基于地震波叠加模式的空间域划分及质点运动空间差异—以SV波入射为例

何卫平, 周宜红

何卫平, 周宜红. 2019: 基于地震波叠加模式的空间域划分及质点运动空间差异—以SV波入射为例. 地震学报, 41(3): 277-288. DOI: 10.11939/jass.20180127
引用本文: 何卫平, 周宜红. 2019: 基于地震波叠加模式的空间域划分及质点运动空间差异—以SV波入射为例. 地震学报, 41(3): 277-288. DOI: 10.11939/jass.20180127
He Weiping, Zhou Yihong. 2019: Spatial domain division based on superposition pattern of seismic waves and spatial variation of motion:Case of SV wave incidence. Acta Seismologica Sinica, 41(3): 277-288. DOI: 10.11939/jass.20180127
Citation: He Weiping, Zhou Yihong. 2019: Spatial domain division based on superposition pattern of seismic waves and spatial variation of motion:Case of SV wave incidence. Acta Seismologica Sinica, 41(3): 277-288. DOI: 10.11939/jass.20180127

基于地震波叠加模式的空间域划分及质点运动空间差异—以SV波入射为例

基金项目: 国家自然基金(51809152、51479103)资助
详细信息
    通讯作者:

    何卫平: e-mail:heweiping_hwp@126.com

  • 中图分类号: P315.31,P315.9

Spatial domain division based on superposition pattern of seismic waves and spatial variation of motion:Case of SV wave incidence

  • 摘要: 针对地震动空间差异问题,以半无限空间内平面SV波入射为例,采用波动理论和叠加原理相结合的方法研究地震动的空间特征。首先,分析入射波和反射波在空间内形成质点运动的叠加模式差异,并依此对空间域进行划分;其次,针对不同泊松比和SV波入射角情形研究叠加区与分离区的分界线控制情况;最后,对比分析不同空间域内的质点运动在峰值、持时等方面的特征。研究结果显示:当SV波入射时,叠加区与分离区的分界线通常由z3 (反射P波与反射SV波的分离线)控制;同时存在两种特殊情况,当SV波垂直入射时,分界线由z1 (入射SV波与反射SV波的分离线)控制,当反射SV波幅值为零时,分界线由z2 (入射SV波与反射P波的分离线)控制。在入射波和反射波的影响下,质点运动时程的形状具有水平不变性。三波贡献时段只出现在深度小于z1的质点的运动时程中,且持时随着深度的增加线性减少;双波贡献时段出现在位于叠加区内的质点的运动时程中,持时沿深度先增加后减少;单波贡献时段随着深度的增加而逐渐加长,在分离区达到最大值。质点运动总持时随深度逐渐增加,在分离线z2z3深度处存在两个拐点。在质点运动峰值方面,靠近自由面的叠加区质点运动峰值变化较大,深度较大的叠加区和分离区的质点运动峰值一般不变。
    Abstract: For the investigation of spatial variation of seismic motion, the wave theory and superposition principle are used to illustrate the spatial variation of motions caused by seismic waves. And plane SV wave’s incidence in semi-infinite space is used as a case in this paper. Firstly the difference in superposition pattern of waves in different position is investigated and the space region is divided into different domains according to superposition pattern. Then the border line between superposition domain and separation domain with different Poisson’s ratio and SV wave’s incident angle is discussed. Finally the difference in peak value and duration time of particle motion in different domains is investigated. The result shows that, the border line is usually controlled by z3 (separation line generated by reflected P wave and reflected SV wave). Particularly, there exist two special cases, one is the vertical incidence of SV wave in which the border line is controlled by z1 (separation line generated by incident SV wave and reflected SV wave), the other is the zero amplitude of reflected SV wave in which the border line is controlled by z2 (separation line generated by incident SV wave and reflected P wave). The time history of different particle motion in one depth has the same shape with the influence of incident and reflected waves. In time history of particle motion, the period contributed by three waves only exists in depth lower than z1 and the duration time decreases with depth. The period contributed by two waves exists in all superposition domain and the duration time increases firstly and then decreases with depth. The period contributed by one single wave increases with depth and reaches its maximum in separation domain. The increase of particle motion duration has two slope change in depths of z2 and z3. The peak value of particle motion changes dramatically in superposition domain near free surface and remains constant in deep superposition domain and separation domain.
  • 图  1   地震波叠加模式与质点运动空间差异示意图

    (a) 问题说明;(b) A点和B点的水平向运动

    Figure  1.   Superposition pattern of seismic waves and spatial variation of particle motion at different point

    (a) Description of problem;(b) Horizontal motion at points A and B

    图  2   平面SV波倾斜入射示意

    Figure  2.   Oblique incident of plane SV wave

    图  3   不同泊松比时叠加区范围系数a1 (a),a2 (b)和a3 (c)随平面SV波入射角的变化

    Figure  3.   Variation of superposition range coefficient a1 (a),a2 (b) and a3 (c) with incident angle of SV wave

    图  4   泊松比为0.15 (a),0.25 (b)和0.35 (c)时叠加区范围系数对比

    Figure  4.   Comparison of superposition range coefficient with Poisson’s ratio of 0.15 (a),0.25 (b) and 0.35 (c)

    图  5   分界线由Si与Pr分离线控制的对应情况

    Figure  5.   Border controlled by separation line generated by Si and Pr

    图  6   入射平面SV波的位移时程

    Figure  6.   Displacement time history of incident SV wave

    图  7   不同深度h下特征位置质点的水平向运动时程

    Figure  7.   Time history of horizontal particle motions in different depth h

    图  8   不同地震波叠加类型下持时沿深度分布

    Figure  8.   Duration of different superposition pattern of particle motion in different depth

    图  9   质点运动持时沿深度变化

    Figure  9.   Duration time of particle motion along depth

    图  10   质点运动水平向(a)、垂直向(b)峰值沿深度变化

    Figure  10.   Peak displacement of particle motion in horizontal (a) and vertical (b) displacement along depth

    表  1   不同深度质点地震波贡献时段

    Table  1   Contribution time interval of waves on particle motion at different depth

    质点深度/km单波贡献时段/s双波贡献时段/s三波贡献时段/s
    SiPrSr(Si,Pr(Pr,Sr(Si,Pr,Sr
    D100—2.00
    D21.00—0.892.89—3.170.89—1.172.00—2.891.17—2.00
    D31.80—1.612.00—2.113.61—4.111.61—2.002.11—3.61
    D43.00—2.002.68—3.524.68—5.523.52—4.68
    D59.00—2.008.05—10.0510.57—12.57
    下载: 导出CSV
  • 陈厚群,徐泽平,李敏. 2008. 汶川大地震和大坝抗震安全[J]. 水利学报,39(10):1158–1167. doi: 10.3321/j.issn:0559-9350.2008.10.002

    Chen H Q,Xu Z P,Li M. 2008. Wenchuan earthquake and seismic safety of large dams[J]. Journal of Hydraulic Engineering,39(10):1158–1167 (in Chinese).

    贺春晖,王进廷,张楚汉. 2017. 基于震源—河谷波场数值模拟的坝址地震动参数确定方法[J]. 地球物理学报,60(2):585–592.

    He C H,Wang J T,Zhang C H. 2017. Determination of seismic parameters for dam sites by numerical simulation of the rupture-canyon wave field[J]. Chinese Journal of Geophysics,60(2):585–592 (in Chinese).

    何卫平,周宜红,赵春菊. 2019. 平面P波入射半无限介质空间域划分及运动偏振特征[J]. 岩石力学与工程学报,38(2):321–331.

    He W P,Zhou Y H,Zhao C J. 2019. Spatial division of semi-infinite space and polarization characteristics of particle motion for incident plane primary wave[J]. Chinese Journal of Rock Mechanics and Engineering,38(2):321–331 (in Chinese).

    金星. 1993. 地震动场研究状况简介[J]. 世界地震工程,(3):19–22,52.

    Jin X. 1993. Introduction of research on earthquake motion field[J]. World Earthquake Engineering,(3):19–22,52 (in Chinese).

    金星,廖振鹏. 1994. 地震动随机场的物理模拟[J]. 地震工程与工程振动,14(3):11–19.

    Jin X,Liao Z P. 1994. Physical simulation on the random field of seismic motion[J]. Earthquake Engineering and Engineering Vibration,14(3):11–19 (in Chinese).

    林皋. 2017. 地下结构地震响应的计算模型[J]. 力学学报,49(3):528–542.

    Lin G. 2017. A computational model for seismic response analysis of underground structures[J]. Chinese Journal of Theoretical and Applied Mechanics,49(3):528–542 (in Chinese).

    缪惠全,李杰. 2018. 基于物理机制的工程场地地震动相干函数模型[J]. 中国科学:技术科学,48(2):209–216.

    Miao H Q,Li J. 2018. The coherence function model of ground motion in engineering sites based on physical mechanism[J]. Scientia Sinica:Technologica,48(2):209–216 (in Chinese).

    张楚汉,金峰,王进廷,徐艳杰,潘坚文. 2016. 高混凝土坝抗震安全评价的关键问题与研究进展[J]. 水利学报,47(3):253–264.

    Zhang C H,Jin F,Wang J T,Xu Y J,Pan J W. 2016. Key issues and developments on seismic safety evaluation of high concrete dams[J]. Journal of Hydraulic Engineering,47(3):253–264 (in Chinese).

    张翠然,陈厚群,李敏. 2011. 采用随机有限断层法生成最大可信地震[J]. 水利学报,42(6):721–728.

    Zhang C R,Chen H Q,Li M. 2011. Generation of the maximum credible earthquake by using the stochastic finite fault method[J]. Journal of Hydraulic Engineering,42(6):721–728 (in Chinese).

    钟万勰,林家浩,吴志刚,孙东科,张亚辉. 2000. 大跨度桥梁分析方法的一些进展[J]. 大连理工大学学报,40(2):127–135. doi: 10.3321/j.issn:1000-8608.2000.02.001

    Zhong W X,Lin J H,Wu Z G,Sun D K,Zhang Y H. 2000. Development of analytical method for long-span bridges[J]. Journal of Dalian University of Technology,40(2):127–135 (in Chinese).

    Hao H,Oliveira C S,Penzien J. 1989. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nucl Eng Des,111(3):293–310. doi: 10.1016/0029-5493(89)90241-0

    Loh C H,Yeh Y T. 1988. Spatial variation and stochastic modelling of seismic differential ground movement[J]. Earthq Eng Struct Dyn,16(4):583–596. doi: 10.1002/eqe.4290160409

    Luco J E,Wong H L. 1986. Response of a rigid foundation to a spatially random ground motion[J]. Earthq Eng Struct Dyn,14(6):891–908. doi: 10.1002/eqe.4290140606

    Shearer P M. 2009. Introduction to Seismology[M]. 2nd ed. Cambridge: Cambridge University Press: 215−240.

    Zerva A. 2009. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications[M]. Boca Raton: CRC Press: 1–64.

    Zerva A,Harada T. 1997. Effect of surface layer stochasticity on seismic ground motion coherence and strain estimates[J]. Soil Dyn Earthq Eng,16(7/8):445–457.

  • 期刊类型引用(11)

    1. 任超,孙安辉,王伟涛,于子叶,洪顺英,李澍辰. 密集台阵和深度学习方法揭示的2016年门源M_S6.4地震发震构造特征. 地球物理学报. 2025(04): 1287-1303 . 百度学术
    2. 闫坤,王伟君,寇华东,叶志鹏. 2022年青海门源M_S6.9地震余震演化与地震触发. 地震. 2023(01): 15-32 . 百度学术
    3. 王铭浩,何骁慧,王烁帆. 2016年1月21日青海门源M_S6.4地震破裂方向性研究. 地球物理学进展. 2021(01): 67-77 . 百度学术
    4. 袁伏全,黄浩,蔡丽雯,李启雷,赵燕杰,刘兴盛. 2019年甘肃夏河M_S5.7地震震源机制解和震源深度确定. 地震研究. 2021(04): 521-528 . 百度学术
    5. 许康生,曾文浩. 两次强震峰值速度比及其余震分布特征. 大地测量与地球动力学. 2020(05): 441-445 . 百度学术
    6. 苏维刚,王培玲,冯丽丽,马震,赵玉红. 2016年门源M_S6.4地震前兆异常演化特征. 地震学报. 2020(01): 24-33+120 . 本站查看
    7. 郭志,高星,路珍. 2019年6月17日四川长宁地震重定位及震源机制研究. 地震学报. 2020(03): 245-255+377 . 本站查看
    8. 黄浩,付虹. 2015年11月23日祁连5.2级地震发震构造初步研究. 地震. 2019(01): 114-125 . 百度学术
    9. 刘洋,许才军,温扬茂. 门源Mw5.9级地震形变InSAR观测及区域断裂带深部几何形态. 武汉大学学报(信息科学版). 2019(07): 1035-1042 . 百度学术
    10. 左可桢,陈继锋. 门源地区地壳三维体波速度结构及地震重定位研究. 地球物理学报. 2018(07): 2788-2801 . 百度学术
    11. 苏维刚,马震,孙玺浩. 门源6.4级地震前后倾斜异常的识别与分析. 高原地震. 2018(03): 1-6 . 百度学术

    其他类型引用(7)

图(10)  /  表(1)
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  956
  • PDF下载量:  61
  • 被引次数: 18
出版历程
  • 收稿日期:  2018-10-27
  • 修回日期:  2018-12-25
  • 网络出版日期:  2019-05-21
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回