基于简化纽马克位移模型的地震滑坡岩土体强度参数研究

李鑫, 迟明杰, 李小军

李鑫,迟明杰,李小军. 2018. 基于简化纽马克位移模型的地震滑坡岩土体强度参数研究. 地震学报,40(6):820−830. doi:10.11939/jass.20180026. DOI: 10.11939/jass.20180026
引用本文: 李鑫,迟明杰,李小军. 2018. 基于简化纽马克位移模型的地震滑坡岩土体强度参数研究. 地震学报,40(6):820−830. doi:10.11939/jass.20180026. DOI: 10.11939/jass.20180026
Li X,Chi M J,Li X J. 2018. Rock-soil strength parameters of earthquake-triggered landslides based on simplified Newmark displacement model. Acta Seismologica Sinica40(6):820−830. doi:10.11939/jass.20180026. DOI: 10.11939/jass.20180026
Citation: Li X,Chi M J,Li X J. 2018. Rock-soil strength parameters of earthquake-triggered landslides based on simplified Newmark displacement model. Acta Seismologica Sinica40(6):820−830. doi:10.11939/jass.20180026. DOI: 10.11939/jass.20180026

基于简化纽马克位移模型的地震滑坡岩土体强度参数研究

基金项目: 中央公益科研院所基本业务专项(DQJB15C07)、国家自然科学基金重点项目(51639006)和国家重点研发计划(2017YFC1500400)共同资助
详细信息
    通讯作者:

    迟明杰: e-mail:03115049@bjtu.edu.cn

  • 中图分类号: P315.9

Rock-soil strength parameters of earthquake-triggered landslides based on simplified Newmark displacement model

  • 摘要: 本文以2008年汶川MS8.0地震的烈度数据为基础,采用简化纽马克法对四川省青川县不同岩组的岩土体强度参数组合所对应的滑坡位移进行计算得到滑坡危险性等级图,并以计算得到的预测滑坡区与实际调查的滑坡数据的吻合度作为评价标准,对研究区内岩土体强度参数进行分析。分析结果表明,研究区大部分区域岩组的岩土体强度参数的合理取值区间与 《工程岩体分级标准GB 50218—94》 建议的参数取值范围基本一致,而本文在此基础上所确定的取值结果,在一定程度上可以提高地震滑坡危险性评估的精度。
    Abstract: According to intensity data from the 2008 Wenchuan MS8.0 earthquake, the simplified Newmark method was used to calculate the landslide displacement corresponding to the combination of rock-soil strength parameters of different rock groups in the Qingchuan county, Sichuan Province. Taking the goodness-of-fit between the actual and the predicted landslide data as the evaluation criteria, we analyzed the rock-soil strength parameters in the studied region. The results showed that the reasonable value ranges of rock-soil strength parameters of rock groups in most of the studied region were basically consistent with the ranges of recommended parameters of Standard for Engineering Classification of Rock Masses GB 50218—94. Referring to the parameters ranges determined in this paper, the evaluation accuracy of the earthquake landslide susceptibility level can be improved to some extent.
  • 图  1   青川县坚硬岩组不同岩土体强度参数滑坡危险性及实际滑坡点分布

    Figure  1.   Distribution of landslide hazard based on different shear-strength data and observed landslides of hard rock groups in Qingchuan county

    (a) φ′=32°,c′=0.15;(b) φ′=24°,c′=0.14;(c) φ′=24°,c′=0.13

    图  2   青川县较硬岩组不同岩土体强度参数的滑坡危险性及实际滑坡点分布

    Figure  2.   Distribution of landslide hazards based on different shear-strength data and observed landslides of less hard rock groups in Qingchuan county

    (a) φ′=35°,c′=0.1;(b) φ′=23°,c′=0.1;(c) φ′=23°,c′=0.09

    图  3   青川县较软组不同岩土体强度参数滑坡危险性及实际滑坡点分布

    Figure  3.   Distribution of landslide hazards based on different shear-strength data and observed landslides of less softrock groups in Qingchuan county

    (a) φ′=18°,c′=0.11 ;(b) φ′=26°,c′=0.09;(c) φ′=26°,c′=0.08

    表  1   岩体结构面的抗剪断峰值强度

    Table  1   The shear peak strength of rock-mass discontinuities

    序号两侧岩体的坚硬程度结构面的结合程度内摩擦角φ黏聚力c/MPa
    1坚硬岩>37>0.22
    2坚硬—较坚硬岩一般37—290.22—0.12
    较软岩
    3坚硬—较坚硬岩29—190.12—0.08
    较软岩-软岩一般
    4较坚硬—较软岩差-很差19—130.08—0.05
    软质岩泥化面
    5较坚硬岩及全部软质岩很差<13<0.05
    软质岩泥化层本身很差
    下载: 导出CSV

    表  2   岩体结构面强度参数折减组合

    Table  2   Reduction combination of strength parameters of rock-mass discontinuities

    折减系数坚硬岩组 较硬岩组 较软岩组
    φcφcφc
    0.95 >35.15° >0.209 35.15°—27.55° 0.209—0.114 27.55°—18.05° 0.114—0.076
    0.90 >33.30° >0.198 33.30°—26.10° 0.198—0.108 26.10°—17.10° 0.108—0.072
    0.85 >31.45° >0.187 31.45°—24.65° 0.187—0.102 24.65°—16.15° 0.102—0.068
    0.80 >29.60° >0.176 29.60°—23.20° 0.176—0.096 23.20°—15.20° 0.096—0.064
    0.75 >27.75° >0.165 27.75°—21.75° 0.165—0.090 21.75°—14.25° 0.090—0.060
    注:φ′为有效黏聚力;c′为有效内摩擦角,下同.
    下载: 导出CSV

    表  3   青川县坚硬岩组岩土体强度参数的分析结果

    Table  3   Analysis results of shear-strength parameters of hard rock groups in Qingchuan county

    φ参数分析结果
    c′=0.19c′=0.17c′=0.15c′=0.14c′=0.13c′=0.12
    36°不合理不合理不合理预测区偏小合理偏大
    32°不合理不合理不合理预测区偏小合理不合理
    28°不合理不合理预测区偏小合理预测区偏大不合理
    26°不合理不合理预测区偏小合理预测区偏大不合理
    24°不合理不合理预测区偏小合理不合理不合理
    下载: 导出CSV

    表  4   青川县较硬岩组岩土体强度参数的分析结果

    Table  4   Analysis results of shear-strength parameters of less hard rock groups in Qingchuan county

    φ参数分析结果
    c′=0.2c′=0.14c′=0.11c′=0.1c′=0.09c′=0.08
    35°不合理不合理不合理不合理合理偏大
    32°不合理不合理不合理预测区偏小合理不合理
    29°不合理不合理不合理预测区偏小预测区偏大不合理
    26°不合理不合理不合理合理预测区偏大不合理
    23°不合理不合理不合理合理不合理不合理
    20°不合理不合理不合理合理不合理不合理
    下载: 导出CSV

    表  5   青川县较软岩组岩土体强度参数的分析结果

    Table  5   Analysis results of shear-strength parameters of less hard rock groups in Qingchuan county

    φ参数分析结果
    c′=0.12c′=0.11c′=0.1c′=0.09c′=0.08c′=0.06
    28°不合理不合理预测区偏小合理不合理不合理
    26°不合理不合理预测区偏小合理不合理不合理
    22°不合理不合理合理合理不合理不合理
    21°不合理不合理合理预测区偏大不合理不合理
    18°不合理预测区偏小合理不合理不合理不合理
    14°不合理预测区偏小预测区偏大不合理不合理不合理
    下载: 导出CSV
  • 陈成, 胡凯衡. 2017. 汶川、芦山和鲁甸地震滑坡分布规律对比研究[J]. 工程地质学报, 25(3): 806-814.

    Chen C, Hu K H. 2017. Comparison of distribution of landslides triggered by Wenchuan, Lushan and Ludian earthquakes[J]. Journal of Engineering Geology, 25(3): 806-814(in Chinese).

    陈鲲, 俞言祥, 高孟潭. 2010. 考虑场地效应的ShakeMap系统研究[J]. 中国地震, 26(1): 92-102. doi: 10.3969/j.issn.1001-4683.2010.01.009

    Chen K, Yu Y X, Gao M T. 2010. Research on ShakeMap system in terms of the site effect[J]. Earthquake Research in China, 26(1): 92-102(in Chinese).

    陈鲲, 俞言祥, 高孟潭. 2011. 2010年4月14日青海玉树地震震动图[J]. 中国地震, 27(1): 99-102. doi: 10.3969/j.issn.1001-4683.2011.01.011

    Chen K, Yu Y X, Gao M T. 2011. ShakeMap of the April 14, 2010 Yushu earthquake, Qinghai Province[J]. Earthquake Research in China, 27(1): 99-102(in Chinese).

    陈鲲, 俞言祥, 高孟潭, 亢川川. 2015. 2014年2月12日新疆于田7.3级地震震动图[J]. 地震地质, 37(2): 524-528. doi: 10.3969/j.issn.0253-4967.2015.02.014

    Chen K, Yu Y X, Gao M T, Kang C C. 2015. ShakeMap of the Yutian, Xinjiang M7.3 earthquake on 12 Feb 2014[J]. Seismology and Geology, 37(2): 524-528(in Chinese).

    秦胜伍, 马中骏, 刘绪, 李广杰, 彭帅英, 陈骏骏, 翟健健. 2017. 基于简化Newmark模型的长白山天池火山诱发崩塌滑坡危险性评价[J]. 吉林大学学报(地球科学版), 47(3): 826-838.

    Qin S W, Ma Z J, Liu X, Li G J, Peng S Y, Chen J J, Zhai J J. 2017. Hazard assessment of collapse and landslide induced by Tianchi Volcano in Changbai Mountain area based on simplified Newmark displacement model[J]. Journal of Jilin University: Earth Science Edition, 47(3): 826-838(in Chinese).

    秦绪文, 杨金中, 张志, 黄洁, 余德清, 陈有明, 张过, 谷延群. 2009. 汶川地震灾区航天遥感应急调查[M]. 北京: 科学出版社: 243–247.

    Qin X W, Yang J Z, Zhang Z, Huang J, Yu D Q, Chen Y P, Zhang G, Gu Y Q. 2009. Remote Sensing Emergency Survey in Wenchuan Earthquake Area[M]. Beijing: Science Press: 243–247 (in Chinese).

    宋志, 倪化勇, 周洪福, 冯伟. 2016. 基于多层次物理力学参数的小区域地震滑坡危险性评估: 以长江上游石棉县城及周边为例[J]. 地质力学学报, 22(3): 760-770. doi: 10.3969/j.issn.1006-6616.2016.03.029

    Song Z, Ni H Y, Zhou H F, Feng W. 2016. Risk assessment of seismic landslide within small region based on multi-level physicaland mechanical parameters: A case study of Shimian and adjacent areas in the upper reaches of Yangtze river[J]. Journal of Geomechanics, 22(3): 760-770(in Chinese).

    汪素云, 俞言祥, 高阿甲, 阎秀杰. 2000. 中国分区地震动衰减关系的确定[J]. 中国地震, 16(2): 99-106. doi: 10.3969/j.issn.1001-4683.2000.02.001

    Wang S Y, Yu Y X, Gao A J, Yan X J. 2000. Development of attenuation relations for ground motion in China[J]. Earthquake Research in China, 16(2): 99-106(in Chinese).

    王涛. 2010. 汶川地震重灾区地质灾害危险性评估研究[D]. 北京: 中国地质科学院: 36-37.

    Wang T. 2010. Study on Seismic Landslide Hazard Assessment in Wenchuan Earthquake Severely Afflicted Area[D]. Beijing: Chinese Academy of Geological Sciences: 36-37 (in Chinese).

    王涛, 吴树仁, 石菊松, 辛鹏. 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估: 以汶川MS8.0级地震为例[J]. 工程地质学报, 21(1): 16-24. doi: 10.3969/j.issn.1004-9665.2013.01.003

    Wang T, Wu S R, Shi J S, Xin P. 2013. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model: Wenchuan MS8.0 earthquake[J]. Journal of Engineering Geology, 21(1): 16-24(in Chinese).

    王涛, 吴树仁, 石菊松, 辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报, 23(1): 93-104.

    Wang T, Wu S R, Shi J S, Xin P. 2015. Concepts and mechanical assessment method for seismic landslide hazard: A review[J]. Journal of Engineering Geology, 23(1): 93-104(in Chinese)

    王秀英, 聂高众, 王登伟. 2009. 利用强震记录分析汶川地震诱发滑坡[J]. 岩石力学与工程学报, 28(11): 2369-2376. doi: 10.3321/j.issn:1000-6915.2009.11.028

    Wang X Y, Nie G Z, Wang D W. 2009. Analysis of landslide induced by Wenchuan earthquake by strong motion records[J]. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2369-2376(in Chinese).

    徐培彬. 2014. 基于强震动参数地震滑坡评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所: 35–37.

    Xu P B. 2014. Based on Strong Motion Earthquake Landslide Assessment Methods[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 35–37 (in Chinese).

    袁一凡. 2008. 四川汶川8.0级地震灾害损失评估[J]. 地震工程与工程振动, 28(5): 10-19.

    Yuan Y F. 2008. The earthquake disaster loss evaluation[J]. Earthquake Engineering and Engineering Vibration, 28(5): 10-19(in Chinese).

    中华人民共和国水利部. 1995. 工程岩体分级标准GB 50218—94[S]. 北京: 中国计划出版社: 1–20.

    Ministry of Water Resources of the People’s Republic of China. 1995.Standard for Engineering Classification of Rock Masses GB 50218—94[S]. Beijing: China Planning Press: 1–84 (in Chinese).

    中国人民共和国建设部. 2014. 建筑边坡工程技术规范GB 50330—2013[S]. 北京: 中国建筑工业出版社: 1–199.

    Ministry of Construction of the People’s Republic of China. 2014. Technical Code for Building Slope Engineering GB 50330—2013[S]. Beijing: China Architecture & Building Press: 1–199 (in Chinese).

    中华人民共和国国家标准化管理委员会. 2015. 中国地震动参数区划图GB 18306-2015[S]. 北京: 中国标准出版社: 1–242.

    Standardization Administration of the Peoples Republic of China. 2015. Seismic Ground Motion Parameters Zonation Map of ChinaGB 18306—2015[S]. Beijing: Standards Press of China: 1–242 (in Chinese).

    Dreyfus D, Rathje E M, Jibson R W. 2013. The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake[J]. Eng Geol, 163: 41-54.

    Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis[J]. Trans Res Record, 1411: 9-17.

    Jibson R W. 2007. Regression models for estimating coseismic landslide displacement[J]. Eng Geol, 91(2/3): 209-218.

    Jibson R W, Harp E L, Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps[J]. EngGeol, 58(3/4): 271-289.

    Keefer D K. 1984. Landslides caused by earthquakes[J]. Geol Soc Am Bull, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    Keefer D K, Wilson R C. 1989. Predicting earthquake-induced landslides, with emphasis on arid and semi-arid environments[J]Landslides in A Semi-Arid Environment, 2: 118-149.

    Miles S B, Ho C L. 1999. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dyn Earthq Eng, 18(4): 305-323.

    Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Géotechnique, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139

    Wilson R C, Keefer D K. 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote lake, California, earth-quake[J]. Bull Seismol Soc Am, 73(3): 863-877.

图(3)  /  表(5)
计量
  • 文章访问数:  1135
  • HTML全文浏览量:  730
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-26
  • 修回日期:  2018-04-07
  • 网络出版日期:  2018-11-20
  • 发布日期:  2018-10-31

目录

    /

    返回文章
    返回