Focal mechanism solutions and spatio-temporal variations of the present tectonic stress field in Capital Circle region
-
摘要: 基于2009年1月至2017年11月首都圈地区发生的8 061个地震事件的23 293条P波初动极性数据,采用改进的格点尝试法计算了首都圈地区单次地震的震源机制解和小震综合断层面解。在初步分析这些数据的基础上,利用计算得到的单次地震的震源机制解和搜集到的已有历史地震的震源机制解数据,运用线性反演法对首都圈地区构造应力场的时空变化特征进行了研究。结果显示:① 研究区的地震震源机制解类型以走滑型为主,正断型次之,这些地震震源机制解的P轴方位大都为ENE向和近EW向,与该地区的构造应力场方向基本一致,仅有个别地震的P轴方位为NNW向;② 首都圈地区的构造应力场具有较好的一致性和连续性,最大主应力轴方位由西部的ENE向至东部的近EW向呈现顺时针旋转的趋势,应力类型整体上为走滑型,这与以往的研究结果相一致;③ 通过与已有研究结果相比较认为:京西北地区现今构造应力场是相对稳定的,最大主应力轴未呈明显改变;唐山地区和北京地区的构造应力场(最大主应力轴)在1976年唐山地震前后可能发生了变化,唐山地震后一年至今(1977—2017年)是否发生变化,依据现有的计算结果尚不得而知,需要更多的研究来进一步验证.Abstract: Based on 23 293 P-wave polarities of 8 061 earthquakes occurred during the period from January 1, 2009 to November 30, 2017, we calculate the focal mechanism solutions of single earthquakes and composite fault plane solutions with improved grid point test method. On the basis of preliminary analysis on these data, using obtained focal mechanism solutions and the focal mechanism solutions of historical earthquakes, we discuss the spatio-temporal variation of the present tectonic stress field in Capital Circle region by linear inversion method. The result shows that the focal mechanism solutions are mainly of strike-slip type in the studied region and the second is normal-faulting type. The P axis azimuths of these focal mechanism solutions mostly trend ENE or almost EW, which is consistent with the tectonic stress field in the region; except that P axis azimuths of a few earthquakes are in NNW direction. The results by Michael’s inversion method show that tectonic stress field of Capital Circle region present good consistency and continuity. The orientation of maximum principal stress axis is in ENE to nearly EW direction from west to east. On a whole, the stress is of strike-slip type, which is consistent with the results of previous scholars. Comparison with the previous research results indicates that the present stress field in northwest of Beijing is in relatively stable state, and the maximum principal stress axis has no obvious variation. But for Tangshan region and Beijing region, the tectonic stress field probably exhibits some variations before and after the 1976 Tangshan earthquake. Whether there is any variations of maximum principal stress axis since the Tangshan earthquake (1977—2017) in the studied region is unknown according to present calculation results, which need to be further verified.
-
-
图 3 首都圈地区3个分区的综合断层面解(a)及其P,T,B轴分布(b)
图(a)中蓝色点为压缩初动,绿色点为膨胀初动,黄色线为解区内可选取的节面,红色线为聚类后的平均解节面
Figure 3. Composite fault plane solutions (a) and P,T,B axes (b) for the three subregions of Capital Circle region
In Fig. (a),blue points are compressional first motions,green points are dilatational first motions,yellow lines are nodal planes of the selected solutions,and red lines are post-clustering average nodal planes
图 4 研究区震源机制解类型分布及反演计算分区
图中震源机制解球的大小与震级大小成比例,橘黄色框区域为唐山区,紫色框区域为研究区西部地区
Figure 4. Distribution of the type of focal mechanism solutions and region division for inversion calculation
The size of focal mechanism solution is proportional to magnitude. The orange wireframe is Tangshan area,and the purple one is western area of the studied region
图 5 唐山区(a)和研究区西部地区(b)的主应力轴及其置信区间的下半球等面积投影
图中彩色区域为各主应力轴方位的95%置信区间
Figure 5. Lower-hemisphere equal-area projection of principal stress axes and their confidence regions for the Tangshan subregion (a) and the western studied region (b)
The colored areas represent the 95% confidence regions for the orientation of each principal stress axis in the figure
图 8 研究区各应力分区P轴方位随时间变化图
图中四个时段分别为1966—1976年、1977—1998年、2002—2006年和2009—2017年,前3个时段的具体时间参见李瑞莎等(2008)
Figure 8. Temporal change of the P-axis orientations for each subregion in the studied region
Four time intervals are respectively 1966—1976,1977—1998,2002—2006,2009—2017. The specific time of the former three time intervals are defined in Li et al (2008)
图 6 综合断层面解的P轴方位结果图
红色箭头为各区小震综合断层面解的P轴方位;蓝色框为本文计算的3个应力分区的边界;紫色框为邢台区,采用胡幸平和崔效锋(2013)的结果
Figure 6. The P-axis orientation of composite fault plane solutions
Red arrows represent the P-axis orientation of composite fault plane solution. Blue wireframe is boundary of the three subregions,and purple wireframe is Xingtai area with the result from Hu and Cui (2013)
表 1 单次地震震源机制解
Table 1 Focal mechanism solutions of single earthquakes
序号 发震日期 震中 深度
/kmMS 节面Ⅰ 节面Ⅱ P轴 B轴 T轴 矛
盾
比东经
/°北纬
/°走向
/°倾角
/°滑动
角/°走向
/°倾角
/°滑动
角/°方位
/°倾角
/°方位
/°倾角
/°方位
/°倾角
/°1 2009-06-17 113.12 39.38 7.5 1.8 98 64 −53 218 44 −141 55 55 259 33 162 11 0.04 2 2010-07-09 113.19 39.25 9.2 3.5 210 68 −148 107 60 −25 71 38 241 52 337 5 0.17 3 2010-09-17 114.20 39.79 8.2 3.1 11 69 −161 274 72 −22 232 28 57 62 323 2 0.13 4 2011-02-14 116.37 40.35 6.8 2.8 29 83 160 122 70 8 77 9 190 69 344 19 0.06 5 2011-05-11 113.83 39.61 9.4 2.7 279 69 −47 31 47 −150 235 48 81 39 340 13 0.22 6 2011-06-20 114.29 40.42 7.9 3.1 159 50 −77 320 42 −105 129 80 331 10 240 4 0.18 7 2011-12-22 116.60 38.86 7.0 1.5 257 55 111 43 41 63 332 7 64 17 220 71 0.14 8 2012-05-28 118.47 39.71 7.9 2.0 244 66 −166 149 78 −25 104 26 304 62 198 8 0.14 9 2012-05-28 118.43 39.74 13.3 4.7 245 81 159 339 70 10 294 8 43 67 201 21 0 10 2012-06-18 117.53 38.65 15.5 4.0 57 89 −136 325 46 −2 290 31 58 46 182 28 0 11 2012-11-22 114.66 39.98 7.7 3.2 190 50 −158 86 74 −42 40 41 249 45 143 15 0.11 12 2013-02-22 113.82 39.89 8.8 4.1 354 68 180 84 90 22 217 15 86 68 312 16 0.03 13 2014-09-06 115.41 40.29 17.6 4.3 221 84 −167 129 77 −6 86 14 243 75 354 5 0.07 14 2015-12-10 113.01 38.72 9.0 3.7 24 88 −176 294 86 −2 249 5 51 85 159 2 0 表 2 首都圈地区3个分区的综合断层面解
Table 2 Composite fault plane solutions for the three subregions of Capital Circle region
P轴 B轴 T轴 矛盾比 走向/° 倾角/° 走向/° 倾角/° 走向/° 倾角/° 唐山区 81 11 243 79 351 3 0.31 北京区 76 13 272 76 166 4 0.33 京西北区 250 16 75 74 340 1 0.33 表 3 历史地震震源机制解数据
Table 3 The focal mechanism solutions of historical earthquakes
序号 发震日期 震中 MS 节面Ⅰ 节面Ⅱ P轴 B轴 T轴 类
型东经
/°北纬
/°走向
/°倾角
/°滑动
角/°走向
/°倾角
/°滑动
角/°方位
/°倾角
/°方位
/°倾角
/°方位
/°倾角
/°1 1976-07-28 118.00 39.40 7.8 229 43 −163 126 79 −49 75 41 297 40 186 22 NS 2 1969-07-18 119.40 38.20 7.4 24 85 170 115 80 5 69 3 174 79 339 11 SS 3 1976-07-28 118.50 39.70 7.1 72 44 −110 279 49 −71 256 76 87 14 356 3 NF 4 1976-11-15 117.70 39.40 6.9 318 56 −9 53 83 −145 281 29 63 55 181 18 SS 5 1998-01-10 114.51 41.12 6.3 207 54 135 327 55 46 87 1 356 35 178 55 TF 6 1967-03-27 116.50 38.50 6.3 195 61 174 287 85 29 58 17 296 60 155 24 SS 7 1977-05-12 117.70 39.20 6.2 322 52 8 227 83 142 280 21 38 51 177 31 SS 8 1976-07-28 117.80 39.20 6.2 341 72 24 244 67 160 111 4 14 60 204 30 SS 9 1989-10-19 113.91 39.92 5.9 200 75 −175 109 85 −15 64 14 270 74 155 7 SS 10 1991-03-26 113.89 39.93 5.9 106 82 7 15 83 172 60 1 154 80 330 10 SS 11 1989-10-18 113.88 39.94 5.7 204 76 −176 113 86 −14 68 12 278 76 160 7 SS 12 1999-11-01 113.98 39.91 5.6 122 72 −7 214 84 −161 79 18 232 70 347 8 SS 13 1981-08-13 113.41 40.58 5.6 183 80 −178 92 88 −10 47 9 261 79 138 6 SS 14 1976-08-31 118.70 39.80 5.6 253 67 −143 147 56 −28 114 42 280 47 18 7 NS 15 1989-10-19 113.87 39.92 5.5 92 44 −39 212 64 −127 75 54 231 33 328 11 NF 16 1976-08-19 117.48 39.22 5.5 35 65 −147 290 60 −29 255 40 68 50 161 3 NS 17 1973-12-31 116.80 38.40 5.3 198 65 179 289 90 25 61 17 289 65 156 17 SS 18 1980-02-07 117.54 39.31 5.3 226 86 164 317 74 4 273 8 33 74 181 14 SS 19 1977-11-27 118.00 39.40 5.1 250 45 −90 70 45 −90 180 90 70 0 160 0 NF 20 1969-07-18 119.00 38.00 5.1 147 70 −3 238 87 −160 104 16 246 70 12 12 SS 21 1976-08-24 117.43 39.62 5.1 192 85 −170 101 80 −5 58 11 218 79 327 4 SS 22 1995-10-06 118.55 39.72 5.0 75 85 −155 342 65 −6 301 21 86 64 206 13 SS 23 1971-12-27 114.40 38.40 5.0 254 64 9 160 82 154 210 12 324 62 114 24 SS 24 1984-01-07 118.45 39.43 5.0 265 88 20 174 70 178 38 13 270 70 131 15 SS 25 1982-10-19 118.98 39.96 4.9 116 61 −5 208 86 −151 75 23 215 61 338 17 SS 26 2006-07-04 116.15 39.07 4.9 110 65 8 16 83 155 66 12 181 64 330 23 SS 27 1971-08-05 114.50 38.36 4.8 206 80 170 298 80 10 252 0 343 76 162 14 SS 28 1976-12-02 117.50 39.60 4.7 9 47 166 109 80 43 232 21 120 45 339 38 SS 29 1978-04-21 114.20 40.60 4.6 53 35 −132 280 65 −65 230 61 88 24 351 16 NF 30 1974-05-07 119.30 39.50 4.5 24 90 169 114 79 3 69 8 204 79 338 8 SS 31 1972-03-25 116.60 40.60 4.4 13 90 180 283 90 0 58 0 0 90 148 0 SS 32 1978-10-04 113.60 39.50 4.3 207 64 −173 113 84 −35 68 21 281 63 162 9 SS 33 1970-05-25 118.10 39.55 4.2 195 75 −176 104 86 −15 58 14 267 74 150 7 SS 34 1976-09-28 116.63 39.75 4.2 51 90 175 141 85 0 96 4 231 85 5 4 SS 35 1976-04-22 117.10 38.70 4.1 219 70 178 311 85 21 83 10 325 69 177 18 SS 36 1973-09-21 116.33 39.05 4.1 35 60 146 144 61 35 269 1 178 46 0 44 TS 37 1974-12-15 117.70 39.50 4.1 18 50 −148 267 65 −44 225 49 63 40 326 9 NS 38 1978-06-01 113.55 39.80 4.1 221 70 −137 114 50 −26 86 44 241 44 344 13 NS 39 1979-06-30 119.85 38.40 4.0 5 83 154 98 64 8 54 13 171 63 318 23 SS 40 1967-11-18 116.60 40.50 4.0 12 45 107 168 46 73 90 0 180 12 0 75 TF 注:SS为走滑型地震;NF为正断型地震;TF为逆断型地震;NS为正走滑型地震;TS为逆走滑型地震. 表 4 各分区最优应力张量反演结果
Table 4 The inversion results of the best fitting stress tensor in each subregion
最大主应力 中间主应力 最小主应力 β/° φ 应力类型 方位/° 倾角/° 方位/° 倾角/° 方位/° 倾角/° 唐山区 81 2 2 82 171 8 17.3 0.8 走滑型 研究区西部地区 69 33 74 56 161 2 19.3 0.9 走滑型 注:β为平均剪滑角,定义为断层面上剪应力方向与滑动方向之间夹角的平均值;φ为应力形因子, ${{\rm{\varphi }} = ({{{S_2} - {S_3}}})/({{{S_1} - {S_3}}})}$ ,其中S1,S2,S3分别为最大、中间、最小主应力. -
崔效锋,谢富仁. 2001. 1976年唐山地震前后华北地区现代构造应力场的时空变化特征[J]. 中国地震,17(3):280–288 doi: 10.3969/j.issn.1001-4683.2001.03.006 Cui X F,Xie F R. 2001. The space-time variations of present tectonic stress field in North China before and after 1976 Tangshan earthquake[J]. Earthquake Research in China,17(3):280–288 (in Chinese)
崔效锋,谢富仁,赵建涛. 2005. 中国及邻区震源机制解的分区特征[J]. 地震地质,27(2):298–307 doi: 10.3969/j.issn.0253-4967.2005.02.012 Cui X F,Xie F R,Zhao J T. 2005. The regional characteristics of focal mechanism solutions in China and its adjacent areas[J]. Seismology and Geology,27(2):298–307 (in Chinese)
崔效锋,谢富仁,李瑞莎,张红艳. 2010. 华北地区构造应力场非均匀特征与煤田深部应力状态[J]. 岩石力学与工程学报,29(1):2755–2761 Cui X F,Xie F R,Li R S,Zhang H Y. 2010. Heterogeneous features of state of tectonic stress filed in North China and deep stress in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,29(1):2755–2761 (in Chinese)
邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030 doi: 10.3321/j.issn:1006-9267.2002.12.007 Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Features of active tectonics in China[J]. Science in China:Series D,46(4):356–372
胡幸平,崔效锋. 2013. 华北地区中部地震精定位与构造应力场研究[J]. 震灾防御技术,8(4):351–360 doi: 10.3969/j.issn.1673-5722.2013.04.002 Hu X P,Cui X F. 2013. Study on earthquake relocation and tectonic stress field in central North China[J]. Technology for Earthquake Disaster Prevention,8(4):351–360 (in Chinese)
黄骥超,万永革. 2015. 利用小震与强震震源机制解反演首都圈现今构造应力场[J]. 地震,35(1):17–27 doi: 10.3969/j.issn.1000-3274.2015.01.003 Huang J C,Wan Y G. 2015. Present tectonic stress field in the capital region of China determined from small and strong earthquake focal mechanisms[J]. Earthquake,35(1):17–27 (in Chinese)
赖院根,刘启元,陈九辉,刘洁,李顺成,郭飙,黄志斌. 2006. 首都圈地区横波分裂与地壳应力场特征[J]. 地球物理学报,49(1):189–196 doi: 10.3321/j.issn:0001-5733.2006.01.025 Lai Y G,Liu Q Y,Chen J H,Liu J,Li S C,Guo B,Huang Z B. 2006. Shear wave splitting and the features of the crustal stress field in the Capital Circle[J]. Chinese Journal of Geophysics,49(1):189–196 (in Chinese)
李钦祖,靳雅敏,于新昌. 1982. 华北地区的震源机制与地壳应力场[J]. 地震学报,4(1):55–61 Li Q Z,Jin Y M,Yu X C. 1982. Focal mechanisms and crustal stress field in North China[J]. Acta Seismologica Sinica,4(1):55–61 (in Chinese)
李瑞莎,崔效锋,刁桂苓,张红艳. 2008. 华北北部地区现今应力场时空变化特征研究[J]. 地震学报,30(6):570–580 doi: 10.3321/j.issn:0253-3782.2008.06.003 Li R S,Cui X F,Diao G L,Zhang H Y. 2008. Temporal and spatial variation of the present crustal stress in northern part of North China[J]. Acta Seismologica Sinica,30(6):570–580 (in Chinese)
盛书中,万永革,黄骥超,卜玉菲,李祥. 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报,58(2):436–452 Sheng S Z,Wan Y G,Huang J C,Bu Y F,Li X. 2015. Present tectonic stress field in the circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics,58(2):436–452 (in Chinese)
万永革,沈正康,刁桂苓,王福昌,胡新亮,盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报,51(3):793–804 doi: 10.3321/j.issn:0001-5733.2008.03.020 Wan Y G,Shen Z K,Diao G L,Wang F C,Hu X L,Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics,51(3):793–804 (in Chinese)
汪素云,许忠淮. 1985. 中国东部大陆的地震构造应力场[J]. 地震学报,7(1):17–32 Wang S Y,Xu Z H. 1985. Seismo-tectonic stress field in east China[J]. Acta Seismologica Sinica,7(1):17–32 (in Chinese)
王绳祖,张流. 2002. 塑性流动网络控制下华北地区构造应力场与地震构造[J]. 地震地质,24(1):69–80 doi: 10.3969/j.issn.0253-4967.2002.01.007 Wang S Z,Zhang L. 2002. Tectonic stress field and seismic tectonics controlled by plastic-flow network in North China[J]. Seismology and Geology,24(1):69–80 (in Chinese)
武敏捷,林向东,徐平. 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学,31(5):39–43 Wu M J,Lin X D,Xu P. 2011. Analysis of focal mechanism and tectonic stress field features in northern part of North China[J]. Journal of Geodesy and Geodynamics,31(5):39–43 (in Chinese)
谢富仁,陈群策,崔效锋,李宏,杨树新,郭启良,陈连旺,许忠淮,张彦山,窦淑芹,赵建涛,张周术,刘长义,王刚军. 2007. 中国大陆地壳应力环境基础数据库[J]. 地球物理学进展,22(1):131–136 doi: 10.3969/j.issn.1004-2903.2007.01.018 Xie F R,Chen Q C,Cui X F,Li H,Yang S X,Guo Q L,Chen L W,Xu Z H,Zhang Y S,Dou S Q,Zhao J T,Zhang Z S,Liu C Y,Wang G J. 2007. Fundamental database of crustal stress environment in continental China[J]. Process in Geophy-sics,22(1):131–136 (in Chinese)
谢富仁, 崔效锋. 2015. 中国及邻区现代构造应力场图[M]. 北京: 中国地图出版社: 1–18. Xie F R, Cui X F. 2015. The Map of Recent Tectonic Stress Field in China and Adjacent Areas[M]. Beijing: China Cartographic Publishing House: 1–18 (in Chinese).
徐锡伟, 吴卫民, 张先康, 马胜利, 马文涛, 于贵华, 顾梦林, 江娃利. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社: 1–376. Xu X W, Wu W M, Zhang X K, Ma S L, Ma W T, Yu G H, Gu M L, Jiang W L. 2002. New Changing of Crustal Tectonic and Earthquake in Capital Circle[M]. Beijing: Science Press: 1–376 (in Chinese).
许忠淮,阎明,赵仲和. 1983. 由多个小地震推断的华北地区构造应力场的方向[J]. 地震学报,5(3):268–279 Xu Z H,Yan M,Zhao Z H. 1983. Evaluation of the direction of tectonic stress in North China from recorded data of a large number of small earthquakes[J]. Acta Seismologica Sinica,5(3):268–279 (in Chinese)
许忠淮,戈澍谟. 1984. 用滑动方向拟合法反演富蕴地震断裂带应力场[J]. 地震学报,6(4):395–404 Xu Z H,Ge S M. 1984. Stress field in the Fuyun,Xinjiang earthquake fracture zone determined by fitting fault slip vector data[J]. Acta Seismologica Sinica,6(4):395–404 (in Chinese)
许忠淮. 1985. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报,7(4):349–362 Xu Z H. 1985. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions[J]. Acta Seismologica Sinica,7(4):349–362 (in Chinese)
俞春泉,陶开,崔效锋,胡幸平,宁杰远. 2009. 用格点尝试法求解P波初动震源机制解及解的质量评价[J]. 地球物理学报,52(5):1402–1411 doi: 10.3969/j.issn.0001-5733.2009.05.030 Yu C Q,Tao K,Cui X F,Hu X P,Ning J Y. 2009. P-wave first-motion focal mechanism solutions and their quality evaluation[J]. Chinese Journal of Geophysics,52(5):1402–1411 (in Chinese)
张红艳,谢富仁,崔效锋,李瑞莎. 2009. 张渤带陆地段现代构造应力场的非均匀特征[J]. 中国地震,25(3):314–324 doi: 10.3969/j.issn.1001-4683.2009.03.010 Zhang H Y,Xie F R,Cui X F,Li R S. 2009. Research on heterogeneity of the present tectonic stress field at the overland part of the Zhangjiakou-Bohai fault zone[J]. Earthquake Research in China,25(3):314–324 (in Chinese)
周翠英,王华林,王红卫,王梅,柳凤兰,周元夫. 2001. 华北4次中、强地震前震源区及其附近应力场的变化[J]. 地震地质,23(1):98–110 doi: 10.3969/j.issn.0253-4967.2001.01.013 Zhou C Y,Wang H L,Wang H W,Wang M,Liu F L,Zhou Y F. 2001. The changes of stress field in the focal region and its adjacent areas before four moderate-strong earthquakes in North China[J]. Seismology and Geology,23(1):98–110 (in Chinese)
Gephart J W,Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mecha-nism data:Application to the San Fernando earthquake sequence[J]. J Geophys Res,89(B11):9305–9320 doi: 10.1029/JB089iB11p09305
Hardebeck J L,Michael A J. 2006. Damped regional-scale stress inversions:Methodology and examples for southern California and the Coalinga aftershock sequence[J]. J Geophys Res,111(B11):B11310
Michael A J. 1984. Determination of stress from slip data:Faults and folds[J]. J Geophys Res,89(B13):11517–11526 doi: 10.1029/JB089iB13p11517
Michael A J. 1987. Use of focal mechanisms to determine stress:A control study[J]. J Geophys Res,92(B1):357–368 doi: 10.1029/JB092iB01p00357
Michael A J. 1991. Spatial variations in stress within the 1987 Whittier Narrows,California,aftershock sequence:New techniques and results[J]. J Geophys Res,96(B4):6303–6319 doi: 10.1029/91JB00195
Wan Y G,Sheng S Z,Huang J C,Li X,Chen X. 2016. The grid search algorithm of tectonic stress tensor based on focal mecha-nism data and its application in the boundary zone of China,Vietnam and Laos[J]. J Earth Sci,27(5):777–785 doi: 10.1007/s12583-015-0649-1
Wiemer S,Malone S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismo Res Lett,7(2):373–382
-
期刊类型引用(8)
1. 王亚璐,张学民,欧阳新艳,王晓,娄文宇,杜晓辉,董磊. 中国中东部地区地震电离层低频电场扰动频段及背景时段选取分析. 地球物理学报. 2022(03): 908-923 . 百度学术
2. 王亚璐,张学民,泽仁志玛,王晓. 考虑电离层离子的ELF/SLF电磁波传播特性数值模拟研究. 地震. 2022(04): 111-126 . 百度学术
3. 何苗,吴立新,崔静,王威,齐源,毛文飞,苗则朗,陈必焰,申旭辉. 汶川地震前多圈层短—临遥感异常回顾及其时空关联性. 遥感学报. 2020(06): 681-700 . 百度学术
4. 宋程,张永仙,夏彩韵,张小涛. 2008年汶川M_S8.0地震电离层图像信息长时程演化初探. 地震. 2019(02): 135-146 . 百度学术
5. 李秋红,李英,陈双贵. 汶川地震(M_s8.0)前的地磁低频峰值变化. 地震工程学报. 2016(04): 606-608 . 百度学术
6. 韩冰,汤吉,赵国泽,毕亚新,王立凤,程远志. 小波极大值方法及其在电磁异常信号提取中的应用. 地震地质. 2015(03): 765-779 . 百度学术
7. 颜蕊,王兰炜,胡哲,刘大鹏,张兴国,张宇. 利用DEMETER卫星数据分析强震前后的电离层异常. 地震学报. 2013(04): 498-511+1 . 本站查看
8. 尼鲁帕尔·买买吐孙,张永仙. 地震电磁卫星电离层扰动研究进展综述. 地震. 2012(01): 103-117 . 百度学术
其他类型引用(5)