Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region
-
摘要:
基于广西柳州地区地震安全性评价中实测所获的钻孔资料,利用线性模型、幂函数模型和二次函数模型分别对该地区土层剪切波速与埋深之间的相关性进行了拟合分析,通过对比发现幂函数模型为二者间相关性拟合的最优选择,同时探讨了土体状态对二者相关性的影响。结果表明:除人工填土外,柳州地区内常见土层剪切波速与埋深之间具有较强的相关性,区域性对其相关性也具有影响。最后以实测钻孔为例,验证了本文模型的预测精度和可靠性,而且模型的预测精度可以通过区分土体状态得到明显提高。
Abstract:Based on the measured borehole data in the earthquake safety assessment of Liuzhou region, Guangxi, three models (linear, power function, quadratic function models) were used to fit and analyze the correlation between shear wave velocity of soil layer and burial depth in this area. And then the power function model was selected to analyze the correlation between the depth of the soil layer and corresponding shear wave velocity in the area, and the influence of the soil state on the correlation between the two parameters was also discussed, and finally the actual drilling was taken as an example to verify the accuracy and reliability of the model. The obtained results are as follows: ① except artificial filling, there is a strong correlation between the shear wave velocity and the buried depth of common soils in the area, and the correlation can be affected by the region where it is; ② the soil state can significantly improve the prediction accuracy of the model.
-
Keywords:
- shear wave velocity /
- buried depth /
- soil state /
- regression model /
- correlation
-
-
表 1 柳州地区Ⅱ类场地常规土类的埋深范围
Table 1 Conventional soil depth range for the class Ⅱ sites in Liuzhou region
岩土类型 埋深范围/m 人工填土 0.2—12.2 红黏土 1.0—31.0 粉质黏土 0.8—25.0 黏土 3.8—25.7 表 2 柳州地区常规土类回归模型的拟合参数及拟合优度R2
Table 2 Fitting parameters and goodness R2 for three regressive models of conventional soils in Liuzhou region
岩土类型 线性模型 幂函数模型 二次函数模型 a b R2 c d R2 e f g R2 红黏土 243.80 4.237 3 0.803 2 215.93 0.129 7 0.813 1 240.02 5.059 4 −0.033 7 0.804 8 粉质黏土 224.22 6.325 4 0.772 4 201.86 0.149 6 0.824 2 223.02 5.777 0 −0.012 1 0.822 5 黏土 247.72 5.504 6 0.835 9 205.28 0.188 0 0.841 8 238.19 8.240 7 −0.077 8 0.840 3 表 3 不同土体状态下红黏土和粉质黏土的幂函数模型拟合参数及拟合优度R2
Table 3 Fitting parameters and goodness R2 of power function model for red clay and silty clay with different plastic states
回归模型 c d R2 可塑状态 硬塑状态 可塑状态 硬塑状态 可塑状态 硬塑状态 红黏土 195.35 205.35 0.145 2 0.131 9 0.742 9 0.714 2 粉质黏土 192.30 207.14 0.168 2 0.155 5 0.748 4 0.763 8 表 4 红黏土在不同土体状态下由回归模型按土体埋深所得剪切波速vS的预测值
Table 4 The predicted shear wave velocity vS from the regression model of red clay with plastic state according to the buried depth of soils
埋深/m 土体名称 土体状态 vS实测值
/(m·s−1)区分土体状态 不区分土体状态 vS计算值/(m·s−1) 误差 vS计算值/(m·s−1) 误差 0.70 杂填土 − 228 − − − − 2.00 红黏土 硬塑 230 225 2.2% 236 2.7% 3.00 红黏土 硬塑 242 237 1.9% 249 2.9% 4.00 红黏土 硬塑 255 247 3.3% 258 1.4% 5.00 红黏土 硬塑 260 254 2.3% 266 2.3% 6.00 红黏土 硬塑 263 260 1.1% 272 3.6% 7.00 红黏土 硬塑 267 265 0.6% 278 4.1% 8.00 红黏土 硬塑 264 270 2.3% 283 7.1% 9.00 红黏土 硬塑 264 274 3.9% 287 8.8% 10.00 红黏土 硬塑 272 278 2.3% 291 7.0% 11.00 红黏土 硬塑 272 282 3.6% 295 8.3% 12.00 红黏土 硬塑 273 285 4.4% 298 9.2% 13.00 红黏土 硬塑 269 288 7.1% 301 12.0% 14.00 红黏土 硬塑 272 291 6.9% 304 11.8% 15.00 红黏土 硬塑 279 294 5.2% 307 10.0% 16.50 红黏土 硬塑 286 297 3.9% 311 8.6% 18.00 红黏土 硬塑 296 301 1.6% 314 6.1% 表 5 粉质黏土在不同土体状态下由回归模型按土体埋深所得剪切波速vS及视剪切波速预测值
Table 5 The shear wave velocity vS and predicted apparent shear wave velocity from the regression model of silty clay with plastic state according to the buried depth of soils
埋深/m 土体名称 土体状态 vS实测值
/(m·s−1)区分土体状态 不区分土体状态 vS计算值/(m·s−1) 误差 vS计算值/(m·s−1) 误差 0.40 耕植土 174 − − − − 2.00 粉质黏土 硬塑 235 231 1.8% 224 4.7% 3.00 粉质黏土 硬塑 245 246 0.3% 238 2.9% 4.00 粉质黏土 硬塑 253 257 1.6% 248 1.8% 5.00 粉质黏土 硬塑 260 266 2.3% 257 1.2% 6.00 粉质黏土 硬塑 271 274 1.0% 264 2.6% 7.00 粉质黏土 硬塑 279 280 0.5% 270 3.2% 8.00 粉质黏土 硬塑 288 286 0.6% 276 4.3% 9.00 粉质黏土 硬塑 298 292 2.2% 280 5.9% 10.00 粉质黏土 硬塑 303 296 2.2% 285 6.0% 11.00 粉质黏土 硬塑 314 301 4.2% 289 8.0% 12.50 粉质黏土 硬塑 328 307 6.5% 295 10.2% 表 6 基于本文模型、刘模型和规范回归模型按土体埋深所得剪切波速预测值
Table 6 The predicted shear wave velocity vS based on the three models according to the buried depth of soils
埋深/m 土的名称 土的状态 vS实测值
/(m·s−1)本文模型 刘模型 规范模型 vS计算值/(m·s−1) 误差 vS计算值/(m·s−1) 误差 vS计算值/(m·s−1) 误差 0.80 素填土 200 − − − − 2.00 红黏土 硬塑 233 225 3.3% 221 5.0% 160 31.3% 3.00 红黏土 硬塑 236 238 0.7% 234 0.6% 181 23.4% 4.00 红黏土 硬塑 243 247 1.6% 244 0.6% 197 18.9% 5.00 红黏土 硬塑 253 254 0.4% 252 0.3% 211 16.7% 6.00 红黏土 硬塑 260 260 0.1% 259 0.4% 223 14.4% 7.00 红黏土 硬塑 264 266 0.6% 265 0.3% 233 11.7% 8.00 红黏土 硬塑 270 270 0.1% 270 0.1% 243 10.2% 9.00 红黏土 硬塑 279 275 1.6% 274 1.7% 251 9.9% 10.00 红黏土 硬塑 281 278 0.9% 279 0.9% 259 7.7% 11.00 红黏土 硬塑 280 282 0.7% 282 0.8% 267 4.7% 12.00 粉质黏土 硬塑 305 305 0.1% 260 14.6% 274 10.2% 13.00 粉质黏土 硬塑 303 309 1.9% 267 11.9% 281 7.4% 14.00 粉质黏土 硬塑 304 312 2.7% 273 10.3% 287 5.6% 15.00 粉质黏土 硬塑 326 316 3.2% 279 14.6% 293 10.1% 16.00 粉质黏土 硬塑 319 319 0.1% 284 11.0% 299 6.4% 17.00 粉质黏土 硬塑 319 322 0.9% 289 9.3% 304 4.7% 18.00 粉质黏土 硬塑 332 325 2.2% 294 11.4% 309 6.8% 19.00 粉质黏土 硬塑 351 327 6.7% 299 14.8% 314 10.4% 20.00 粉质黏土 硬塑 351 330 6.0% 304 13.5% 319 9.0% 21.00 粉质黏土 硬塑 359 333 7.4% 308 14.1% 324 9.7% 22.00 粉质黏土 硬塑 351 335 4.6% 313 10.9% 329 6.4% 23.00 粉质黏土 硬塑 369 337 8.6% 317 14.1% 333 9.8% 24.00 粉质黏土 硬塑 362 340 6.2% 321 11.4% 337 6.8% 25.00 粉质黏土 硬塑 368 342 7.1% 325 11.7% 341 7.2% 25.70 粉质黏土 硬塑 392 378 3.6% 336 14.2% 344 12.2% 注:刘模型引自刘红帅等(2010)以及刘华贵和蒋文宇(2015),规范模型引自中国人民共和国铁道部(2001)。 -
蔡宗文. 2003. 福建沿海剪切波速与土层参数定量关系研究[J]. 华南地震,23(3):76–80. doi: 10.3969/j.issn.1001-8662.2003.03.011 Cai Z W. 2003. The quantitative analysis between shear wave velocity and soil-layer parameters in Fujian coastal areas[J]. South China Journal of Seismology,23(3):76–80 (in Chinese).
陈国兴,徐建龙,袁灿勤. 1998. 南京城区岩土体剪切波速与土层深度的关系[J]. 南京建筑工程学院学报,45(2):32–37. Chen G X,Xu J L,Yuan C Q. 1998. Relation between depth and shear wave velocity of soil and bedrock in Nanjing city[J]. Journal of Nanjing Architectural and Civil Engineering Institute,45(2):32–37 (in Chinese).
程祖锋,李萍,李燕,张桂珍. 1997. 深圳地区部分岩土类型剪切波速与深度的关系分析[J]. 工程地质学报,5(2):161–168. Cheng Z F,Li P,Li Y,Zhang G Z. 1997. Analysis of relationship between shear wave velocity and depth of some types of soil and rock in Shenzhen region[J]. Journal of Engineering Geology,5(2):161–168 (in Chinese).
丁国瑜,卢演俦. 1983. 华北地块新构造变形基本特点的讨论[J]. 华北地震科学,1(2):1–9. Ding G Y,Lu Y C. 1983. Discussion on the basic characteristics of new tectonic deformation in North China block[J]. North China Earthquake Sciences,1(2):1–9 (in Chinese).
国家技术监督局, 中华人民共和国建设部. 1995. GB 50191—1993 构筑物抗震设计规范[S]. 北京: 中国计划出版社: 11−13. State Bureau of Technology Supervision, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 1995. GB 50191−1993 Design Code for Antiseismic of Special Structures[S]. Beijing: China Planning Press: 11−13 (in Chinese).
贺为民,刘明军,杨杰. 2016. 土层剪切波速与埋深关系统计分析和应用[J]. 地震地质,38(4):937–949. doi: 10.3969/j.issn.0253-4967.2016.04.011 He W M,Liu M J,Yang J. 2016. Application and statistical analysis of relationship between shear wave velocity and depth of soil-layers[J]. Seismology and Geology,38(4):937–949 (in Chinese).
兰景岩,薄景山,吕悦军. 2007. 剪切波速对设计反应谱的影响研究[J]. 震灾防御技术,2(1):19–24. doi: 10.3969/j.issn.1673-5722.2007.01.003 Lan J Y,Bo J S,Lü Y J. 2007. Study on the effect of shear wave velocity on the design spectrum[J]. Technology for Earthquake Disaster Prevention,2(1):19–24 (in Chinese).
李帅,赵纯青,唐丽华. 2012. 剪切波速在判定石河子市某建设场地类别中的应用[J]. 内陆地震,26(2):180–186. doi: 10.3969/j.issn.1001-8956.2012.02.009 Li S,Zhao C Q,Tang L H. 2012. Application on judgment of construction site classification in Shihezi with shear wave velocity[J]. Inland Earthquake,26(2):180–186 (in Chinese).
刘华贵,蒋文宇. 2015. 柳州官塘片区红粘土剪切波速与埋深的相关性分析[J]. 地震研究,38(2):280–284. Liu H G,Jiang W Y. 2015. Correlative analysis between shear wave velocity and depth of red clay in Liuzhou Guantang region[J]. Journal of Seismological Research,38(2):280–284 (in Chinese).
刘红帅,郑桐,齐文浩,兰景岩. 2010. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报,32(7):1142–1149. Liu H S,Zheng T,Qi W H,Lan J Y. 2010. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering,32(7):1142–1149 (in Chinese).
齐鑫,丁浩. 2012. 下辽河平原区剪切波速与土层埋深关系分析[J]. 世界地震工程,28(3):151–156. doi: 10.3969/j.issn.1007-6069.2012.03.027 Qi X,Ding H. 2012. Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J]. World Earthquake Engineering,28(3):151–156 (in Chinese).
邱志刚,薄景山,罗奇峰. 2011. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程,27(3):81–88. Qiu Z G,Bo J S,Luo Q F. 2011. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering,27(3):81–88 (in Chinese).
王强,王兰民,吴志坚,王平. 2014. 天水市岩土体剪切波速与埋深的变化关系[J]. 地震工程与工程振动,34(增刊1):247–252. Wang Q,Wang L M,Wu Z J,Wang P. 2014. Relationship between shear wave velocity and depth of soils and rocks in Tianshui city[J]. Earthquake Engineering and Engineering Dynamics,34(S1):247–252 (in Chinese).
汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,25(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012 Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,25(3):80–84 (in Chinese).
张龙飞,董斌,史双双,韩晓飞. 2018. 朔州市区土层剪切波速与埋深的统计关系[J]. 华北地震科学,36(2):28–37. doi: 10.3969/j.issn.1003-1375.2018.02.005 Zhang L F,Dong B,Shi S S,Han X F. 2018. Shear wave velocity and depth of soil layer in Shuozhou city of Datong basin[J]. North China Earthquake Sciences,36(2):28–37 (in Chinese).
中华人民共和国铁道部. 2001. TB 10077—2001 铁路工程岩土分类标准[S]. 北京: 中国铁路出版社: 12−16. Ministry of Railways of the People’s Republic of China. 2001. TB 10077−2001 Code for Rock and Soil Classification of Railway Engineering[S]. Beijing: China Railway Publishing House: 12−16 (in Chinese).
Lee S H H. 1990. Regression models of shear wave velocities in Taipei basin[J]. Journal of Chinese Institute of Engineering,13(5):519–532. doi: 10.1080/02533839.1990.9677284
Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187.