广西柳州地区常见土类剪切波速与埋深之间的相关性

乔峰, 薄景山, 张兆鹏, 常晁瑜, 王亮

乔峰,薄景山,张兆鹏,常晁瑜,王亮. 2020. 广西柳州地区常见土类剪切波速与埋深之间的相关性. 地震学报,42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062
引用本文: 乔峰,薄景山,张兆鹏,常晁瑜,王亮. 2020. 广西柳州地区常见土类剪切波速与埋深之间的相关性. 地震学报,42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062
Qiao F,Bo J S,Zhang Z P,Chang C Y,Wang L. 2020. Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region. Acta Seismologica Sinica42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062
Citation: Qiao F,Bo J S,Zhang Z P,Chang C Y,Wang L. 2020. Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region. Acta Seismologica Sinica42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062

广西柳州地区常见土类剪切波速与埋深之间的相关性

基金项目: 国家自然科学基金(51608118)资助
详细信息
    通讯作者:

    薄景山: e-mail:bojingshan@163. com

  • 中图分类号: P315.9

Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region

  • 摘要:

    基于广西柳州地区地震安全性评价中实测所获的钻孔资料,利用线性模型、幂函数模型和二次函数模型分别对该地区土层剪切波速与埋深之间的相关性进行了拟合分析,通过对比发现幂函数模型为二者间相关性拟合的最优选择,同时探讨了土体状态对二者相关性的影响。结果表明:除人工填土外,柳州地区内常见土层剪切波速与埋深之间具有较强的相关性,区域性对其相关性也具有影响。最后以实测钻孔为例,验证了本文模型的预测精度和可靠性,而且模型的预测精度可以通过区分土体状态得到明显提高。

    Abstract:

    Based on the measured borehole data in the earthquake safety assessment of Liuzhou region, Guangxi, three models (linear, power function, quadratic function models) were used to fit and analyze the correlation between shear wave velocity of soil layer and burial depth in this area. And then the power function model was selected to analyze the correlation between the depth of the soil layer and corresponding shear wave velocity in the area, and the influence of the soil state on the correlation between the two parameters was also discussed, and finally the actual drilling was taken as an example to verify the accuracy and reliability of the model. The obtained results are as follows: ① except artificial filling, there is a strong correlation between the shear wave velocity and the buried depth of common soils in the area, and the correlation can be affected by the region where it is; ② the soil state can significantly improve the prediction accuracy of the model.

  • 图  1   柳州地区Ⅱ类场地土层剪切波速与埋深之间的散点图

    Figure  1.   Shear wave velocity versus depth of soils for the class Ⅱ sites in Liuzhou region

    图  2   柳州地区人工填土剪切波速与埋深间的散点图

    Figure  2.   Shear wave velocity versus depth of artificial filled soils in Liuzhou region

    图  3   不同土类剪切波速与埋深间关系散点图

    (a) 红黏土;(b) 粉质黏土;(c) 黏土

    Figure  3.   Shear wave velocity versus buried depth for different soils

    (a) Red clay;(b) Silty clay;(c) Clay

    图  4   柳州地区红黏土(a)和粉质黏土(b)在不同土体状态下剪切波速与埋深间的散点图

    Figure  4.   Shear wave velocity versus depth of soils for red clay (a) and silty clay (b) with different soil states in Liuzhou region

    图  5   柳州地区红黏土(a)和粉质黏土(b)不同土体状态下剪切波速预测曲线

    Figure  5.   Prediction curves of shear wave velocity in red clay (a) and silty clay (b) with different soil states in Liuzhou region

    图  6   红黏土(a)和粉质黏土(b)不同土体状态下剪切波速与实测数据的对比

    Figure  6.   Comparison of shear wave velocity with measured data of red clay (a) and silty clay (b) in different soil states

    图  7   红黏土(a)和粉质黏土(b)土体状态对模型预测误差的影响

    Figure  7.   Influence of soil state on the predicted error from the model of red clay (a) and silty clay (b)

    图  8   本文模型与刘模型和规范模型所得剪切波速的对比

    Figure  8.   Comparison of shear wave velocties from the model of this study with those from Liu model and the normative model

    图  9   本文模型与刘模型和规范模型预测误差对比

    Figure  9.   Comparison of prediction errors from the model of this study with those from Liu model and normative model

    表  1   柳州地区Ⅱ类场地常规土类的埋深范围

    Table  1   Conventional soil depth range for the class Ⅱ sites in Liuzhou region

    岩土类型埋深范围/m
    人工填土0.2—12.2
    红黏土1.0—31.0
    粉质黏土0.8—25.0
    黏土3.8—25.7
    下载: 导出CSV

    表  2   柳州地区常规土类回归模型的拟合参数及拟合优度R2

    Table  2   Fitting parameters and goodness R2 for three regressive models of conventional soils in Liuzhou region

    岩土类型线性模型幂函数模型二次函数模型
    abR2cdR2efgR2
    红黏土243.804.237 30.803 2215.930.129 70.813 1240.025.059 4−0.033 70.804 8
    粉质黏土224.226.325 40.772 4201.860.149 60.824 2223.025.777 0−0.012 10.822 5
    黏土247.725.504 60.835 9205.280.188 00.841 8238.198.240 7−0.077 80.840 3
    下载: 导出CSV

    表  3   不同土体状态下红黏土和粉质黏土的幂函数模型拟合参数及拟合优度R2

    Table  3   Fitting parameters and goodness R2 of power function model for red clay and silty clay with different plastic states

    回归模型cdR2
    可塑状态硬塑状态可塑状态硬塑状态可塑状态硬塑状态
    红黏土195.35205.350.145 20.131 90.742 90.714 2
    粉质黏土192.30207.140.168 20.155 50.748 40.763 8
    下载: 导出CSV

    表  4   红黏土在不同土体状态下由回归模型按土体埋深所得剪切波速vS的预测值

    Table  4   The predicted shear wave velocity vS from the regression model of red clay with plastic state according to the buried depth of soils

    埋深/m土体名称土体状态vS实测值
    /(m·s−1
    区分土体状态不区分土体状态
    vS计算值/(m·s−1误差vS计算值/(m·s−1误差
    0.70杂填土228
    2.00红黏土硬塑2302252.2%2362.7%
    3.00红黏土硬塑2422371.9%2492.9%
    4.00红黏土硬塑2552473.3%2581.4%
    5.00红黏土硬塑2602542.3%2662.3%
    6.00红黏土硬塑2632601.1%2723.6%
    7.00红黏土硬塑2672650.6%2784.1%
    8.00红黏土硬塑2642702.3%2837.1%
    9.00红黏土硬塑2642743.9%2878.8%
    10.00红黏土硬塑2722782.3%2917.0%
    11.00红黏土硬塑2722823.6%2958.3%
    12.00红黏土硬塑2732854.4%2989.2%
    13.00红黏土硬塑2692887.1%30112.0%
    14.00红黏土硬塑2722916.9%30411.8%
    15.00红黏土硬塑2792945.2%30710.0%
    16.50红黏土硬塑2862973.9%3118.6%
    18.00红黏土硬塑2963011.6%3146.1%
    下载: 导出CSV

    表  5   粉质黏土在不同土体状态下由回归模型按土体埋深所得剪切波速vS及视剪切波速预测值

    Table  5   The shear wave velocity vS and predicted apparent shear wave velocity from the regression model of silty clay with plastic state according to the buried depth of soils

    埋深/m土体名称土体状态vS实测值
    /(m·s−1
    区分土体状态不区分土体状态
    vS计算值/(m·s−1误差vS计算值/(m·s−1误差
    0.40耕植土174
    2.00粉质黏土硬塑2352311.8%2244.7%
    3.00粉质黏土硬塑2452460.3%2382.9%
    4.00粉质黏土硬塑2532571.6%2481.8%
    5.00粉质黏土硬塑2602662.3%2571.2%
    6.00粉质黏土硬塑2712741.0%2642.6%
    7.00粉质黏土硬塑2792800.5%2703.2%
    8.00粉质黏土硬塑2882860.6%2764.3%
    9.00粉质黏土硬塑2982922.2%2805.9%
    10.00粉质黏土硬塑3032962.2%2856.0%
    11.00粉质黏土硬塑3143014.2%2898.0%
    12.50粉质黏土硬塑3283076.5%29510.2%
    下载: 导出CSV

    表  6   基于本文模型、刘模型和规范回归模型按土体埋深所得剪切波速预测值

    Table  6   The predicted shear wave velocity vS based on the three models according to the buried depth of soils

    埋深/m土的名称土的状态vS实测值
    /(m·s−1
    本文模型刘模型规范模型
    vS计算值/(m·s−1误差vS计算值/(m·s−1误差vS计算值/(m·s−1误差
    0.80素填土200
    2.00红黏土硬塑2332253.3%221 5.0%16031.3%
    3.00红黏土硬塑2362380.7%234 0.6%18123.4%
    4.00红黏土硬塑2432471.6%244 0.6%19718.9%
    5.00红黏土硬塑2532540.4%252 0.3%21116.7%
    6.00红黏土硬塑2602600.1%259 0.4%22314.4%
    7.00红黏土硬塑2642660.6%265 0.3%23311.7%
    8.00红黏土硬塑2702700.1%270 0.1%24310.2%
    9.00红黏土硬塑2792751.6%274 1.7%2519.9%
    10.00红黏土硬塑2812780.9%279 0.9%2597.7%
    11.00红黏土硬塑2802820.7%282 0.8%2674.7%
    12.00粉质黏土硬塑3053050.1%26014.6%27410.2%
    13.00粉质黏土硬塑3033091.9%26711.9%2817.4%
    14.00粉质黏土硬塑3043122.7%27310.3%2875.6%
    15.00粉质黏土硬塑3263163.2%27914.6%29310.1%
    16.00粉质黏土硬塑3193190.1%28411.0%2996.4%
    17.00粉质黏土硬塑3193220.9%289 9.3%3044.7%
    18.00粉质黏土硬塑3323252.2%29411.4%3096.8%
    19.00粉质黏土硬塑3513276.7%29914.8%31410.4%
    20.00粉质黏土硬塑3513306.0%30413.5%3199.0%
    21.00粉质黏土硬塑3593337.4%30814.1%3249.7%
    22.00粉质黏土硬塑3513354.6%31310.9%3296.4%
    23.00粉质黏土硬塑3693378.6%31714.1%3339.8%
    24.00粉质黏土硬塑3623406.2%32111.4%3376.8%
    25.00粉质黏土硬塑3683427.1%32511.7%3417.2%
    25.70粉质黏土硬塑3923783.6%33614.2%34412.2%
     注:刘模型引自刘红帅等(2010)以及刘华贵和蒋文宇(2015),规范模型引自中国人民共和国铁道部(2001)
    下载: 导出CSV
  • 蔡宗文. 2003. 福建沿海剪切波速与土层参数定量关系研究[J]. 华南地震,23(3):76–80. doi: 10.3969/j.issn.1001-8662.2003.03.011

    Cai Z W. 2003. The quantitative analysis between shear wave velocity and soil-layer parameters in Fujian coastal areas[J]. South China Journal of Seismology,23(3):76–80 (in Chinese).

    陈国兴,徐建龙,袁灿勤. 1998. 南京城区岩土体剪切波速与土层深度的关系[J]. 南京建筑工程学院学报,45(2):32–37.

    Chen G X,Xu J L,Yuan C Q. 1998. Relation between depth and shear wave velocity of soil and bedrock in Nanjing city[J]. Journal of Nanjing Architectural and Civil Engineering Institute,45(2):32–37 (in Chinese).

    程祖锋,李萍,李燕,张桂珍. 1997. 深圳地区部分岩土类型剪切波速与深度的关系分析[J]. 工程地质学报,5(2):161–168.

    Cheng Z F,Li P,Li Y,Zhang G Z. 1997. Analysis of relationship between shear wave velocity and depth of some types of soil and rock in Shenzhen region[J]. Journal of Engineering Geology,5(2):161–168 (in Chinese).

    丁国瑜,卢演俦. 1983. 华北地块新构造变形基本特点的讨论[J]. 华北地震科学,1(2):1–9.

    Ding G Y,Lu Y C. 1983. Discussion on the basic characteristics of new tectonic deformation in North China block[J]. North China Earthquake Sciences,1(2):1–9 (in Chinese).

    国家技术监督局, 中华人民共和国建设部. 1995. GB 50191—1993 构筑物抗震设计规范[S]. 北京: 中国计划出版社: 11−13.

    State Bureau of Technology Supervision, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 1995. GB 50191−1993 Design Code for Antiseismic of Special Structures[S]. Beijing: China Planning Press: 11−13 (in Chinese).

    贺为民,刘明军,杨杰. 2016. 土层剪切波速与埋深关系统计分析和应用[J]. 地震地质,38(4):937–949. doi: 10.3969/j.issn.0253-4967.2016.04.011

    He W M,Liu M J,Yang J. 2016. Application and statistical analysis of relationship between shear wave velocity and depth of soil-layers[J]. Seismology and Geology,38(4):937–949 (in Chinese).

    兰景岩,薄景山,吕悦军. 2007. 剪切波速对设计反应谱的影响研究[J]. 震灾防御技术,2(1):19–24. doi: 10.3969/j.issn.1673-5722.2007.01.003

    Lan J Y,Bo J S,Lü Y J. 2007. Study on the effect of shear wave velocity on the design spectrum[J]. Technology for Earthquake Disaster Prevention,2(1):19–24 (in Chinese).

    李帅,赵纯青,唐丽华. 2012. 剪切波速在判定石河子市某建设场地类别中的应用[J]. 内陆地震,26(2):180–186. doi: 10.3969/j.issn.1001-8956.2012.02.009

    Li S,Zhao C Q,Tang L H. 2012. Application on judgment of construction site classification in Shihezi with shear wave velocity[J]. Inland Earthquake,26(2):180–186 (in Chinese).

    刘华贵,蒋文宇. 2015. 柳州官塘片区红粘土剪切波速与埋深的相关性分析[J]. 地震研究,38(2):280–284.

    Liu H G,Jiang W Y. 2015. Correlative analysis between shear wave velocity and depth of red clay in Liuzhou Guantang region[J]. Journal of Seismological Research,38(2):280–284 (in Chinese).

    刘红帅,郑桐,齐文浩,兰景岩. 2010. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报,32(7):1142–1149.

    Liu H S,Zheng T,Qi W H,Lan J Y. 2010. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering,32(7):1142–1149 (in Chinese).

    齐鑫,丁浩. 2012. 下辽河平原区剪切波速与土层埋深关系分析[J]. 世界地震工程,28(3):151–156. doi: 10.3969/j.issn.1007-6069.2012.03.027

    Qi X,Ding H. 2012. Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J]. World Earthquake Engineering,28(3):151–156 (in Chinese).

    邱志刚,薄景山,罗奇峰. 2011. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程,27(3):81–88.

    Qiu Z G,Bo J S,Luo Q F. 2011. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering,27(3):81–88 (in Chinese).

    王强,王兰民,吴志坚,王平. 2014. 天水市岩土体剪切波速与埋深的变化关系[J]. 地震工程与工程振动,34(增刊1):247–252.

    Wang Q,Wang L M,Wu Z J,Wang P. 2014. Relationship between shear wave velocity and depth of soils and rocks in Tianshui city[J]. Earthquake Engineering and Engineering Dynamics,34(S1):247–252 (in Chinese).

    汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,25(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012

    Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,25(3):80–84 (in Chinese).

    张龙飞,董斌,史双双,韩晓飞. 2018. 朔州市区土层剪切波速与埋深的统计关系[J]. 华北地震科学,36(2):28–37. doi: 10.3969/j.issn.1003-1375.2018.02.005

    Zhang L F,Dong B,Shi S S,Han X F. 2018. Shear wave velocity and depth of soil layer in Shuozhou city of Datong basin[J]. North China Earthquake Sciences,36(2):28–37 (in Chinese).

    中华人民共和国铁道部. 2001. TB 10077—2001 铁路工程岩土分类标准[S]. 北京: 中国铁路出版社: 12−16.

    Ministry of Railways of the People’s Republic of China. 2001. TB 10077−2001 Code for Rock and Soil Classification of Railway Engineering[S]. Beijing: China Railway Publishing House: 12−16 (in Chinese).

    Lee S H H. 1990. Regression models of shear wave velocities in Taipei basin[J]. Journal of Chinese Institute of Engineering,13(5):519–532. doi: 10.1080/02533839.1990.9677284

    Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187.

图(9)  /  表(6)
计量
  • 文章访问数:  1884
  • HTML全文浏览量:  609
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-30
  • 修回日期:  2019-05-20
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回