Jin Mingpei, Li Zhenling, Wang Rongjiang. 2017: Coseismic displacement field and slip model derived from near-source strong motion records of MW7.0 Kumamoto, Japan, earthquake. Acta Seismologica Sinica, 39(6): 819-830. DOI: 10.11939/jass.2017.06.001
Citation: Jin Mingpei, Li Zhenling, Wang Rongjiang. 2017: Coseismic displacement field and slip model derived from near-source strong motion records of MW7.0 Kumamoto, Japan, earthquake. Acta Seismologica Sinica, 39(6): 819-830. DOI: 10.11939/jass.2017.06.001

Coseismic displacement field and slip model derived from near-source strong motion records of MW7.0 Kumamoto, Japan, earthquake

More Information
  • Received Date: February 26, 2017
  • Revised Date: May 07, 2017
  • Published Date: October 31, 2017
  • Near-source coseismic displacement field of the 16 April 2016 MW7.0 Kumamoto, Japan, earthquake is estimated from 94 digital strong motion records after correction for their baseline errors using an improved empirical method SMBLOG, and compared with that from 57 GPS observations published by Geospatial Information Authority of Japan (GSI). Furthermore, three slip models of the earthquake are inverted from the displacement data of the GPS, strong motion and their combination, suggesting the results are in good agreement. The three models all show that the earthquake is dominated by the right-lateral strike-slip mechanism (also a few normal-fault dislocations). The maximum horizontal and vertical coseismic displacements reached 104.5 cm and 58.0 cm, and occurred at the stations KMMH162 and KMM005, respectively. The fault slips are mainly distributed around the second event (about 20 km northeastward from epicenter) and in an area of about 40 km along the strike and 20 km along the dip. The moment magnitude is estimated to be MW7.1, and the peak slip is about 5.10 m for strong motion data and 5.87 m for GPS. The surface rupture should be obvious. Moreover, the comparison of the three-component coseismic displacements derived from 12 GPS-strong motion station-pairs with interval less than 3 km also indicates that the lower limit is about 2 cm for earthquakes of magnitude about 7 when SMBLOC method is used.
  • 金明培, 汪荣江. 2013.用近场强震动记录快速估计同震位移并反演震源滑动分布[J].地球物理学报, 56(4): 1207-1215. doi: 10.6038/cjg20130415.
    Jin M P, Wang R J. 2013. Rapid slip inversion using co-seismic displacement data derived from near-source strong motion records[J]. Chinese Journal of Geophysics, 56(4): 1207-1215. doi: 10.6038/cjg20130415 (in Chinese).
    金明培, 汪荣江, 屠泓为. 2014.芦山7级地震的同震位移估计和震源滑动模型反演尝试[J].地球物理学报, 57(1): 129-137. doi: 10.6038/cjg20140112.
    Jin M P, Wang R J, Tu H W. 2014. Slip model and co-seismic displacement field derived from near-source strong motion records of the Lushan MS7.0 earthquake on 20 April 2013[J]. Chinese Journal of Geophysics, 57(1): 129-137. doi: 10.6038/cjg20140112 (in Chinese).
    屠泓为, 汪荣江, 刁法启, 张勇, 万永革, 金明培. 2016.运用SDM方法研究2001年昆仑山口西MS8.1地震破裂分布: GPS和InSAR联合反演的结果[J].地球物理学报, 59(6): 2103-2112. doi: 10.6038/cjg20160616.
    Tu H W, Wang R J, Diao F Q, Zhang Y, Wan Y G, Jin M P. 2016. Slip model of the 2001 Kunlun mountain MS8.1 earthquake by SDM: Joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 59(6): 2103-2112. doi: 10.6038/cjg20160616 (in Chinese).
    Aoi S. 2000. New strong-motion observation network: KiK-net[J]. EOS Trans Am Geophys Union, 4(3): 329.
    Aoi S, Kunugi T, Fujiwara H. 2004. Strong-motion seismograph network operated by NIED: K-NET and KiK-net[J]. J Japan Assoc Earthq Eng, 4(3): 65-74. https://www.researchgate.net/publication/237240490_Strong-motion...
    Asano K, Iwata T. 2016. Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data[J]. Earth Planet Space, 68(1): 147. doi: 10.1186/s40623-016-0519-9
    Boore D M. 2001. Effect of baseline corrections on displacement and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.
    Boore D M, Bommer J J. 2005. Processing of strong-motion accelerograms: Needs, options and consequences[J]. Soil Dyn Earthq Eng, 25(2): 93-115. doi: 10.1016/j.soildyn.2004.10.007
    Chao W A, Wu Y M, Zhao L. 2010. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol, 14(3): 495-504. doi: 10.1007/s10950-009-9178-7
    Diao F Q, Xiong X, Wang R J. 2011. Mechanisms of transient postseismic deformation following the 2001 MW7.8 Kunlun (China) earthquake[J]. Pure Appl Geophys, 168(5): 767-779. doi: 10.1007/s00024-010-0154-5
    F-net. 2016. Earthquake mechanism information[EB/OL]. [2016-04-28]. http://www.fnet.bosai.go.jp/event/tdmt.php?_id=20160415162400&LANG=en.
    Geospatial Information Authority of Japan. 2016a. Horizontal crust deformation before and after 16 April 2016, Kumamoto, Japan, Mj7.3 earthquake[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/common/000193379.jpg(in Japanese).
    Geospatial Information Authority of Japan. 2016b. Vertical crust deformation before and after 16 April 2016, Kumamoto, Japan, Mj7.3 earthquake[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/common/000193382.jpg(in Japanese).
    Geospatial Information Authority of Japan. 2016c. Distribution map (2016-09-12) of continuous GPS stations for 16 April 2016, Kumamoto, Japan Mj7.3 earthquake, renewed on 12 September 2016[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/sokuchikijun/H28-kumamoto-earthquake-seika.html(in Japanese).
    Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology of Japan. 2016. 4th report (May 3, 2016): Emergency survey report for surface earthquake faults associated with the 2016 Kumamoto earthquake[EB/OL]. [2016-06-17]. https://www.gsj.jp/hazards/earthquake/kumamoto2016/kumamoto20160513-1.html (in Japanese).
    Graizer V M. 1979. Determination of the true ground displacement by using strong motion records[J]. Izvestiya Phys Solid Earth, 15(12): 875-885. https://www.researchgate.net/publication/285707520_Determination...
    Graizer V M. 2005. Effect of tilt on strong motion data processing[J]. Soil Dyn Earthq Eng, 25(3): 197-204. doi: 10.1016/j.soildyn.2004.10.008
    Graizer V M. 2006. Tilts in strong ground motion[J]. Bull Seismol Soc Am, 96(6): 2090-2102. doi: 10.1785/0120060065
    Graizer V M. 2010. Strong motion recordings and residual displacements: What are we actually recording in strong motion seismology?[J]. Seismol Res Lett, 81(4): 635-639. doi: 10.1785/gssrl.81.4.635
    Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital acceleration[J]. Bull Seismol Soc Am, 75(5): 1225-1246. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/75/5/...
    Kinoshita S. 1998. Kyoshin net (K-NET)[J]. Seismol Res Lett, 69(4): 309-332. doi: 10.1785/gssrl.69.4.309
    Kubo H, Suzuki W, Aoi S, Sekiguchi H. 2016. Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms[J]. Earth Planet Space, 68(1): 161. doi: 10.1186/s40623-016-0536-8
    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth's crust[J]. Geophys Res Abstracts, 15: Abstract EGU 2013-2658. https://www.researchgate.net/publication/312371085_Update_on_CRUST1...
    McComb H E, Ruge A C, Neumann F. 1943. The determination of true ground motion by integration of strong-motion records: A symposium[J]. Bull Seismol Soc Am, 33(1): 1.
    Moya L, Yamazaki F, Liu W. 2016. Comparison of coseismic displacement obtained from GEONET and seismic networks[J]. J Earthquake Tsunami, 10(2): 1640002. doi: 10.1142/S1793431116400029
    Nishimura T, Munekane H, Yarai H. 2011. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET[J]. Earth Planet Space, 63(7): 631-636. doi: 10.5047/eps.2011.06.025
    Sagiya T. 2004. A decade of GEONET: 1994-2003 The continuous GPS observation in Japan and its impact on earthquake studies[J]. Earth Planet Space, 56(8): 29-41. doi: 10.1186/BF03353077
    Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y, Mori H, Imanishi K, Takeda N, Ochi T, Otsubo M, Asahina D, Miyakawa A. 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan[J]. Earth Planet Space, 68(1): 191. doi: 10.1186/s40623-016-0559-1
    Trifunac M D 1971. Zero baseline correction of strong-motion accelerograms[J]. Bull Seismol Soc Am, 61(5): 1201-1211.
    USGS. 2016. M7.0-1 km E of Kumamoto-shi, Japan[EB/OL]. [2016-06-27].https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#moment-tensor.
    Wang G Q, Boore D M, Igel H, Zhou X Y. 2003. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 93(2): 674-693. doi: 10.1785/0120020045
    Wang G Q, Boore D M, Tang G, Zhou X. 2007. Comparisons of ground motions from colocated and closely spaced one-sample-per-second global positioning system and accelerograph recordings of the 2003 M6.5 San Simeon, California, earthquake in the Parkfield region[J]. Bull Seismol Soc Am, 97(1B): 76-90. doi: 10.1785/0120060053
    Wang R J, Schurr B, Milkereit C, Shao Z G, Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am, 101(5): 2029-2044. doi: 10.1785/0120110039
    Wang R J, Parolai S, Ge M R, Jin M P, Walter T R, Zschau J. 2013. The 2011 MW9.0 Tohoku earthquake: Comparison of GPS and strong-motion data[J]. Bull Seismol Soc Am, 103(2B): 1336-1347. doi: 10.1785/0120110264
    Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol, 11(2): 159-170. doi: 10.1007/s10950-006-9043-x
    Yagi Y, Okuwaki R, Enescu B, Kasahara A, Miyakawa A, Otsubo M. 2016. Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano[J]. Earth Planet Space, 68(1): 118. doi: 10.1186/s40623-016-0492-3
    Zhang G H, Qu C Y, Shan X J, Song X G, Zhang G F, Wang C S, Hu J C, Wang R J. 2011. Slip distribution of the 2008 Wenchuan MS7.9 earthquake by joint inversion from GPS and InSAR measurements: A resolution test study[J]. Geophys J Int, 186(1): 207-220. doi: 10.1111/gji.2011.186.issue-1
  • Cited by

    Periodical cited type(6)

    1. 李奇,陈学良,高孟潭,李宗超. 物理地震危险性分析中的地震动模拟方法研究进展. 世界地震工程. 2022(02): 239-250 .
    2. 解全才,张庆云,马强,张景发. 2016年4月16日熊本地震滑动分布反演与分析. 世界地震工程. 2021(03): 189-199 .
    3. 黎朕灵,金明培,缪素秋. 2021年云南漾濞M_S6.4地震同震位移场和震源滑动模型反演. 地震研究. 2021(03): 330-337 .
    4. 黎朕灵,金明培,缪素秋. 2016年8月24日意大利佩鲁贾M_W6.2级地震同震位移场估计和震源滑动模型反演. 地球物理学进展. 2020(01): 32-39 .
    5. 袁霜,何平,温扬茂,许才军. 综合InSAR和应变张量估计2016年M_W7.0熊本地震同震三维形变场. 地球物理学报. 2020(04): 1340-1356 .
    6. 申文豪,李永生,焦其松,解全才,张景发. 联合强震记录和InSAR/GPS结果的四川九寨沟7.0级地震震源滑动分布反演及其地震学应用. 地球物理学报. 2019(01): 115-129 .

    Other cited types(9)

Catalog

    Article views (1538) PDF downloads (59) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return