局部山体地形对断层动力学破裂过程的影响研究

王铭锋, 郑傲, 于湘伟, 章文波

王铭锋,郑傲,于湘伟,章文波. 2018. 局部山体地形对断层动力学破裂过程的影响研究. 地震学报,40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022
引用本文: 王铭锋,郑傲,于湘伟,章文波. 2018. 局部山体地形对断层动力学破裂过程的影响研究. 地震学报,40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022
Wang M F,Zheng A,Yu X W,Zhang W B. 2018. Study on the influence of local mountainous topography to fault dynamic rupture. Acta Seismologica Sinica40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022
Citation: Wang M F,Zheng A,Yu X W,Zhang W B. 2018. Study on the influence of local mountainous topography to fault dynamic rupture. Acta Seismologica Sinica40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022

局部山体地形对断层动力学破裂过程的影响研究

基金项目: 国家自然科学基金(41374105,41674056)和中国科学院国家外国专家局创新团队国际合作伙伴计划(KZZD-EW-TZ-19)联合资助
详细信息
    通讯作者:

    章文波: e-mail:wenbo@ucas.ac.cn

  • 中图分类号: P315.3+3

Study on the influence of local mountainous topography to fault dynamic rupture

  • 摘要: 基于曲线网格有限差分方法研究了垂直走滑断层在不同山体地形情况下的动力学破裂传播,分析并讨论了局部山体地形对断层破裂过程及相应地面地震动的影响,得到了各模型断层面的动力学破裂过程及相应的地表峰值速度特征。研究结果表明,山体地形尺度(山体高度及底部延展距离等)对断层动力学破裂过程影响较大,进而影响到相应的地面地震动分布。当山体地形处于自由地表上亚剪切向超剪切转换的位置附近时,山体地形会阻碍断层面上自由地表超剪切的产生。一般而言,对于具有一定埋深的断层,当山体地形底部延展距离一定时,山体高度越高,其对自由地表超剪切的阻碍程度越大;当山体高度一定时,地形底部延展距离越大,越会阻碍自由地表超剪切的产生,这种破裂过程的变化会导致相应地面地震动呈现不同特征的分布。此外,还探讨了断层破裂过程及相应地震动对成核区外初始剪切应力变化的响应,结果显示,当初始剪切应力较高时,高应力降引起的超剪切破裂会对断层破裂及相应的地震动分布起主导作用。
    Abstract: In this study, the curved grid finite-difference method was implemented to investigate the effect of local irregular topography on the dynamic rupture process of a vertical strike-slip fault and the resultant strong ground motions. The rupture propagation and ground motions were simulated with different irregular topography in a three-dimensional homogeneous half-space. Our results show that the scale of ridge topography including its height and bottom extension size has great impact on the dynamic rupture process, and then will affect the distribution of ground motions. The mountainous topography will obstruct the generation of super-shear induced by free surface when it is located near the subshear-to-supershear transition position on free surface. Generally, for the faults with a certain buried depth, with the same size of topography bottom extension, the higher the mountain height is, the stronger prevention it has on the generation of super-shear. In addition, when the mountain height is fixed, the larger extension of mountain bottom size has more obstacles to the generation of the super-shear induced by free surface. The variation of fault rupture process will make different distribution of ground motions. Furthermore, the response of dynamic rupture process and the corresponding ground motion to the change of initial shear stress outside the nucleation area was discussed. Our result shows that with the high initial shear stress, the super-shear induced by high stress drop also plays an important role in dynamic rupture and distribution of the resultant ground motion.
  • 图  1   三维断层及地形模型 (a)与断层面所在垂直剖面 (b)示意图

    蓝色矩形表示埋深为200 m的垂直走滑断层,黄色方形表示成核区,灰色区域表示包含吸收边界的高强度区

    Figure  1.   Three dimensional fault and topography model (a) and vertical profile along fault plane (b)

    The blue rectangle depicts the 3-D vertical strike-slip fault,the yellow square indicates the nucleation area and the grey are aindicates a high strength area including absorbing boundary

    图  2   成核区外初始剪切应力为5 MPa时各模型断层面上的破裂起始时间等值线分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  2.   Initial time contours of ruptures on fault plane for different models with initial shear stress 5 MPa outside the nucleation area

    Fig. (a) is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000 and 1 100 m,respectively

    图  3   成核区外初始剪切应力为5 MPa时各模型断层面上峰值滑动速率分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  3.   Distribution of peak slip rate on fault plane for different models with initial shear stress 5 MPa outside of the nucleation area

    Fig. (a) flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800 ,1 000 and 1 100 m,respectively

    图  4   成核区外初始剪切应力为5 MPa时各模型地表峰值速度的平行断层面水平分量分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  4.   Fault-parallel component of peak ground velocity distribution for different models with initial shear stress 5 MPa outsidethe nucleation area

    Fig. (a) is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000 and 1 100 m,respectively

    图  5   成核区外初始剪切应力为5 MPa时各模型地表峰值速度的垂直断层面水平分量分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  5.   Fault-normal component of peak ground velocity distribution for different models with initial shear stress 5 MPa outside the nucleation area

    Fig. (a)is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000 and 1 100 m,respectively

    图  6   山体地形高度为800 m时不同山体地形底部延展距离a0下各模型断层面上的破裂起始时间分布

    Figure  6.   Initial time contours of rupture on fault plane for the models with different a0 when Gaussian hillheight is 800 m

    (a) a0=1 000 m;(b) a0=1 500 m;(c) a0=2 000 m

    图  7   山体地形高度为1 000 m时不同山体地形底部延展距离a0下各模型断层面上的破裂起始时间分布

    Figure  7.   Initial time contours of rupture on fault plane for the models with different a0 when Gaussian hillheight is 1 000 m

    (a) a0=1 000 m;(b) a0=1 500 m;(c) a0=2 000 m

    图  8   山体地形高度为800 m时不同山体地形底部延展距离a0下各模型的地表峰值速度的平行断层面水平分量分布

    Figure  8.   Fault-parallel component of peak ground velocity distribution for the models with different a0 when Gaussian hillheight is 800 m

    (a) a0=1 000 m;(b) a0=1 500 m;(c) a0=2 000 m

    图  9   山体地形高度为800 m时不同山体地形底部延展距离a0下各模型的地表峰值速度的垂直断层面水平分量分布

    Figure  9.   Fault-normal component of peak ground velocity distribution for the models with different a0 when Gaussian hillheight is 800 m

    (a) a0=1 000 m;(b) a0=1 500 m;(c) a0=2 000 m

    图  10   成核区外初始剪切应力为5.6 MPa时各模型断层面上破裂起始时间分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  10.   Initial time contours rupture on fault plane for different models with initial shear stress 5.6 MPa outside the nucleation area

    Fig. (a) is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000and 1 100 m,respectively

    图  11   成核区外初始剪切应力为5.6 MPa时各模型地表峰值速度的平行断层面水平分量分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400 ,600,800,1 000和1 100 m时的模型

    Figure  11.   Fault-parallel component of peak ground velocity distribution for different models with initial shear stress 5.6 MPa outside of the nucleation area

    Fig. (a) is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000 and 1 100 m,respectively

    图  12   成核区外初始剪切应力为5.6 MPa时各模型地表峰值速度的垂直断层面的水平分量分布

    图(a)为水平自由地表模型;图(b)−(f)为山体地形高度分别为400,600,800,1 000和1 100 m时的模型

    Figure  12.   Distribution of fault-normal component of peak ground velocity for different models with initial shear stress 5.6 MPa outside the nucleation area

    Fig. (a) is for flat free surface model;Figs. (b)−(f) are for Gaussian hill models with height 400,600,800,1 000 and 1 100 m,respectively

    表  1   断层面的模型参数

    Table  1   Model parameters on fault plane

    区域初始剪切应力σ0/MPa剪切破裂强度σu/MPa残余应力σr/MPa临界滑动弱化距离Dc/m
    断层成核区内10.110.000
    断层成核区外5.010.000.2
    断层外5.0200.0020.0
    下载: 导出CSV
  • 胡进军. 2009. 近断层地震动方向性效应及超剪切破裂研究[D]. 哈尔滨: 中国地震局工程力学研究所: 178.

    Hu J J. 2009. Directivity Effect of Near-Fault Ground Motion and Super-Shear Rupture[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 178 (in Chinese).

    王铭锋,郑傲,章文波. 2017. 局部山体地形对强地面运动的影响研究[J]. 地球物理学报,60(12):4655–4670. doi: 10.6038/cjg20171210

    Wang M F,Zheng A,Zhang W B. 2017. Effect of local mountain topography on strong ground motion[J]. Chinese Journal Geophysics,60(12):4655–4670 (in Chinese).

    张伟. 2006. 含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用[D]. 北京: 北京大学: 7–109.

    Zhang W. 2006. Finite Difference Seismic Wave Modelling in 3D Heterogeneous Media With Surface Topography and Its Implementation in Strong Ground Motion Study[D]. Beijing: Peking University: 7–109 (in Chinese).

    Andrews D J. 1976a. Rupture propagation with finite stress in antiplane strain[J]. J Geophys Res,81(20):3575–3582. doi: 10.1029/JB081i020p03575

    Andrews D J. 1976b. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679

    Aochi H,Ide S. 2014. Ground motions characterized by a multi-scale heterogeneous earthquake model[J]. Earth Planets Space,66:42.

    Burridge R. 1973. Admissible speeds for plane-strain self-similar shearcracks with friction but lacking cohesion[J]. J Geophys Res,35(4):439–455.

    Das S,Aki K. 1977. A numerical study of two-dimensional spontaneous rupture propagation[J]. Geophys J Rastr Soc,50(3):643–668. doi: 10.1111/j.1365-246X.1977.tb01339.x

    Day S M,Dalguer L A,Lapusta N,Liu Y. 2005. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture[J]. J Geophys Res,110(B12):B12307. doi: 10.1029/2005JB003813

    Dieterich J H. 1972. Time-dependent friction in rocks[J]. J Geophys Res,77(20):3690–3697. doi: 10.1029/JB077i020p03690

    Dieterich J H. 1978. Preseismic fault slip and earthquake prediction[J]. J Geophys Res,83(B8):3940–3948. doi: 10.1029/JB083iB08p03940

    Duan B C,Oglesby D D. 2007. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems[J]. J Geophys Res,112(B5):B05308.

    Dunham E M. 2007. Conditions governing the occurrence of supershear ruptures under slip-weakening friction[J]. J Geophys Res,112(B7):B07302.

    Ely G P,Day S M,Minster J B. 2010. Dynamic rupture models for the southern San Andreas fault[J]. Bull Seismol Soc Am,100(1):131–150. doi: 10.1785/0120090187

    Frankel A. 2004. Rupture process of the M7.9 Denali fault,Alaska,earthquake:Subevents,directivity,and scaling of high-frequency ground motions[J]. Bull Seismol Soc Am,94(6B):S234–S255. doi: 10.1785/0120040612

    Harris R A,Archuleta R J,Day S M. 1991. Fault steps and the dynamic rupture process:2-D numerical simulations of a spontaneously propagating shear fracture[J]. Geophys Res Lett,18(5):893–896. doi: 10.1029/91GL01061

    Huang H Q,Zhang Z G,Chen X F. 2018. Investigation of topographical effects on rupture dynamics and resultant ground motions[J]. Geophys J Int,212(1):311–323. doi: 10.1093/gji/ggx425

    Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796

    Kaneko Y,Lapusta N. 2010. Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults[J]. Tectonophysics,493(3/4):272–284.

    Langer S,Olsen-Kettle L,Weatherley D. 2012. Identification of supershear transition mechanisms due to material contrast at bimaterial faults[J]. Geophys J Int,190(2):1169–1180. doi: 10.1111/gji.2012.190.issue-2

    Lozos J C,Oglesby D D,Brune J N. 2013. The effects of fault stepovers on ground motion[J]. Bull Seismol Soc Am,103(3):1922–1934. doi: 10.1785/0120120223

    Madariaga R. 1976. Dynamics of an expanding circular fault[J]. Bull Seismol Soc Am,66(3):639–666.

    Madariaga R,Olsen K B,Archuleta R J. 1998. Modeling dynamic rupture in a 3D earthquake fault model[J]. Bull Seismol Soc Am,88(5):1182–1197.

    Oglesby D D. 2008. Rupture termination and jump on parallel offset faults[J]. Bull Seismol Soc Am,98(1):440–447. doi: 10.1785/0120070163

    Oglesby D D,Day S M. 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake[J]. Bull Seismol Soc Am,91(5):1099–1111.

    Oglesby D D,Archuleta R J. 2003. The three-dimensional dynamics of a nonplanar thrust fault[J]. Bull Seismol Soc Am,93(5):2222–2235. doi: 10.1785/0120020204

    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359

    Scholz C,Molnar P,Johnson T. 1972. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism[J]. J Geophys Res,77(32):6392–6406. doi: 10.1029/JB077i032p06392

    Wen Y Y,Oglesby D D,Duan B C,Ma K F. 2012. Dynamic rupture simulation of the 2008 MW7.9 Wenchuan earthquake with heterogeneous initial stress[J]. Bull Seismol Soc Am,102(4):1892–1898. doi: 10.1785/0120110153

    Yamashita T. 1976. On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress partⅠ : Rupture propagation[J]. J Phys Earth,24:417–444. doi: 10.4294/jpe1952.24.417

    Zhang H M,Chen X F. 2006a. Dynamic rupture on a planar fault in three-dimensional half-space:Ⅱ . Validations and numerical experiments[J]. Geophys J Int,167(2):917–932. doi: 10.1111/gji.2006.167.issue-2

    Zhang W,Chen X F. 2006b. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys J Int,167(1):337–353. doi: 10.1111/gji.2006.167.issue-1

    Zhang W B,Iwata T,Irikura K. 2006. Dynamic simulation of a dipping fault using a three-dimensional finite difference method with nonuniform grid spacing[J]. J Geophys Res,111(B5):B05301.

    Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophys J Int,190(1):358–378. doi: 10.1111/gji.2012.190.issue-1

    Zhang Z G,Zhang W,Chen X F. 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophys J Int,199(2):860–879. doi: 10.1093/gji/ggu308

  • 期刊类型引用(17)

    1. 吴丽慧,廖武林,黎金玲,包萨日娜. 黄石市地震台背景噪声特征分析. 地震工程学报. 2025(01): 152-159 . 百度学术
    2. 林丽萍,王宇航,吴朋,谌亮. 2022-06-01芦山M_S6.1地震流动地震台网部署及余震序列监测. 大地测量与地球动力学. 2024(02): 195-201 . 百度学术
    3. 包文超,胡玮,申影,郭晔,甄齐,王西. 内蒙古基准站噪声特征与监测能力. 华北地震科学. 2024(02): 94-101 . 百度学术
    4. 安全,韩晓明,包文超,翟浩,赵铁锁,赵星. 内蒙古地区强震动台站背景噪声与数据质量分析. 地震学报. 2024(03): 490-501 . 本站查看
    5. 包文超,赵铁锁,郭雷,郭晔,王西. 额肯呼都格地震台地震观测波形干扰分析. 地震地磁观测与研究. 2024(03): 94-99 . 百度学术
    6. 李文超,殷锴,刘炜,陈永新,王天琦,张子俊. 大同、朔州地震预警基准、基本站运行质量分析. 山西地震. 2024(03): 28-34 . 百度学术
    7. 张小艳,安全,熊峰,苏亚梅,赵星. 内蒙古VP型垂直摆倾斜仪背景噪声特征分析. 大地测量与地球动力学. 2024(11): 1193-1198 . 百度学术
    8. 唐浩,徐金银,何秋菊,马瑞,李青梅. 宁夏区域地震观测背景噪声特征. 大地测量与地球动力学. 2024(11): 1199-1206 . 百度学术
    9. 白玛桑布,单增曲珠,次旦卓玛,洛桑罗布,普穷,格桑旦珍. 观测环境变化对日喀则地震台观测质量的影响. 地震地磁观测与研究. 2024(05): 67-73 . 百度学术
    10. 方伟,韦进,黄雅,辜有启,胡敏章,刘高川,崔庆谷. 重力建站测试的影响因素研究——以云南燕子岩站为例. 地球物理学进展. 2024(06): 2126-2136 . 百度学术
    11. 丁大业,董春丽,宫卓宏,陈永新,吕飞亚. 山西地震预警新建基准站数据质量评估. 山西地震. 2023(02): 15-22 . 百度学术
    12. 文金龙,包文超,王西,范东海,甄齐,李男. 锡林浩特地震台台基背景噪声分析. 地震地磁观测与研究. 2023(01): 83-91 . 百度学术
    13. 邓明文,许鑫,李金. 乌鲁木齐及周边地区新冠疫情前后背景噪声分析. 华南地震. 2023(03): 7-18 . 百度学术
    14. 尹康达,李小军,张晓刚,丁成. 台基噪声功率谱估计中的Welch参数选择. 地震地磁观测与研究. 2023(04): 63-67 . 百度学术
    15. 文金龙,贾彦杰,包文超,白少奇,郭晔. 锡林郭勒盟三个测震台站台基背景噪声对比分析. 河南科技. 2023(21): 99-103 . 百度学术
    16. 曾均,赵寅甫,胡耀. 不同型号地震烈度仪振动测试对比分析. 四川地震. 2023(04): 13-18 . 百度学术
    17. 刘艺璇,周元泽. 2013年芦山M_S7.0地震震源区背景噪声源特征分析. 中国地震. 2022(04): 721-736 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  1320
  • HTML全文浏览量:  779
  • PDF下载量:  70
  • 被引次数: 17
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-04-06
  • 网络出版日期:  2018-11-08
  • 发布日期:  2018-10-31

目录

    /

    返回文章
    返回