2014年云南盈江两次中强震发生前后震源区P波速度变化

曹颖 钱佳威 黄江培

曹颖,钱佳威,黄江培. 2021. 2014年云南盈江两次中强震发生前后震源区P波速度变化. 地震学报,43(6):679−694 doi: 10.11939/jass.20200214
引用本文: 曹颖,钱佳威,黄江培. 2021. 2014年云南盈江两次中强震发生前后震源区P波速度变化. 地震学报,43(6):679−694 doi: 10.11939/jass.20200214
Cao Y,Qian J W,Huang J P. 2021. P-wave velocity changes in the source area before and after 2014 Yingjiang, Yunnan double earthquakes. Acta Seismologica Sinica,43(6):679−694 doi: 10.11939/jass.20200214
Citation: Cao Y,Qian J W,Huang J P. 2021. P-wave velocity changes in the source area before and after 2014 Yingjiang, Yunnan double earthquakes. Acta Seismologica Sinica43(6):679−694 doi: 10.11939/jass.20200214

2014年云南盈江两次中强震发生前后震源区P波速度变化

doi: 10.11939/jass.20200214
基金项目: 云南省地震局科技专项(2020ZX04)资助
详细信息
  • 中图分类号: P315

P-wave velocity changes in the source area before and after 2014 Yingjiang, Yunnan double earthquakes

  • 摘要: 基于由云南地震台网所记录到的地震数据,利用基于双差层析成像的时移层析成像方法,开展了2014年5月24日盈江MS5.6和5月30日MS6.1地震前后震源区地下P波速度变化的时空特征研究。结果表明:在盈江MS5.6地震后,震源区的P波速度轻微下降,在MS6.1地震后,相对于MS5.6地震发生后,P波速度继续下降,并下降至最低,下降幅度约为1%,说明P波速度下降的幅度可能与主震的震级大小相关。另外,本研究还观测到P波速度下降与余震分布的时空变化相关,可能是由于余震的动态和静态应力变化造成震源区介质物理性质改变从而导致地震波速度的变化。在双震发生后约五年内,震源区P波速度值上升,但上升幅度小于之前下降的幅度,但这并不能表明震源区还处于愈合过程中。

     

  • 图  1  研究所使用的台站分布

    Figure  1.  The distribution of stations that are used in the study

    图  2  研究区内地震分布及网格划分

    Figure  2.  Seismic stations used in this study and grid nodes division in the studied area

    图  3  P波走时曲线

    Figure  3.  Curve of P wave travel times

    图  5  四个时间段的参数信息

    (a)二维射线分布;(b)不同阻尼参数的解的方差和数据方差的均衡曲线;(c)不同平滑权重参数的模型方差和数据方差的均衡曲线;(d)不同模型下的观测走时与理论走时的均方根拟合差变化

    Figure  5.  The parameter information of four periods

    (a) Distribution of 2-D P wave ray paths;(b) The trade-off curves of solution variance and data variance for different damping parameters;(c) The trade-off curve of slowness model variance and data variance for a set of smoothing weight parameters;(d) The root-mean-square misfit improvement between observation travel times and theoretical ones based on 1D model and 3D model

    图  4  不同深度处的P波速度结构(a)和棋盘测试结果(b)

    黑点表示地震,白色六角星为Ms6.1主震,白色五角星为Ms5.6地震F1:卡场—大竹寨断裂;F2:勐弄—大石坡断裂;F3:苏典—盈江断裂

    Figure  4.  Distribution of P wave velocity structure and checkerboard resolution test at different depth

    (a) Distribution of P wave velocity structure at different depth;(b) Distribution of checkboard resolution test at at different depth

    图  6  四个时间段t1-t4(a-d)不同深度处的P波速度棋盘测试结果

    Figure  6.  Checkerboard resolution test for the four periods.

    图  7  四个时间段t1-t4(a-d)不同深度处的P波速度分布

    F1:卡场—大竹寨断裂;F2:勐弄—大石坡断裂;F3:苏典—盈江断裂,黑点表示地震,白色六角星为Ms6.1主震,白色五角星为Ms5.6地震,白色实线表示DWS值大于150的区域

    Figure  7.  The distribution of P wave velocity for the four periods

    图  8  相邻两时间段的P波速度变化棋盘在不同深度的恢复图

    Figure  8.  Recovered checkerboard result for the two adjacent time periods. (a)t2-t1;(b)t3-t2;(c)t4-t3

    图  9  两个相邻时间段的P波速度变化在不同深度的分布图

    (a)t2-t1;(b)t3-t2;(c)t4-t3F1:卡场—大竹寨断裂;F2:勐弄—大石坡断裂;F3:苏典—盈江断裂黑点表示地震,白色六角星为Ms6.1主震,白色五角星为Ms5.6地震,红色实线表示DWS大于500的区域,DWS小于500的区域被阴影化

    Figure  9.  Distribution of temporal P-wave velocity changes for the two adjacent time periods

    (a)t2-t1;(b)t3-t2;(c)t4-t3

    图  10  两个相邻时间段的P波速度变化沿垂直剖面AA′和BB′的分布图(剖面位置见图2)

    (a)t2-t1;(b)t3-t2;(c)t4-t3F1:卡场—大竹寨断裂;黑点表示地震,白色六角星为Ms6.1主震,白色五角星为Ms5.6地震,红色实线表示DWS大于500的区域

    Figure  10.  Distribution of temporal P-wave velocity changes along the cross sections AA′, BB′ for the two adjacent time periods

    (a)t2-t1;(b)t3-t2;(c)t4-t3

    表  1  初始一维速度模型

    Table  1.   The initial 1D velocity model

    深度/km速度/(km·s−1
    05.000
    25.367
    55.803
    76.033
    106.126
    146.400
    186.600
    256.800
    307.200
    388.000
    下载: 导出CSV

    表  2  四个时间段的数据

    Table  2.   Data of the four periods

    时间段时间窗台站个数地震次数绝对到时/条相对到时/条
    t12009-01-01—2014-05-2312679431064208
    t22014-05-24—05-2914947605467628
    t32014-05-30—07-3116398235139160560
    t42014-08-01—2019-12-31211007851778155
    下载: 导出CSV

    表  3  4个时间段反演前后到时差的均方根残差变化

    Table  3.   The RMS residuals between observed and predicted differential travel times based on 1D model and 3D model for the four periods

    时间段初始三维模型/s最终的三维模型/s下降百分比
    t1 0.519 0.203 60.9%
    t2 0.317 0.048 85.8%
    t3 0.318 0.052 83.6%
    t4 0.404 0.117 71%
    下载: 导出CSV

    表  4  时移层析成像所用到的数据

    Table  4.   The data of time-lapse tomography

    时间段地震次数台站/个P波到时差/个
    t2-t116261410364
    t3-t249291641193
    t4-t349892143656
    下载: 导出CSV

    表  5  相邻两个时间段反演前后到时差的均方根残差变化

    Table  5.   The RMS residuals between observed and predicted differential travel times based on initial 3-D model and final 3-D model varies for two adjacent time periods.

    时间段初始三维模型/s三维速度变化/s下降百分比
    t2-t10.2790.09765.2%
    t3-t20.1400.01688.6%
    t4-t30.1800.01591.7%
    下载: 导出CSV
  • [1] 陈飞. 2017. 利用面波与重力的联合反演确定中国大陆三维岩石圈速度结构[D]. 合肥: 中国科学技术大学: 30–38.
    [2] Chen F. 2017. Lithospheric Shear Wave Tomography of Continental China by Joint Inversion of Surface-Wave and Satellite Gravity Data[D]. Hefei: University of Science and Technology of China: 30–38 (in Chinese).
    [3] 房立华,吴建平,张天中,黄静,王长在,杨婷. 2011. 2011年云南盈江Ms5.8地震及其余震序列重定位[J]. 地震学报,33(2):262–267. doi: 10.3969/j.issn.0253-3782.2011.02.013
    [4] Fang L H,Wu J P,Zhang T Z,Huang J,Wang C Z,Yang T. 2011. Relocation of mainshock and aftershocks of the 2011 Yingjiang MS5.8 earthquake in Yunnan[J]. Acta Seismologica Sinica,33(2):262–267 (in Chinese).
    [5] 黄璟. 2012. 滇西地区三维速度结构研究[D]. 北京: 中国地震局地球物理研究所: 23–25.
    [6] Huang J. 2012. 3D Velocity Structure Study in Western Yunnan[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 23–25 (in Chinese).
    [7] 李飞,周仕勇,苏有锦,李鹏,邓存华,李雷,王兰兰. 2011. 川滇及邻区Pn波速度结构和各向异性研究[J]. 地球物理学报,54(1):44–54. doi: 10.3969/j.issn.0001-5733.2011.01.006
    [8] Li F,Zhou S Y,Su Y J,Li P,Deng C H,Li L,Wang L L. 2011. Study on Pn-wave velocity structure and anisotropy in the Sichuan-Yunnan and its adjacent areas[J]. Chinese Journal of Geophysics,54(1):44–54 (in Chinese).
    [9] 刘志坤,黄金莉. 2010. 利用背景噪声互相关研究汶川地震震源区地震波速度变化[J]. 地球物理学报,53(4):853–863. doi: 10.3969/j.issn.0001-5733.2010.04.010
    [10] Liu Z K,Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation[J]. Chinese Journal of Geophysics,53(4):853–863 (in Chinese).
    [11] 秦敏,李丹宁,张会苑,高洋,姜金钟. 2018. 云南盈江地区地震波非弹性衰减Q值、场地响应及震源参数研究[J]. 地震研究,41(4):583–593. doi: 10.3969/j.issn.1000-0666.2018.04.013
    [12] Qin M,Li D N,Zhang H Y,Gao Y,Jiang J Z. 2018. Research on inelastic attenuation Q-value,site response and source parameters in Yunnan Yingjiang region[J]. Journal of Seismological Research,41(4):583–593 (in Chinese).
    [13] 孙洁,徐常芳,江钊,史书林,王继军,何明. 1989. 滇西地区地壳上地幔电性结构与地壳构造活动的关系[J]. 地震地质,11(1):35–45.
    [14] Sun J,Xu C F,Jiang Z,Shi S L,Wang J J,He M. 1989. The electrical structure of the crust and upper mantle in the west part of Yunnan province and its relation to crustal tectonics[J]. Seismology and Geology,11(1):35–45 (in Chinese).
    [15] 孙楠,高原,赵小艳,苏有锦,刘庚,邬成栋. 2017. 盈江MS6.1地震序列近场横波分裂研究[J]. 地震学报,39(1):34–46. doi: 10.11939/jass.2017.01.004
    [16] Sun N,Gao Y,Zhao X Y,Su Y J,Liu G,Wu C D. 2017. Near-field shear-wave splitting of 2014 Yingjiang MS6.1 earthquake sequence[J]. Acta Seismologica Sinica,39(1):34–46 (in Chinese).
    [17] 肖卓,高原. 2016. 运用尾波干涉技术监测2014年盈江双震期间地壳介质状态的变化[J]. 地球物理学进展,31(6):2421–2428. doi: 10.6038/pg20160609
    [18] Xiao Z,Gao Y. 2016. Monitoring dynamic variations of crustal media during 2014 Yingjiang double earthquakes by coda wave interferometry[J]. Progress in Geophysics,31(6):2421–2428 (in Chinese).
    [19] 徐甫坤,张彦琪,苏有锦. 2015. 2014年云南盈江MS6.1地震前后序列分布差异研究[J]. 地震研究,38(4):525–534.
    [20] Xu F K,Zhang Y Q,Su Y J. 2015. Research on difference of sequence distribution before and after Yingjiang MS6.1 earthquake in Yunnan province in 2014[J]. Journal of Seismological Research,38(4):525–534 (in Chinese).
    [21] 许力生,严川,张旭,付虹,李春来,郭祥云. 2014. 2014年盈江双震的破裂历史[J]. 地球物理学报,57(10):3270–3284. doi: 10.6038/cjg20141015
    [22] Xu L S,Yan C,Zhang X,Fu H,Li C L,Guo X Y. 2014. Rupture histories of the 2014 Yingjiang double earthquakes[J]. Chinese Journal of Geophysics,57(10):3270–3284 (in Chinese).
    [23] 杨婷,吴建平,房立华,王长在. 2014. 滇西地区地壳速度结构及其构造意义[J]. 地震地质,36(2):392–404. doi: 10.3969/j.issn.0253-4967.2014.02.010
    [24] Yang T,Wu J P,Fang L H,Wang C Z. 2014. 3-D crustal P-wave velocity structure in western Yunnan area and its tectonic implications[J]. Seismology and Geology,36(2):392–404 (in Chinese).
    [25] 杨婷,吴建平,房立华,王未来. 2016. 2014年云南盈江MS5.6和MS6.1地震余震序列重定位[J]. 地震地质,38(4):1047–1057.
    [26] Yang T,Wu J P,Fang L H,Wang W L. 2016. Relocation of main shock and aftershocks of the 2014 Yingjiang MS5.6 and MS6.1 earthquakes in Yunnan[J]. Seismology and Geology,38(4):1047–1057 (in Chinese).
    [27] 张彦琪,陈维锋,卢永坤,陈坤华,林国良,李世成. 2017. 2014年云南3次M>6地震灾害特征对比分析[J]. 地震研究,40(1):144–152.
    [28] Zhang Y Q,Chen W F,Lu Y K,Chen K H,Lin G L,Li S C. 2017. Research on the disaster characteristics of three MS>6 earthquakes in Yunnan in 2014[J]. Journal of Seismological Research,40(1):144–152 (in Chinese).
    [29] Julian B R,Foulger G R. 2010. Time-dependent seismic tomography[J]. Geophys J Int,182(3):1327–1338. doi: 10.1111/j.1365-246X.2010.04668.x
    [30] Julian B R, Foulger G R, Monastero F C. 2008. Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006[C]//Proceedings of the Thirty-Third Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University.
    [31] Koulakov I,Gladkov V,El Khrepy S,Al-Arifi N,Fathi I H. 2016. Application of repeated passive source travel time tomography to reveal weak velocity changes related to the 2011 Tohoku-Oki MW 9.0 earthquake[J]. J Geophys Res:Solid Earth,121(6):4408–4426. doi: 10.1002/2016JB013002
    [32] Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosys,17(5):1861–1884. doi: 10.1002/2016GC006262
    [33] Lei J S,Zhao D P,Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data[J]. J Geophys Res:Solid Earth,114(B5):B05302. doi: 10.1029/2008JB005881
    [34] Lei J S,Zhao D P,Xie F R,Liu J. 2011. An attempt to detect temporal variations of crustal structure in the source area of the 2006 Wen-An earthquake in North China[J]. J Asian Earth Sci,40(4):958–976. doi: 10.1016/j.jseaes.2010.07.003
    [35] Lei J S,Zhao D P,Xu X W,Xu Y G,Du M F. 2019. Is there a big mantle wedge under eastern Tibet?[J]. Phys Earth Planet Inter,292:100–113. doi: 10.1016/j.pepi.2019.04.005
    [36] Obermann A,Froment B,Campillo M,Larose E,Planès T,Valette B,Chen J H,Liu Q Y. 2014. Seismic noise correlations to image structural and mechanical changes associated with the MW7.9 2008 Wenchuan earthquake[J]. J Geophys Res:Solid Earth,119(4):3155–3168. doi: 10.1002/2013JB010932
    [37] Patanè D,Barberi G,Cocina O,De Gori P,Chiarabba C. 2006. Time-resolved seismic tomography detects magma intrusions at Mount Etna[J]. Science,313(5788):821–823. doi: 10.1126/science.1127724
    [38] Qian J W,Zhang H J,Westman E. 2018. New time-lapse seismic tomographic scheme based on double-difference tomography and its application in monitoring temporal velocity variations caused by underground coal mining[J]. Geophys J Int,215(3):2093–2104. doi: 10.1093/gji/ggy404
    [39] Wang C Y,Chan W W,Mooney W D. 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications[J]. J Geophys Res:Solid Earth,108(B9):2442.
    [40] Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
    [41] Zhang H J,Thurber C. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2):373–403.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-03-29
  • 网络出版日期:  2021-12-06

目录

    /

    返回文章
    返回