Volume 44 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica,44(4):555−566 doi: 10.11939/jass.20210108
Citation: Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica44(4):555−566 doi: 10.11939/jass.20210108

High-resolution crustal structure in the Songliao basin

doi: 10.11939/jass.20210108
  • Received Date: 2021-06-10
  • Rev Recd Date: 2021-09-19
  • Available Online: 2022-04-18
  • Publish Date: 2022-07-15
  • High-resolution shallow crustal structure beneath the Songliao basin of Northeast (NE) China has obvious economic and scientific significance. To constrain the sediment and crustal structure of the Songliao basin, H-β grid search method based on wavefield downward continuation and decomposition is used with teleseismic data recorded from portable broadband seismic arrays in the NE China. The results show that the estimated sediment thickness is 0.2−2.5 km, and becomes thinner from the central depression toward the margin of the basin, with the thinnest sediment in the southwestern region. The crustal thickness varies from 24 km to 34 km, and its lateral variation correlates with the distribution of sedimentary thicknesses to a certain extent. The crustal stretching factor is calculated from the sedimentary and crustal thicknesses, with an average close to the lithospheric stretching estimation from previous receiver function studies. Thus, we infer that the thinning of the crust and lithosphere is dominated by pure shear mode during the extensional process of the Songliao basin. Moreover, the Songliao basin has a high crustal vP/vS ratio, indicating possible magmatic underplating during the lithospheric extension beneath the Songliao basin.


  • loading
  • [1]
    Bao H Y,Guo Z F,Zhang L L,Huang Y P. 2013. Calculating methods and assessment of stretching factor:A case study of northern Jiangsu basin[J]. Petroleum Geology &Experiment,35(3):331–338 (in Chinese).
    Dou L R. 1992. Characteristics of petroleum geology and petroleum potential in Meso-Cenozoic fault basins in northeastern petroleum-bearing provinces,China[J]. Journal of Jianghan Petroleum Institute,14(1):1–8 (in Chinese).
    Fu W. 2019. Deep Structure, Dynamic Background and Hydrocarbon Prospect of Northern Songliao Basin: Revealed by Deep Seismic Reflection Profile[D]. Changchun: Jilin University: 67–82 (in Chinese).
    Fu W Z,Yang B J,Liu C,Кгылов C B. 1998. Study on the seismology in Manzhouli-Suifenhe geoscience transect of China[J]. Journal of Changchun University of Science and Technology,28(2):87–93 (in Chinese).
    Gao L X,Dai Y. 2020. The present geodynamic environment of Northeast China[J]. Journal of Geodesy and Geodynamics,40(11):1101–1107 (in Chinese).
    Gao Y G,Li Y H. 2014. Crustal thickness and vP/vS in the Northeast China-North China region and its geological implication[J]. Chinese Journal of Geophysics,57(3):847–857 (in Chinese).
    Gao Z Y. 2015. The Study of the Crustal and Upper Mantle Structure in Northeast China From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–46 (in Chinese).
    Ge R F,Zhang Q L,Wang L S,Xie G A,Xu S Y,Chen J,Wang X Y. 2010. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in eastern China[J]. Geological Review,56(2):180–195 (in Chinese).
    Hou H S,Wang C S,Zhang J D,Ma F,Fu W,Wang P J,Huang Y J,Zou C C,Gao Y F,Gao Y,Zhang L M,Yang J,Guo R. 2018. Deep continental scientific drilling engineering in Songliao basin:Progress in earth science research[J]. Geology in China,45(4):641–657 (in Chinese).
    Hu W S,Lü B Q,Zhang W J,Mao Z G,Leng J,Guan D Y. 2005. An approach to tectonic evolution and dynamics of the Songliao basin[J]. Chinese Journal of Geology,40(1):16–31 (in Chinese).
    Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    Li E Z,Liu C,Zhang L H,Zeng Z F. 2012. The correlation of structure and earthquake in Songliao basin[J]. Progress in Geophysics,27(4):1337–1349 (in Chinese).
    Li G L. 2016. Measurement of Rayleigh Wave Ellipticity and Its Application to the Joint Inversion of High-Resolution S-Wave Velocity Structure[D]. Beijing: China University of Petroleum (Beijing): 14–28 (in Chinese).
    Li G L. 2019. Joint Inversion of Basin-Wide 3D Sedimentary Structure With Passive Seismic Data[D]. Beijing: China University of Petroleum (Beijing): 47–69 (in Chinese).
    Li Y B,Li Y,Wei B,Liu B,Zhang Z B,Yang M. 2019. Application of CSAMT and shallow seismic reflection to uranium exploration in southwestern Songliao basin[J]. Geology and Exploration,55(6):1442–1451 (in Chinese).
    Lin C S,Zhang Y M. 1995. Quantitative stretching models and computer simulation of rift basin[J]. Earth Science Frontiers,2(3/4):79–88 (in Chinese).
    Liu D L,Chen F J,Guan D F,Tang J R,Liu C R. 1996. A study on lithospheric dynamics of the origin and evolution in the Songliao basin[J]. Chinese Journal of Geology,31(4):397–408 (in Chinese).
    Ma H C,Chu R S,Sheng M H,Wei Z G. 2020. Sedimentary structures of the Songliao basin using high-frequency Ps converted wave from local deep earthquakes[J]. Journal of Geodesy and Geodynamics,40(2):214–220 (in Chinese).
    Wang P J,Liu H B,Ren Y G,Wang X Q,Wang S X,Qu X J,Meng Q A,Huang Y J,Huang Q H,Gao Y F,Wang C S. 2017. How to choose a right drilling site for the ICDP Cretaceous Continental Scientific Drilling in the Songliao basin (SK2),Northeast China[J]. Earth Science Frontiers,24(1):216–228 (in Chinese).
    Wang R T,Li Z W,Bao F,Xie J,Zhao J Z. 2019. S-wave velocity structure of sediment in Songliao basin from short-period ambient noise tomography[J]. Chinese Journal of Geophysics,62(9):3385–3399 (in Chinese).
    Wei Z G,Chen L. 2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton:Constraints from crustal thickness and vP/vS ratio[J]. Chinese Journal of Geophysics,55(11):3601–3614 (in Chinese).
    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y
    Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 25–39 (in Chinese).
    Xie Z X,Wu Q J,Zhou S Y,Zhu M. 2018. Study of crustal thickness and vP/vS ratio beneath the Nuomin River volcanoes[J]. Chinese Journal of Geophysics,61(12):4805–4816 (in Chinese).
    Yang B J,Mu S M,Jin X,Liu C. 1996. Synthesized study on the geophysics of Manzhouli-Suifenhe geoscience transect,China[J]. Chinese Journal of Geophysics,39(6):772–782 (in Chinese).
    Yao Z X,Wang C Y,Zeng R S,Lou H,Zhou M D. 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica,36(1):1–19 (in Chinese).
    Yu J S,Cao J X,Bao X Y,Huang Y. 2003. A modeling of the effects of ground surface weathering layers on reflected shear waves in seismic exploration[J]. Journal of Chengdu University of Technology (Science &Technology Edition),30(6):583–587 (in Chinese).
    Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).
    Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 29–41 (in Chinese).
    Zhou Q H,Feng Z H,Men G T. 2008. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi fault-depression of the northern Songliao basin[J]. Science in China:Series D,51(1):207–220.
    Zhu H X,Tian Y,Liu C,Feng X,Yang B J,Liu C H,Liu T,Ma J C. 2017. High-resolution crustal structure of Northeast China revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,60(5):1676–1689 (in Chinese).
    Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary basin:Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    Bao Y F,Niu F L. 2017. Constraining sedimentary structure using frequency-dependent P wave particle motion:A case study of the Songliao basin in NE China[J]. J Geophys Res,122(11):9083–9094. doi: 10.1002/2017JB014721
    Christensen N I,Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:A global view[J]. J Geophys Res,100(B6):9761–9788. doi: 10.1029/95JB00259
    Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
    Graves R W,Pitarka A,Somerville P G. 1998. Ground-motion amplification in the Santa Monica area:Effects of shallow basin-edge structure[J]. Bull Seismol Soc Am,88(5):1224–1242.
    Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044
    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    He J,Wu Q J,Sandvol E,Ni J,Gallegos A,Gao M T,Ulziibat M,Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions[J]. Tectonics,35(6):1392–1403. doi: 10.1002/2015TC004027
    Kennett B L N,Kerry N J,Woodhouse J H. 1978. Symmetries in the reflection and transmission of elastic waves[J]. Geophys J Int,52(2):215–229. doi: 10.1111/j.1365-246X.1978.tb04230.x
    Leahy G M,Saltzer R L,Schmedes J. 2012. Imaging the shallow crust with teleseismic receiver functions[J]. Geophys J Int,191(2):627–636. doi: 10.1111/j.1365-246X.2012.05615.x
    Li G L,Chen H C,Niu F L,Guo Z,Yang Y J,Xie J. 2016. Measurement of Rayleigh wave ellipticity and its application to the joint inversion of high-resolution S wave velocity structure beneath Northeast China[J]. J Geophys Res,121(2):864–880. doi: 10.1002/2015JB012459
    Lin C S,Li S T,Zhang Q M. 1997. Lithospheric stretching,subsidence and thermal history modeling:Application to Yinggehai,Qiongdongnan and Songliao basins in East China[J]. J China Univ Geosci,8(1):83–89.
    McKenzie D. 1978. Some remarks on the development of sedimentary basins[J]. Earth Planet Sci Lett,40(1):25–32. doi: 10.1016/0012-821X(78)90071-7
    Ren J Y,Tamaki K,Li S T,Zhang J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics,344(3/4):175–205.
    Tao K,Liu T Z,Ning J Y,Niu F L. 2014a. Estimating sedimentary and crustal structure using wavefield continuation:Theory,techniques and applications[J]. Geophys J Int,197(1):443–457. doi: 10.1093/gji/ggt515
    Tao K,Niu F L,Ning J Y,Chen Y J,Grand S,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2014b. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth Planet Sci Lett,398:48–57. doi: 10.1016/j.jpgl.2014.04.043
    Wei H H,Liu J L,Meng Q R. 2010. Structural and sedimentary evolution of the southern Songliao basin,Northeast China,and implications for hydrocarbon prospectivity[J]. AAPG Bull,94(4):531–564.
    Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere[J]. Can J Earth Sci,22(1):108–125. doi: 10.1139/e85-009
    Xiong X S,Gao R,Li Y K,Hou H S,Liang H D,Li W H,Guo L H,Lu Z W. 2015. The lithosphere structure of the Great Xing’an Range in the eastern Central Asian Orogenic Belt:Constrains from the joint geophysical profiling[J]. J Asian Earth Sci,113:481–490. doi: 10.1016/j.jseaes.2015.06.006
    Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential Hκ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
    Zhang R Q,Wu Q J,Sun L,He J,Gao Z Y. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions[J]. Earth Planet Sci Lett,401:196–205. doi: 10.1016/j.jpgl.2014.06.017
    Zheng C,Zhang R Q,Wu Q J,Li Y H,Zhang F X,Shi K X,Ding Z F. 2019. Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions:Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan Plateau[J]. Tectonics,38(7):3167–3181.
    Zhu L,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (552) PDF downloads(148) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint