银川盆地岩石圈结构——长观测距宽角反射与折射剖面结果

林吉焱, 刘保金, 张先康, 段永红

林吉焱, 刘保金, 张先康, 段永红. 2017: 银川盆地岩石圈结构——长观测距宽角反射与折射剖面结果. 地震学报, 39(5): 669-681. DOI: 10.11939/jass.2017.05.004
引用本文: 林吉焱, 刘保金, 张先康, 段永红. 2017: 银川盆地岩石圈结构——长观测距宽角反射与折射剖面结果. 地震学报, 39(5): 669-681. DOI: 10.11939/jass.2017.05.004
Lin Jiyan, Liu Baojin, Zhang Xiankang, Duan Yonghong. 2017: Lithosphere structure of Yinchuan basin from a long-range seismic wide angle reflection and refraction profile. Acta Seismologica Sinica, 39(5): 669-681. DOI: 10.11939/jass.2017.05.004
Citation: Lin Jiyan, Liu Baojin, Zhang Xiankang, Duan Yonghong. 2017: Lithosphere structure of Yinchuan basin from a long-range seismic wide angle reflection and refraction profile. Acta Seismologica Sinica, 39(5): 669-681. DOI: 10.11939/jass.2017.05.004

银川盆地岩石圈结构——长观测距宽角反射与折射剖面结果

基金项目: 

国家自然科学基金 91214205

国家自然科学基金(91214205)、地震行业科研专项(201408023)和中国地震局地球物理勘探中心青年优秀科技人才项目(SFGEC2014008)联合资助

地震行业科研专项 201408023

中国地震局地球物理勘探中心青年优秀科技人才项目 SFGEC2014008

详细信息
    通讯作者:

    林吉焱, e-mail: lin_jiyan@163.com

  • 中图分类号: P313.2

Lithosphere structure of Yinchuan basin from a long-range seismic wide angle reflection and refraction profile

  • 摘要: 利用2014年完成的穿过银川盆地人工源宽角反射与折射剖面的3炮长观测距资料,采用基于地震波走时反演方法的Rayinvr算法得到了研究区地壳和上地幔的速度结构.结果表明:研究区地壳厚度为42—48 km,莫霍面沿剖面展布形态呈现出东西两侧浅、中部较深的特征,莫霍面最深的区段位于贺兰山下方. P波速度沿剖面随着深度的增加呈正梯度增大,然而在深度约为90—103 km的岩石圈地幔中,识别出两组较明显的反射界面,两组界面之间并未发现P波速度随深度而显著增加,表明研究区下方存在与地球平均模型中速度随深度增加而增大不相符的速度结构,推测银川盆地下方岩石圈与软流圈之间可能存在速度过渡带.
    Abstract: By using P-wave travel time data from three shots of the deep seismic sounding profiles passing through Yinchuan basin in 2014, based on travel time inversion method Rayinvr, we get the crustal and upper-mantle structure in the studied area. The results show that crustal thickness in the studied area varies from 42 km to 48 km, Moho depth is shallower in the east and west sides of the profile, and much deeper in the middle segment, the deepest Moho interface is beneath Helan mountain. P wave velocity increases with the increasing of depth in a positive gradient, but two distinct interfaces can be identified in the lithosphere mantle within the depths of 90-103 km. This layer does not exhibit the characteristic that the velocity increases obviously with the depth, suggesting the structure in the studied area present a characteristic that did not conform to the global average model, whose velocity increases according to the depth, therefore it is deduced that a velocity transition zone exists between lithosphere and asthenosphere beneath Yinchuan basin.
  • 图  1   研究区构造分布图及测线位置

    F1:巴彦乌拉山东缘断裂; F2:乌拉山北侧断裂; F3:贺兰山东麓断裂; F4:黄河断裂

    Figure  1.   Tectonic settings and position of the survey line in the studied area

    F1: East margin fault of Bayanwulashan; F2: North margin fault of Wulashan; F3: East margin fault of Helanshan; F4: Yellow river fault

    图  2   3炮点的宽角反射与折射记录截面图

    (a) SP1炮;(b) SP2炮;(c) SP11

    Figure  2.   Wide angle reflection and refraction seismic record sections at the three-shots

    (a) Shot SP1; (b) Shot SP2; (c) Shot SP11

    图  3   3炮点一维走时拟合结果

    点线表示观测走时,实线表示计算走时,图中插图为计算走时依据的速度模型. (a) SP1炮;(b) SP2炮;(c) SP11

    Figure  3.   1-D travel time fitting results of three shots

    Dot lines represent observed travel times, black lines show calculated travel times and inset maps are the velocity models. (a) Shot SP1; (b) Shot SP2; (c) Shot SP11

    图  4   射线追踪和走时拟合图

    (a) Pg波;(b) PmP,Pn和PL1波;(c) PL1P和PL2P波

    Figure  4.   Ray tracing and time fitting

    (a) Pg wave; (b) PmP, Pn and PL1 waves; (c) PL1P and PL2P waves

    图  5   地壳和岩石圈地幔速度结构图(a)及深地震反射叠加剖面(刘保金等,2017)(b)

    图(b)对应图(a)中330—348 km桩号段

    Figure  5.   Velocity structure of crust and lithosphere mantle (a) and stacked deep seismic reflection profile (Liu et al, 2017) (b)

    Fig.(b) corresponds to the segment of distance 330-440 km in Fig.(a)

    图  6   沿剖面高程(a)和结晶地壳平均速度(b)分布图

    Figure  6.   Altitude (a) and crystalline crustal average velocity (b) along the prolile

    图  7   不同速度模型Pn波PL1波拟合对比

    点线表示观测走时,实线表示计算走时. (a)不同的速度模型;(b)-(e)不同速度模型的走时拟合的结果

    Figure  7.   Travel time fitting of Pn and PL1 wave with different velocity models

    Dot lines represent observed travel times, black lines show calculated travel times. (a) Velocity models; (b)-(e) Travel time fitting results of velocity models

  • 邓起东, 程绍平, 闵伟, 杨桂枝, 任殿卫. 1999.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报, 5(3): 13-21. http://d.wanfangdata.com.cn/Periodical/dzlxxb199903003

    Deng Q D, Cheng S P, Min W, Yang G Z, Ren D W. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 5(3): 13-21 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dzlxxb199903003

    段永红, 刘保金, 赵金仁, 刘保峰, 张成科, 潘素珍, 林吉焱, 郭文斌. 2015.华北构造区岩石圈二维P波速度结构特征:来自盐城—包头深地震测深剖面的约束[J].中国科学:地球科学, 45(8): 1183-1197. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201508008&dbname=CJFD&dbcode=CJFQ

    Duan Y H, Liu B J, Zhao J R, Liu B F, Zhang C K, Pan S Z, Lin J Y, Guo W B. 2015. 2-D P-wave velocity structure of lithosphere in the North China tectonic zone: Constraints from the Yancheng-Baotou deep seismic profile[J]. Science China Earth Sciences, 58(9): 1577-1591. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201508008&dbname=CJFD&dbcode=CJFQ

    酆少英, 刘保金, 姬计法, 何银娟, 谭雅丽, 李怡青. 2015.呼和浩特—包头盆地岩石圈细结构的深地震反射探测[J].地球物理学报, 58(4): 1158-1168. doi: 10.6038/cjg20150406

    Feng S Y, Liu B J, Ji J F, He Y J, Tan Y L, Li Y Q. 2015. The survey on fine lithospheric structure beneath Hohhot-Baotou basin by deep seismic reflection profile[J]. Chinese Journal of Geophysics, 58(4): 1158-1168 (in Chinese). doi: 10.6038/cjg20150406

    黄兴富, 施炜, 李恒强, 陈龙, 岑敏. 2013.银川盆地新生代构造演化:来自银川盆地主边界断裂运动学的约束[J].地学前缘, 20(4): 199-210. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201304019&dbname=CJFD&dbcode=CJFQ

    Huang X F, Shi W, Li H Q, Chen L, Cen M. 2013. Cenozoic tectonic evolution of the Yinchuan basin: Constraints from the deformation of its boundary faults[J]. Earth Science Frontiers, 20(4): 199-210 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201304019&dbname=CJFD&dbcode=CJFQ

    嘉世旭, 张先康. 2008.青藏高原东北缘深地震测深震相研究与地壳细结构[J].地球物理学报, 51(5): 1431-1443. http://d.wanfangdata.com.cn/Periodical/dqwlxb200805016

    Jia S X, Zhang X K. 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(5): 1431-1443 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dqwlxb200805016

    李飞, 徐涛, 武振波, 张忠杰, 滕吉文. 2013.三维非均匀地质模型中的逐段迭代射线追踪[J].地球物理学报, 56(10): 3514-3522. doi: 10.6038/cjg20131026

    Li F, Xu T, Wu Z B, Zhang Z J, Teng J W. 2013. Segmentally iterative ray tracing in 3-D heterogeneous geological models[J]. Chinese Journal of Geophysics, 56(10): 3514-3522 (in Chinese). doi: 10.6038/cjg20131026

    刘保金, 酆少英, 姬计法, 王帅军, 张建狮, 袁洪克, 杨国俊. 2017.贺兰山和银川盆地的岩石圈结构和断裂特征:深地震反射剖面结果[J].中国科学:地球科学, 47(2): 179-190. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201702004&dbname=CJFD&dbcode=CJFQ

    Liu B J, Feng S Y, Ji J F, Wang S J, Zhang J S, Yuan H K, Yang G J. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan basin: Results of deep seismic reflection profiling[J]. Science China Earth Sciences, 60(3): 589-601. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201702004&dbname=CJFD&dbcode=CJFQ

    刘建辉, 张培震, 郑德文, 万景林, 王伟涛, 杜鹏, 雷启云. 2010.贺兰山晚新生代隆升的剥露特征及其隆升模式[J].中国科学:地球科学, 40(1): 50-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201001006&dbname=CJFD&dbcode=CJFQ

    Liu J H, Zhang P Z, Zheng D W, Wan J L, Wang W T, Du P, Lei Q Y. 2010. Pattern and timing of Late Cenozoic rapid exhumation and uplift of the Helan Mountain, China[J]. Science China Earth Sciences, 53(3): 345-355. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201001006&dbname=CJFD&dbcode=CJFQ

    刘志, 王夫运, 张先康, 段永红, 杨卓欣, 林吉焱. 2015.华北克拉通东部地壳与地幔盖层结构:长观测距深地震测深剖面结果[J].地球物理学报, 58(4): 1145-1157. doi: 10.6038/cjg20150405

    Liu Z, Wang F Y, Zhang X K, Duan Y H, Yang Z X, Lin J Y. 2015. Seismic structure of the lithosphere beneath eastern North China Craton: Results from long distance deep seismic sounding[J]. Chinese Journal of Geophysics, 58(4): 1145-1157 (in Chinese). doi: 10.6038/cjg20150405

    王帅军, 王夫运, 张建狮, 嘉世旭, 张成科, 赵金仁, 刘宝峰. 2014.华北克拉通岩石圈二维P波速度结构特征:文登—阿拉善左旗深地震测深剖面结果[J].中国科学:地球科学, 44(12): 2697-2708. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201412009&dbname=CJFD&dbcode=CJFQ

    Wang S J, Wang F Y, Zhang J S, Jia S X, Zhang C K, Zhao J R, Liu B F. 2014. The P-wave velocity structure of the lithosphere of the North China Craton: Results from the Wendeng-Alxa left banner deep seismic sounding profile[J]. Science China Earth Sciences, 57(9): 2053-2063. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201412009&dbname=CJFD&dbcode=CJFQ

    徐涛, 徐果明, 高尔根, 朱良保, 蒋先艺. 2004.三维复杂介质的块状建模和试射射线追踪[J].地球物理学报, 47(6): 1118-1126. http://d.wanfangdata.com.cn/Periodical/dqwlxb200406027

    Xu T, Xu G M, Gao E G, Zhu L B, Jiang X Y. 2004. Block modeling and shooting ray tracing in complex 3-D media[J]. Chinese Journal of Geophysics, 47(6): 1118-1126 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dqwlxb200406027

    杨卓欣, 段永红, 王夫运, 赵金仁, 潘素珍, 李莉. 2009.银川盆地深地震断层的三维透射成像[J].地球物理学报, 52(8): 2026-2034. http://d.wanfangdata.com.cn/Periodical/dqwlxb200908010

    Yang Z X, Duan Y H, Wang F Y, Zhao J R, Pan S Z, Li L. 2009. Tomographic determination of the deep earthquake faults in Yinchuan basin by using three-dimensional seismic transmission technology[J]. Chinese Journal of Geophysics, 52(8): 2026-2034 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dqwlxb200908010

    俞贵平, 徐涛, 张明辉, 白志明, 刘有山, 武澄泷, 滕吉文. 2017.三维复杂地壳结构非线性走时反演[J].地球物理学报, 60(4): 1398-1410. doi: 10.6038/cjg20170414

    Yu G P, Xu T, Zhang M H, Bai Z M, Liu Y S, Wu C L, Teng J W. 2017. Nonlinear travel-time inversion for 3-D complex crustal velocity structure[J]. Chinese Journal of Geophysics, 60(4): 1398-1410 (in Chinese). doi: 10.6038/cjg20170414

    张进, 李锦轶, 李彦峰, 马宗晋. 2007.阿拉善地块新生代构造作用:兼论阿尔金断裂新生代东向延伸问题[J].地质学报, 81(11): 1481-1497. doi: 10.3321/j.issn:0001-5717.2007.11.003

    Zhang J, Li J Y, Li Y F, Ma Z J. 2007. The Cenozoic deformation of the Alxa block in central Asia: Question on the northeastern extension of the Altyn Tagh fault in Cenozoic time[J]. Acta Geologica Sinica, 81(11): 1481-1497 (in Chinese). doi: 10.3321/j.issn:0001-5717.2007.11.003

    朱日祥, 陈凌, 吴福元, 刘俊来. 2011.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, 41(5): 583-592. http://d.wanfangdata.com.cn/Periodical/zgdizhi201502006

    Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. http://d.wanfangdata.com.cn/Periodical/zgdizhi201502006

    朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012.华北克拉通破坏[J].中国科学:地球科学, 42(8): 1135-1159. http://d.wanfangdata.com.cn/Periodical/dqwlxb201201007

    Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences, 55(10): 1565-1587. http://d.wanfangdata.com.cn/Periodical/dqwlxb201201007

    Barrell J. 1914. The strength of the Earth's crust [J]. J Geol, 22(6): 537-555. doi: 10.1086/622170

    Ćervený V. 2001. Seismic Ray Theory[M]. Cambridge: Cambridge University Press: 99-228.

    Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S-and P-receiver function migration[J]. Phys Earth Planet Inter, 173(3/4): 216-227.

    Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth Planet Sci Lett, 286(1/2): 171-183.

    Chen L, Jiang M M, Yang J H, Wei Z G, Liu C Z, Ling Y. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton[J]. Geology, 42(3): 223-226. doi: 10.1130/G35010.1

    Darby B J, Ritts B D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate western Ordos fold-thrust belt, China[J]. Earth Planet Sci Lett, 205(1/2): 13-24.

    Fuchs K, Tittgemeyer M, Ryberg T, Wenzel F, Mooney W. 2002. Global significance of a sub-Moho boundary layer (SMBL) deduced from high-resolution seismic observations[J]. Int Geol Rev, 44(8): 671-685. doi: 10.2747/0020-6814.44.8.671

    Hamza V M, Vieira F P. 2012. Global distribution of the lithosphere-asthenosphere boundary: A new look[J]. Solid Earth, 3(2): 199-212. doi: 10.5194/se-3-199-2012

    Jia S X, Wang F Y, Tian X F, Duan Y H, Zhang J S, Liu B F, Lin J Y. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J]. Tectonophysics, 627: 48-56. doi: 10.1016/j.tecto.2014.04.013

    O′Reilly S Y, Griffin W L. 2010. The continental lithosphere-asthenosphere boundary: Can we sample it?[J]. Lithos, 120(1/2): 1-13.

    Rawlinson N, Houseman G A, Collins C D N. 2001. Inversion of seismic refraction and wide-angle reflection traveltimes for three-dimensional layered crustal structure[J]. Geophys J Int, 145(2): 381-400. doi: 10.1046/j.1365-246x.2001.01383.x

    Rychert C A, Shearer P M. 2009. A global view of the lithosphere-asthenosphere boundary[J]. Science, 324(5926): 495-498. doi: 10.1126/science.1169754

    Thybo H, Perchuć E. 1997. The seismic 8° discontinuity and partial melting in continental mantle[J]. Science, 275(5306): 1626-1629. doi: 10.1126/science.275.5306.1626

    Tian X F, Zelt C A, Wang F Y, Jia S X, Liu Q X. 2014. Crust structure of the North China Craton from a long-range seismic wide-angle-reflection/refraction data[J]. Tectonophysics, 634: 237-245. doi: 10.1016/j.tecto.2014.07.008

    Xu T, Xu G M, Gao E G, Li Y C, Jiang X Y, Luo K Y. 2006. Block modeling and segmentally iterative ray tracing in complex 3D media[J]. Geophysics, 71(3): T41-T51. doi: 10.1190/1.2192948

    Xu T, Zhang Z J, Gao E G, Xu G M, Sun L. 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models[J]. Bull Seismol Soc Am, 100(2): 841-850. doi: 10.1785/0120090155

    Xu T, Li F, Wu Z, Wu C, Gao E, Zhou B, Zhang Z, Xu G. 2014. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models[J]. Tectonophysics, 627: 72-81. doi: 10.1016/j.tecto.2014.02.012

    Yuan H Y, Romanowicz B. 2010. Lithospheric layering in the North American craton[J]. Nature, 466(7310): 1063-1068. doi: 10.1038/nature09332

    Zelt C A, Ellis R M. 1988. Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modelling[J]. Canadian J Explor Geophys, 24(1): 16-31.

    Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure[J]. Geophys J Int, 108(1): 16-34. doi: 10.1111/gji.1992.108.issue-1

图(7)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  346
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-17
  • 修回日期:  2017-06-19
  • 发布日期:  2017-08-31

目录

    /

    返回文章
    返回