbook of Earthquake and Engineering Seismology, Part A. Amsterdam: Academic Press: 81: 305-318.
    [43] Welch P. 1967. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short,modified periodograms[J]. IEEE Trans Audio Electroacoust,15(2):70–73. doi: 10.1109/TAU.1967.1161901
    [44] Wolin E,van der Lee S,Bollmann T A,Wiens D A,Revenaugh J,Darbyshire F A,Frederiksen A W,Stein S,Wysession M E. 2015. Seasonal and diurnal variations in long-period noise at SPREE stations:The influence of soil characteristics on shallow stations’ performance[J]. Bull Seismol Soc Am,105(5):2433–2452. doi: 10.1785/0120150046
    [45] Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008. doi: 10.1029/2007GC001814
    [46] Young C J,Chael E P,Withers M M,Aster R C. 1996. A comparison of the high-frequency (>1 Hz) surface and subsurface noise environment at three sites in the United States[J]. Bull Seismol Soc Am,86(5):1516–1528. doi: 10.1785/BSSA0860051516
    [47] Zhang M,Wen L X. 2015. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466
    [48] Zhu L P,Zhou X F. 2016. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence[J]. Phys Chem Earth:Parts A/B/C,95:10–18. doi: 10.1016/j.pce.2016.01.002
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  169
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 修回日期:  2020-12-29
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回