汤东活动断裂带气体地球化学特征

胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科

胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科. 2019: 汤东活动断裂带气体地球化学特征. 地震学报, 41(4): 524-535. DOI: 10.11939/jass.20180131
引用本文: 胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科. 2019: 汤东活动断裂带气体地球化学特征. 地震学报, 41(4): 524-535. DOI: 10.11939/jass.20180131
Hu Ning, Ma Zhimin, Lou Luling, Zhang Baoshan, Wang Yu, Wang Mingliang, Wang Wenjing, Guo Deke. 2019: Geochemical characteristics of soil gas in Tangdong active fault zone. Acta Seismologica Sinica, 41(4): 524-535. DOI: 10.11939/jass.20180131
Citation: Hu Ning, Ma Zhimin, Lou Luling, Zhang Baoshan, Wang Yu, Wang Mingliang, Wang Wenjing, Guo Deke. 2019: Geochemical characteristics of soil gas in Tangdong active fault zone. Acta Seismologica Sinica, 41(4): 524-535. DOI: 10.11939/jass.20180131

汤东活动断裂带气体地球化学特征

基金项目: 地震科技星火计划项目(XH19028YSX和XH16026)和国家自然科学基金(41601584)共同资助
详细信息
    通讯作者:

    张宝山: e-mail:tuoniao667@163.com

  • 中图分类号: P315.7

Geochemical characteristics of soil gas in Tangdong active fault zone

  • 摘要: 本文采用野外多期跨断层流动观测测定了汤东活动断裂带H2,Rn和CO2的分布特征,以此分析了该断裂带的气体地球化学特征及其活动背景,从而揭示了气体地球化学特征与构造之间的联系。分析结果显示:不同测量期次的H2,Rn和CO2浓度存在显著差异,其中张河村测线的各期次测量结果中6月份各组分气体浓度均显著高于其它期次,而邢李庄测线的测量结果中1月份各组分气体浓度均显著高于其它期次;各测量期次的各气体组分分布曲线特征相似,高值异常点的重现性较好。张河村测线多期测量的H2和Rn浓度背景值分别为(8.93±3.92)×10−6和(17.38±4.28) kBq/m3,在测线西部距汤东主断裂135 m和230 m处H2与Rn同步出现高值异常;邢李庄测线H2和Rn的背景值分别为(41.20±16.64)×10−6和(29.00±8.28) kBq/m3,H2与Rn在测线西部距汤东主断裂60 m处同步出现异常。两测线的气体浓度高值异常部位与地球物理、跨断层联合钻孔详勘结果之间存在较好的对应关系,由此可推断观测气体浓度能够敏感地指示断裂带位置,而且H2和Rn浓度是汤东断裂带气体地球化学观测的关键指标。
    Abstract: Based on the distribution of H2, Rn and CO2 concentrations in the Tangdong active fault zone determined by multi-phase cross-fault observation in the field, this paper analyzed the gas geochemical characteristics and tectonic activity background of the fault zone, and revealed the relationship between geochemical characteristics of soil gases and the geological structure. The results showed that there were significant variations in H2, Rn and CO2 concentrations in different measurement periods. The gas concentrations of H2, Rn and CO2 in June were significantly higher than those in other measurement periods on the Zhanghecun measurement profile, while the gas concentrations of H2, Rn and CO2 in January were significantly higher than those in other measurement periods on the Xinglizhuang measurement profile. And the background values of H2 and Rn on Zhanghecun measurement line were (8.93±3.92)×10−6 and (17.38±4.28) kBq/m3, respectively, and concentrations of H2 and Rn exhibited synchronous anomalies at 135 m and 230 m from the main fault of Tangdong in the west of the measurement line. Accordingly on the Xinglizhuang measurement line, background concentrations values of H2 and Rn were (41.20±16.64)×10−6, (29.00±8.28) kBq/m3, and concentrations of H2 and Rn showed synchronous anomalies at 60 m from the main fault of Tangdong in the west of the measurement line. Furthermore, the shape of the gas concentration curves were similar for different measurement periods, and the anomaly spike showed perfect reproducibility on each investigation profile. There was a good correspondence between the high-value anomalies of the two investigation profiles and the results from geophysical exploration and trans-fault joint drilling. Therefore, it is deduced that the concentrations of H2 and Rn, which could be sensi-tive to the fault location, are the key indicators for gas geochemical observation of Tangdong fault zone.
  • 目前关于地下结构的研究发展迅速,众多研究人员认为地下结构的抗震性能优于地上结构,因而大量建成的地下结构均未考虑抗震设计(Hashash et al,2001于翔,2002)。但近年来大量震后调查(Wang et al,2001Scawthorn et al,2006崔光耀等,2017)表明以地铁、隧道为代表的地下结构也遭遇了严重的震害。通常对于地下结构所遭受的损害,其修复费用和时间远超地上结构。因此对于地下结构抗震性能的研究尤为重要。确定一个合理的地震动强度指标(intensity measure,缩写为IM)是基于性能的抗震设计方法的重要环节之一,同时合理的IM可以有效地降低结构响应预测的离散性,因此确定合理的IM具有重要的意义。

    目前已有不少针对IM与地上结构响应之间关系的研究,并取得了诸多成果,相同IM对预测不同结构形式响应时的效用不同,不同IM对相似结构的效用也不同。Riddell (2007)Yang等(2009)选择单自由度体系展开研究,其结果表明加速度型指标适用于刚性系统,速度型指标适用于中频系统,位移型指标适用于柔性系统。于晓辉(2012)选取了60个地震动强度参数和6个结构反应参数,经过综合性评价分析得出与结构性质有关的地震动强度参数有更好的评价效果。陈健云等(2017)利用相关系数对不同周期框架结构进行三维分析,给出了13种常用的地震动强度指标与不同周期结构响应之间的相关性,其结果表明加速度型、速度型及位移型强度指标与不同周期结构响应参数的相关性不同。左占宣等(2019)采用变异系数对比了新强度指标等效周期谱加速度SaTeq)与已有的强度指标结构弹性基本周期对应的谱加速度SaT1),结果表明运用SaTeq)可以有效地降低倒塌分析结果的离散性。Yang等(2019)对两种不同形式的隔震结构进行了有效性、充分性以及灵敏度的分析,进而得出修正速度谱强度是预测大部分工程需求参数(engineering demand parameter,缩写为EDP)的有效指标。另有众多研究人员也针对诸如隔震结构(耿方方等,2013)、桥梁(李雪红等,2014)、超高建筑(卢啸等,2014)、网壳结构(于天昊,2016)等不同结构与多种IM之间的关系展开了研究。

    由于受到围岩土体的约束,地下结构的地震响应不同于地上结构。适用于地下结构的地震动强度指标IM的研究还相对有限。Chen和Wei (2013)分析了埋深44 m的山岭隧道衬砌整体损伤指数与地震动强度指标之间的关系,结果表明山岭隧道衬砌整体损伤指数与速度相关型地震动强度指标的相关性较高。钟紫蓝等(2020)以日本神户埋深4.8 m的大开地铁车站为研究对象,分析了22个地震动强度指标的有效性、效益性和实用性,其结果表明对于文中采用的结构形式,以峰值加速度(peak ground acceleration,缩写为PGA)和复合加速度Ia为代表的加速度型指标和以加速度谱强度为代表的谱相关型地震动强度指标有更强的适用性。

    目前针对地下结构的研究都是固定埋深的,但地下结构埋深的变化对地下结构的内力、变形等地震响应具有显著的影响(李长青等,2011Pitilakis et al,2014),而且埋深是地下结构抗震设计不可忽视的重要因素之一。随着城市用地紧张,对地下空间的开发日趋加深,日本就设想将城市地下规划到50—80 m (董正方等,2017),因此研究最优地震动峰值指标随地下结构埋深变化的规律具有重要的意义。由于地下结构受周围土体的约束,其地震响应与周围场地变形密切相关,因此本文从简单一维场地地震响应着手,拟采用从太平洋地震工程研究中心(Pacific Earthquake Engineering Research Center,缩写为PEER)获取的实际地震动作为输入,以不同波速的均匀半空间场地以及成层半空间场地为对象,基于效益性准则探究最优地震动峰值指标随埋深变化的规律,以期确定不同埋深下的最优地震动强度指标,为结构抗震性能评价提供合理的地震动指标参考。

    本文涉及的均匀半空间场地以实际场地为例,剪切波速从100 m/s到500 m/s,每间隔50 m/s设计一个场地,加上波速为85 m/s的场地共计10个均匀半空间场地,囊括了 《GB 50011—2010建筑地震设计规范》(中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局,2010)中Ⅰ —Ⅳ类场地条件,均匀半空间场地均为线弹性无阻尼介质,相关信息详见表1

    表  1  均匀半空间场地信息
    Table  1.  Information of homogeneous half-space sites
    场地序号密度/(kg·m−3剪切波速/(m·s−1场地类别
    11 80085
    21 820100
    31 850150
    41 920200
    51 920250
    61 970300
    71 970350
    82 100400
    92 100450
    102 300500
    下载: 导出CSV 
    | 显示表格

    成层半空间场地由一层土层和半空间基岩层组成,土层参数参考某地铁工程场地的地震安全性报告选取。为方便对比,设计土层厚度为40 m,所有场地基岩取相同深度,其详细信息见表2,土体剪切模量比和阻尼比随剪应变的变化曲线如图1所 示。基岩为线弹性无阻尼介质。

    表  2  成层半空间场地信息
    Table  2.  Information of layered half-space sites
    场地序号分层土类号厚度/m泊松比密度/(kg·m−3剪切波速/(m·s−1场地类别
    11 土层 1 40 0.42 1 820 113
    基岩 6 0.20 2 300 500
    12 土层 2 40 0.38 1 850 166
    基岩 6 0.20 2 300 500
    13 土层 3 40 0.35 1 920 210
    基岩 6 0.20 2 300 500
    14 土层 4 40 0.26 1 920 254
    基岩 6 0.20 2 300 500
    15 土层 5 40 0.30 1 970 312
    基岩 6 0.20 2 300 500
    16 土层 5 40 0.30 1 970 360
    基岩 6 0.20 2 300 500
    17 土层 5 40 0.27 2 100 425
    基岩 6 0.20 2 300 500
    18 土层 5 40 0.27 2 100 493
    基岩 6 0.20 2 300 500
    下载: 导出CSV 
    | 显示表格
    图  1  剪切模量比和阻尼比随剪应变的变化
    Figure  1.  Shear modulus ratio and damping ratio varying with the shear strain

    采用等效线性化方法考虑土的非线性特性,从目前较常用的等效线性化分析软件中选择EERA软件进行分析,分析时场地底部采用开放边界,统一在200 m基岩处输入地震动。

    Dávalos和Miranda (2019)指出仅采用简单的地震动振幅缩放进行结构非线性分析,可能会使得IM与结构地震响应之间的相关性出现偏差;同时,地震记录的选取还要综合考虑工程场地条件并避免对某个地震事件的依赖性。本文从PEER强震记录数据库中选取25个不同地震事件的50条远场地震动记录。到目前为止,对于近远场地震的划分并无统一的规定,通常以断层距作为近远场的划分依据。已有文献给出了不同的划分标准,如20 km (Bray,Rodriguez-Marek,2004),23 km (Akkar,Özen,2005),10 km (FEMA,2009)等,综合考虑后本文选取15 km作为近远场的划分依据。因此,本文所选取地震动记录的断层距均大于15 km,其PGA范围为0.019g—0.229g,PGV范围为0.52—19.07 cm/s,PGD范围为0.07—11.58 cm。所选取地震动的详细信息见表3,相应的伪加速度反应谱如图2所示。

    图  2  表3中地震动的5%阻尼比伪加速度反应谱
    Figure  2.  Pseudo acceleration response spectra with 5% modal damping ratio for ground motions in Table 3
    表  3  本研究中使用的地震动记录
    Table  3.  Ground motions records used in this study
    编号地震名称年份vS30/(m·s−1地震动分量断层距/kmPGA/gPGV/(cm·s−1PGD/cm
    1 Kern County 1952 514.99 SBA042 82.19 0.090 11.41 3.43
    SBA132 0.132 19.07 5.49
    2 Lytle Creek 1970 667.13 DCF090 20.24 0.172 3.57 0.40
    DCF180 0.162 6.50 0.99
    3 San Fernando 1971 529.09 PPP000 38.97 0.104 4.95 1.26
    PPP270 0.138 5.46 1.09
    4 Northern Calif-07 1975 518.98 SCP070 63.64 0.074 2.13 0.09
    SCP160 0.108 2.28 0.09
    5 Livermore-01 1980 517.06 A3E146 30.59 0.065 3.91 0.79
    A3E236 0.057 2.68 0.50
    6 Anza (Horse Canyon)-01 1980 724.89 PFT045 17.26 0.099 2.04 0.18
    PFT135 0.122 5.19 0.59
    7 Coalinga-01 1983 522.74 TM2000 42.92 0.026 3.61 1.13
    TM2090 0.037 5.72 1.43
    8 Taiwan SMART1(25) 1983 671.52 25EO2EW 92.04 0.020 1.45 0.36
    25EO2NS 0.020 2.50 0.44
    9 Borah Peak_ID-02 1983 612.78 HAU000 49.02 0.029 0.63 0.07
    HAU090 0.033 0.52 0.08
    10 Morgan Hill 1984 543.63 SJL270 31.88 0.081 7.31 3.74
    SJL360 0.070 5.22 2.20
    11 Veroia_Greece 1984 551.30 NS 16.89 0.032 3.13 0.26
    WE 0.044 3.94 0.35
    12 N. Palm Springs 1986 532.85 H01000 54.82 0.054 1.70 0.13
    H01090 0.049 1.28 0.16
    13 Chalfant Valley-02 1986 529.39 MAM020 36.47 0.042 2.15 0.60
    MAM290 0.048 3.17 0.70
    14 Taiwan SMART1(45) 1986 671.52 45EO2EW 51.35 0.136 14.42 6.72
    45EO2NS 0.142 12.54 6.61
    15 Whittier Narrows-01 1987 508.08 PKC000 36.12 0.158 7.73 1.08
    PKC090 0.163 7.71 1.08
    16 Loma Prieta 1989 517.06 A3E000 52.53 0.079 6.14 4.64
    A3E090 0.084 7.07 4.27
    17 Griva_Greece 1990 551.30 NS 33.29 0.103 11.03 1.22
    WE 0.098 8.69 0.89
    18 Cape Mendocino 1992 518.98 SHL000 28.78 0.229 6.92 0.39
    SHL090 0.189 6.30 0.52
    19 Landers 1992 659.09 SIL000 50.85 0.050 3.76 1.93
    SIL090 0.040 5.08 4.04
    20 Big Bear-01 1992 509.10 CUC090 59.87 0.051 3.42 0.59
    CUC180 0.032 1.95 0.43
    21 Northridge-01 1994 572.57 ATB000 46.91 0.046 3.20 1.82
    ATB090 0.068 4.16 1.97
    22 Kobe_Japan 1995 609.00 CHY000 49.91 0.092 5.32 2.86
    CHY090 0.110 4.12 0.97
    23 Kozani_Greece-01 1995 579.40 L 49.66 0.019 1.40 0.27
    T 0.019 1.49 0.26
    24 Hector Mine 1999 724.89 PFT090 89.98 0.036 5.12 1.77
    PFT360 0.027 2.30 1.90
    25 Duzce_Turkey 1999 782.00 N 25.88 0.053 5.75 5.28
    E 0.025 9.98 11.58
    下载: 导出CSV 
    | 显示表格

    研究人员基于不同的标准提出了多种IM,包括单一参数型和复合型。Nau和Hall (1984)指出复合型IM针对地面运动也未能全面反映输入地震动记录对结构损伤程度的影响规律,且复合型指标的计算较为复杂,不便于工程应用,因此形式简单、使用方便的地震动峰值指标仍旧使用较多,故本文选择PGA,PGV和PGD作为研究指标。Riddell (2007)将指标分为加速度相关型、速度相关型以及位移相关型三种,本文选取的三个指标分别作为这三种指标类型的代表。

    工程需求参数EDP是用来描述结构地震响应及损伤的参数。在基于性能的地震工程计算中,EDP的选取对计算结果的准确性至关重要。对于地上结构,诸如最大层间位移比、最大层间加速度等EDP被广泛应用(Luco,Cornell,2007Padgett et al,2008Yang et al,2009)。而针对地下结构的EDP目前尚无统一标准,多项研究选择了各种各样的结构地震响应进行地下结构的评价分析(An et al,1997Liu et al,2017钟紫蓝等,2020),但地下结构的最大层间位移被广泛应用。因此,本文选择矩形地下结构(结构高度为7 m)顶底板处对应场地的最大水平位移差作为场地的EDP,埋深设定为结构顶板到地表的距离,如图3所示。因地下结构的响应受到周围场地变形的控制,该EDP的选择有一定的代表性。

    图  3  场地工程需求参数示意图
    Figure  3.  Schematical diagram of site’s EDP

    有效性可以描述在确定的地震动强度指标IM下响应的离散程度,即在确定的IM下,EDP的离散性较小,有效性较好,此时,可以在不降低精度的情况下减少计算时输入地震动记录的数量和动力时程分析的次数(Luco,Cornell,2007)。Cornell等(2002)指出EDP与IM之间大致满足幂函数关系,可以写为对数线性关系,即

    $$ \ln {\rm{EDP}} {\text{=}} \ln a {\text{+}} b\ln {\rm{IM}}{\text{.}} $$ (1)

    对计算结果进行线性回归,可得常数ab的值,进而求得代表有效性的标准差β

    $$ \beta {\text{=}} \sqrt {\frac{{\displaystyle\sum\limits_{i {\text{=}} 1}^n {{{{\text{[}} \;{\ln {{\rm{ED}}{{\rm{P}}_{i}}} {\text{-}} \ln ( {a \cdot {\rm{I}}{{\rm{M}}^{b}_{i}}} {\text{)}}} {\text{]}}}^2}} }}{{n {\text{-}} 2}}} {\text{,}} $$ (2)

    式中,EDPi为每条地震动下的场地响应值,IMi为每条地震动的指标值,n为地震动数量。有效性越好,β越小。如图4所示,PGV的有效性优于PGA。

    图  4  场地位移差lnEDP与地震动强度指标lnPGA和lnPGV的回归分析
    Figure  4.  lnEDP-lnIM regression analysis plots

    实用性是指EDP与IM之间是否存在直接关系,如果某IM实用性不强,则表明EDP几乎不受该IM变化的影响。实用性采用式(1)中的线性回归常数b来判断,b值越大,地面运动强度指标变化对EDP的影响就越大,即实用性较高。如果b值趋于0,则IM的变化对EDP无影响。由图4可见PGA比PGV的实用性更强。

    只使用有效性或实用性来评价IM可能会出现相互矛盾的情况,如图4所示,基于有效性评价,PGV的有效性优于PGA,而基于实用性评价,PGA的实用性优于PGV。效益性综合考虑有效性和实用性(Padgett et al,2008),采用

    $$ \zeta {\text{=}} \frac{\beta }{b} $$ (3)

    表示,ζ值越小表示IM的效益性越强。本文以效益性作为IM的评价准则。

    通常地下结构响应受控于周围岩土体的变形,所以从简单场地开始探索规律。本文将设计均匀半空间和成层半空间两类场地展开规律的探究,对均匀半空间场地先粗略地取0,2,5,7,10,13,15,18,20,25,30,35,40,60 m等14个埋深进行研究,由此获得效益性结果随埋深的变化曲线。

    图5为10个场地的效益性随埋深的变化曲线,可以看到:对于剪切波速较小的场地1,所有埋深下PGV均为最优IM;对于剪切波速相对较大的场地2—10,在埋深浅时PGA为最优IM,埋深较深时PGV为最优IM,因此存在一个随埋深增加最优IM由PGA转变为PGV的转折深度。为了更准确地确定转折深度,在转折深度附近每隔1 m取一个埋深值加密计算。

    图  5  均匀半空间场地1—10中效益性ζ随埋深变化图
    (a) 场地1;(b) 场地 2;(c) 场地 3;(d) 场地 4;(e) 场地 5;(f) 场地 6;(g)场地 7;(h) 场地 8 ;(i) 场地 9;(j) 场地 10
    Figure  5.  The proficiency ζ varying with burial depth in homogeneous half-space sites 1−10
    (a) Site 1;(b) Site 2;(c) Site 3;(d) Site 4;(e) Site 5;(f) Site 6;(g) Site 7;(h) Site 8;(i) Site 9;(j) Site 10

    存在上述转折现象的原因可能是由于埋深较浅时,场地响应受惯性力的影响较大,因此PGA为最优IM;随着埋深增加,场地响应受土体剪切变形控制,而场地土体剪应变与PGV具有相关性,因此埋深较深时PGV为最优IM。

    成层半空间场地的埋深取值与均匀半空间场地一致。图6为场地11—18的效益性随埋深的变化曲线。从图中可以看到:对于剪切波速较小的场地11,所有埋深下PGV均为最优IM;对于剪切波速相对较大的场地12—18,在埋深浅时PGA为最优IM,埋深较深时PGV为最优IM,存在一个随埋深增加最优IM由PGA转变为PGV的转折深度,规律与均匀半空间场地相同。

    图  6  成层半空间场地11—18中效益性ζ随埋深变化图
    (a) 场地 11;(b) 场地 12;(c) 场地 13;(d) 场地 14;(e) 场地 15;(f) 场地 16;(g) 场地 17;(h) 场地 18
    Figure  6.  The proficiency ζ varying with burial depth in layered half-space sites 11−18
    (a) Site 11;(b) Site 12;(c) Site 13;(d) Site 14;(e) Site 15;(f) Site 16;(g) Site 17;(h) Site 18

    图5图6可以看到,在均匀半空间和成层半空间场地中,不同场地条件下最优IM的转折深度不同。图7给出了两种场地类型下最优IM的转折深度随场地剪切波速变化的关系,两者的线性回归曲线也绘于图中。

    图  7  最优IM的转折深度与剪切波速的关系
    Figure  7.  The depth of the transition for optimal IM varying with shear wave velocity
    $$ H{\text{=}}\left\{\begin{array}{c}0.06{v}_{{\rm{S}}}{\text{-}}5.27\qquad ({\text{均匀半空间}}) \\ 0.06{v}_{{\rm{S}}}{\text{-}}9.00\qquad ({\text{成层半空间}})\end{array}\right. $$ (4)

    为两种场地的线性回归方程,式中H为转折深度,vS为场地剪切波速。

    图7可以看到,最优IM的转折深度与场地剪切波速较好地符合线性关系,因此可用回归方程计算其它剪切波速大于100 m/s的均匀半空间场地以及本文涉及的成层半空间场地的最优IM转折深度。从图中还可看出,均匀半空间场地中的线性拟合优于成层半空间场地,这可能是由于成层半空间引入了阻尼和覆盖层厚度等参数,对其产生了一定的影响。

    本文基于从PEER中获取的实际地震动,采用EERA软件计算得到均匀半空间场地、成层半空间场地不同埋深处的水平位移差,利用效益性评价了地震动峰值指标(PGA,PGV,PGD)随埋深的变化规律,得到以下结论:

    1) 最优IM随埋深变化,个别波速较小场地的最优IM始终为PGV;大多数场地下,随着埋深增加出现最优IM由PGA转向PGV的转折深度。本文研究场地条件下的转折深度范围为0—25 m。

    2) 最优IM的转折深度与场地剪切波速存在线性关系。均匀半空间场地的转折深度与回归直线相差0—1.1%,成层半空间场地的相差2.64%—18.75%。

    本文将场地水平位移差作为EDP,后续研究中应考虑将结构响应作为EDP进行研究;同时实际场地的覆盖层厚度各不相同,后续将考虑不同的覆盖层厚度展开研究。

  • 图  1   研究区区域构造及测线位置

    F1:汤西断裂;F2:汤中断裂;F3:汤东断裂带;F4:新商断裂;F5:盘古寺断裂;F6:凤凰岭断裂

    Figure  1.   Regional geology structure and location of observation lines for the target fault

    F1:Tangxi fault;F2:Tangzhong fault; F3:Tangdong fault zone; F4:Xinshang fault;F5:Pangusi fault;F6:Fenghuangling fault

    图  2   张河村测线H2 (a,b),Rn (c,d)和CO2 (e,f)浓度的分布特征

    Figure  2.   Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Zhanghecun measurement line

    图  3   邢李庄测线H2 (a,b),Rn (c,d)和CO2 (e,f)分布特征

    Figure  3.   Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Xinglizhuang meansurement line

    图  4   2018年1月(a)和6月(b)汤东断裂Rn浓度与CO2浓度的相关性

    Ⅰ表示气体浅部循环,Ⅱ表示可能包含部分深部来源气体,Ⅲ表示气体水平迁移

    Figure  4.   The relationships between Rn and CO2 concentration in Tangdong active fault zone

    Ⅰ indicates that Rn mainly comes from shallow gas circulation,Ⅱ indicates that the fault gases could contain partial deep-source information,Ⅲ indicates that CO2 mainly comes from gas horizontal migration

    表  1   汤东活动断裂带土壤气H2,Rn和CO2浓度分布特征

    Table  1   Statistics on characteristics of soil H2,Rn and CO2 concentrations on Tangdong active fault zone

    测线指标时间测点数最大值最小值平均值中值下四
    分位
    上四
    分位
    四分位
    间距
    标准差峰背比背景值


    H2/10−610月3423.701.076.295.002.3810.678.295.254.398.93
    1月3244.422.788.476.024.368.143.788.326.75
    6月30110.401.5821.4713.655.6126.1020.4925.858.02
    Rn/(kBq·m−310月3438.148.5618.2017.5614.0821.477.396.662.2517.38
    1月3237.359.7617.5417.0113.4519.816.365.722.21
    6月3046.704.6419.6817.5213.6325.0511.428.892.58
    CO21月170.54%0.15%0.29%0.22%0.19%0.40%0.21%0.12 %1.99
    6月165.00%0.73%2.00%1.47%0.92%3.13%2.21%1.34%2.78


    H2/10−610月3382.1911.4137.6234.8322.7649.0926.3317.772.3541.20
    1月30185.310.658.7044.4819.7177.1757.4647.573.98
    6月3087.790.2734.8130.9416.2644.2628.0124.732.82
    Rn/(kBq·m−3)10月3362.6010.1128.3924.9119.6936.7217.0412.672.3829.00
    1月3062.2114.035.2933.9324.0845.2821.2012.481.81
    6月3059.967.5224.5822.0112.6933.3520.6614.022.71
    CO21月160.78%0.16%0.38%0.36%0.19%0.50%0.31%0.20%2.22
    6月142.00%0.52%1.09%0.98%0.63%1.53%0.91%0.51%2.04
    下载: 导出CSV
  • 李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009

    Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).

    李源,马兴全,夏修军,谢恒义,王志铄,赵显刚. 2018. 河南新郑—太康断裂东段土壤气体地球化学特征[J]. 地震,38(3):49–57. doi: 10.3969/j.issn.1000-3274.2018.03.005

    Li Y,Ma X Q,Xia X J,Xie H Y,Wang Z S,Zhao X G. 2018. Geochemical characteristics of soil gas in the eastern section of Xinzheng-Taikang fault,Henan[J]. Earthquake,38(3):49–57 (in Chinese).

    刘保金,何宏林,石金虎,冉永康,袁洪克,谭雅丽,左莹,何银娟. 2012. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,55(10):3266–3276. doi: 10.6038/j.issn.0001-5733.2012.10.009

    Liu B J,He H L,Shi J H,Ran Y K,Yuan H K,Tan Y L,Zuo Y,He Y J. 2012. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang mountain[J]. Chinese Journal of Geophysics,55(10):3266–3276 (in Chinese).

    刘菁华,王祝文,刘树田,王晓丽. 2006. 城市活动断裂带的土壤氡、汞气评价方法[J]. 吉林大学学报(地球科学版),36(2):295–297.

    Liu J H,Wang Z W,Liu S T,Wang X L. 2006. The evaluation method of soil radon and mercury gas measurement about urban active fault zones[J]. Journal of Jilin University (Earth Science Edition),36(2):295–297 (in Chinese).

    刘舒波,唐力君,孙青,岑况. 2012. 汶川地震断裂带科学钻探工程2号孔350—800 m井段的钻探泥浆气体组分变化[J]. 物探与化探,36(1):48–53. doi: 10.11720/wtyht.2012.1.10

    Liu S B,Tang L J,Sun Q,Cen K. 2012. Variation of drilling mudgas components at 350−800 m interval of No. 2 borehole of scientific drilling for Wenchuan seismic faulted zone[J]. Geophysical and Geochemical Exploration,36(1):48–53 (in Chinese).

    陶明信,徐永昌,史宝光,蒋忠惕,沈平,李晓斌,孙明良. 2005. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:D辑,35(5):441–451.

    Tao M X,Xu Y C,Shi B G,Jiang Z T,Shen P,Li X B,Sun M L. 2005. Mantle degassing and deep geological structural features of different types of fault zones in China[J]. Science in China:Series D,35(5):441–451 (in Chinese).

    张慧,苏鹤军,李晨桦. 2013. 合作市隐伏断层控制性地球化学探测场地试验[J]. 地震工程学报,35(3):618–624. doi: 10.3969/j.issn.1000-0844.2013.03.0618

    Zhang H,Su H J,Li C H. 2013. Field test on the geochemical detection of concealed fault in Hezuo City[J]. China Earthquake Engineering Journal,35(3):618–624 (in Chinese).

    中国地震局地球物理勘探中心. 2016. 新乡市活断层探测与地震危险性评价[R]. 郑州: 中国地震局地球物理勘探中心: 163−295.

    Geophysical Exploration Center, China Earthquake Administration. 2016. Active Fault Detection and Seismic Risk Assessment in Xinxiang City[R]. Zhengzhou: Geophysical Exploration Center, China Earthquake Administration: 163−295 (in Chinese).

    周晓成,王传远,柴炽章,司学芸,雷启云,李营,谢超,刘胜昌. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质,33(1):123–132. doi: 10.3969/j.issn.0253-4967.2011.01.012

    Zhou X C,Wang C Y,Chai C Z,Si X Y,Lei Q Y,Li Y,Xie C,Liu S C. 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault[J]. Seismology and Geology,33(1):123–132 (in Chinese).

    周晓成,杜建国,陈志,崔月菊,刘雷. 2012. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,31(4):340–346. doi: 10.3969/j.issn.1007-2802.2012.04.004

    Zhou X C,Du J G,Chen Z,Cui Y J,Liu L. 2012. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(4):340–346 (in Chinese).

    Barman C,Ghose D,Sinha B,Deb A. 2016. Detection of earthquake induced radon precursors by Hilbert-Huang transform[J]. J Appl Geophys,133:123–131. doi: 10.1016/j.jappgeo.2016.08.004

    Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.

    Ciotoli G,Lombardi S,Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain,central Italy[J]. J Geophys Res,112(B5):B05407.

    Dubessy J,Pagel M,Beny J M,Christensen H,Hickel B,Kosztolanyi C,Poty B. 1988. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits[J]. Geochim Cosmochim Acta,52(5):1155–1167. doi: 10.1016/0016-7037(88)90269-4

    Eisbrenner G,Evans H J. 1983. Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associa-tions[J]. Annu Rev Plant Physiol,34(1):105–136. doi: 10.1146/annurev.pp.34.060183.000541

    Fu C C,Yang T F,Walia V,Chen C H. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochem J,39(5):427–439. doi: 10.2343/geochemj.39.427

    Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai TH. 2017a. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032

    Fu C C,Walia V,Yang T F,Lee L C,Liu T K,Chen C H,Kumar A,Lin S J,Lai T H,Wen K L. 2017b. Preseismic anoma-lies in soil-gas radon associated with 2016 M6.6 Meinong earthquake,Southern Taiwan[J]. Terr Atmos Ocean Sci,28(5):787–798. doi: 10.3319/TAO.2017.03.22.01

    Fu C C,Yang T F,Du J,Walia V,Chen Y G,Liu T K,Chen C H. 2008. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiat Meas,43:S348–S352. doi: 10.1016/j.radmeas.2008.03.035

    Ito T,Nagamine K,Yamamoto K,Adachi M,Kawabe I. 1999. Preseismic hydrogen gas anomalies caused by stress-corrosion process preceding earthquakes[J]. Geophys Res Lett,26(13):2009–2012. doi: 10.1029/1999GL900407

    Kumar G,Kumari P,Kumar A,Prasher S,Kumar M. 2017. A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India[J]. Ann Geophys,60(3):S0329.

    Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)

    Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006

    Neri M,Ferrera E,Giammanco S,Currenti G,Cirrincione R,Patanè G,Zanon V. 2016. Soil radon measurements as a potential tracer of tectonic and volcanic activity[J]. Sci Rep,6:24581. doi: 10.1038/srep24581

    Peters V,Conrad R. 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biol Biochem,28(3):371–382. doi: 10.1016/0038-0717(95)00146-8

    Saruwatari K,Kameda J,Tanaka H. 2004. Generation of hydrogen ions and hydrogen gas in quartz-water crushing experiments:An example of chemical processes in active faults[J]. Phys Chem Miner,31(3):176–182. doi: 10.1007/s00269-004-0382-2

    Sciarra A,Mazzini A,Inguaggiato S,Vita F,Lupi M,Hadi S. 2018. Radon and carbon gas anomalies along the Watukosek fault system and Lusi mud eruption,Indonesia[J]. Mar Petrol Geol,90:77–90. doi: 10.1016/j.marpetgeo.2017.09.031

    Seyfried Jr W E,Foustoukos D I,Fu Q. 2007. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 ℃,500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges[J]. Geochim Cosmochim Acta,71(15):3872–3886. doi: 10.1016/j.gca.2007.05.015

    Sugimoto A,Wada E. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation[J]. Geochim Cosmochim Acta,59(7):1329–1337. doi: 10.1016/0016-7037(95)00047-4

    Sugisaki R,Ido M,Takeda H,Isobe Y,Hayashi Y,Nakamura N,Satake H,Mizutani Y. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. J Geol,91(3):239–258. doi: 10.1086/628769

    Sun Y T,Zhou X C,Zheng G D,Li J,Shi H Y,Guo Z F,Du J G. 2017. Carbon monoxide degassing from seismic fault zones in the Basin and Range Province,west of Beijing,China[J]. J of Asian Earth Sci,149:41–48. doi: 10.1016/j.jseaes.2017.07.054

    Walia V,Mahajan S,Kumar A,Singh S,Bajwa B S,Dhar S,Yang T F. 2008. Fault delineation study using soil-gas method in the Dharamsala area,NW Himalayas,India[J]. Radiat Meas,43(S1):S337–S342.

    Walia V,Yang T F,Hong W L,Lin S J,Fu C C,Wen K L,Chen C H. 2009. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Appl Radiat Isotopes,67(10):1855–1863. doi: 10.1016/j.apradiso.2009.07.004

    Weinlich F H,Faber E,Boušková A,Horálek J,Teschner M,Poggenburg J. 2006. Seismically induced variations in MariánskéLázně fault gas composition in the NW Bohemian swarm quake region,Czech Republic:A continuous gas monitoring[J]. Tectonophysics,421(1/2):89–110.

    Weinlich F H,Gaždová R,Teschner M,Poggenburg J. 2016. The October 2008 NovýKostel earthquake swarm and its gas geochemical precursor[J]. Geofluids,16(5):826–840. doi: 10.1111/gfl.2016.16.issue-5

    Yoshizaki M,Shibuya T,Suzuki K,Shimizu K,Nakamura K,Takai K,Omori S,Maruyama S. 2009. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 ℃ and 500 bars: A preliminary result from on-going experiment[J]. Geochem J,43(5):e17–e22. doi: 10.2343/geochemj.1.0058

    Yuce G,Ugurluoglu D Y,Adar N,Yalcin T,Yaltirak C,Streil T,Oeser V. 2010. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey)[J]. Appl Geochem,25(4):572–579. doi: 10.1016/j.apgeochem.2010.01.013

    Yuce G,Fu C C,D′Alessandro W,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik Basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003

    Zhang W B,Du J G,Zhou X C,Wang F. 2016. Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing,China:Constraints from helium and carbon isotopes[J]. J Volcanol Geoth Res,309:45–52. doi: 10.1016/j.jvolgeores.2015.10.024

    Zhou H L,Su H J,Zhang H,Li C H. 2017. Correlations between soil gas and seismic activity in the generalized Haiyuan fault zone,north-central China[J]. Nat Hazards,85(2):763–776. doi: 10.1007/s11069-016-2603-7

  • 期刊类型引用(7)

    1. 张斌,孙尧,马秀敏,彭华,姜景捷,毛佳睿,张文汇,翟玉栋. 东构造结墨脱关键区域地应力场特征及其构造稳定性分析. 地质力学学报. 2023(03): 388-401 . 百度学术
    2. 刘莎,杨建思,郑钰. 南迦巴瓦地区近震剪切波分裂研究. 地球物理学报. 2023(09): 3692-3703 . 百度学术
    3. 曹学来,常利军,鲁来玉,吴萍萍,郭慧丽,吕苗苗,丁志峰. 2021年青海玛多M_S7.4地震震源区横波分裂变化特征. 地球物理学报. 2022(05): 1644-1659 . 百度学术
    4. 张晨,季灵运,朱良玉,徐晶. 基于震源应力与GPS应变分析喜马拉雅东构造结及其邻区地壳变形特征. 地震研究. 2022(04): 526-534 . 百度学术
    5. 李鸿儒,白玲,詹慧丽. 嘉黎断裂带活动性研究进展. 地球与行星物理论评. 2021(02): 182-193 . 百度学术
    6. 黄臣宇,常利军. 基于横波分裂的青藏高原多圈层各向异性研究进展. 地球与行星物理论评. 2021(02): 164-181 . 百度学术
    7. 黄臣宇,常利军,丁志峰. 喜马拉雅东构造结及周边地区地壳各向异性特征. 地球物理学报. 2021(11): 3970-3982 . 百度学术

    其他类型引用(6)

图(4)  /  表(1)
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  437
  • PDF下载量:  48
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-08-27
  • 发布日期:  2019-06-30

目录

/

返回文章
返回