利用远震P波层析成像研究巴颜喀拉地块东缘及邻区的深部结构

杨歧焱, 李大虎, 吴锋波, 梁明剑

杨歧焱, 李大虎, 吴锋波, 梁明剑. 2019: 利用远震P波层析成像研究巴颜喀拉地块东缘及邻区的深部结构. 地震学报, 41(6): 695-708. DOI: 10.11939/jass.20190080
引用本文: 杨歧焱, 李大虎, 吴锋波, 梁明剑. 2019: 利用远震P波层析成像研究巴颜喀拉地块东缘及邻区的深部结构. 地震学报, 41(6): 695-708. DOI: 10.11939/jass.20190080
Yang Qiyan, Li Dahu, Wu Fengbo, Liang Mingjian. 2019: Deep structure of eastern margin of Bayan Har block and its adjacent areas by using teleseismic P-wave tomography. Acta Seismologica Sinica, 41(6): 695-708. DOI: 10.11939/jass.20190080
Citation: Yang Qiyan, Li Dahu, Wu Fengbo, Liang Mingjian. 2019: Deep structure of eastern margin of Bayan Har block and its adjacent areas by using teleseismic P-wave tomography. Acta Seismologica Sinica, 41(6): 695-708. DOI: 10.11939/jass.20190080

利用远震P波层析成像研究巴颜喀拉地块东缘及邻区的深部结构

基金项目: 国家自然科学基金(41974066)、中国地震局地震科技星火计划攻关项目(XH20051,XH15040Y)和河北省青年拔尖人才项目共同资助
详细信息
    通讯作者:

    杨歧焱: e-mail:yangqiyan413@163.com

  • 中图分类号: P315.2

Deep structure of eastern margin of Bayan Har block and its adjacent areas by using teleseismic P-wave tomography

  • 摘要: 为了揭示巴颜喀拉地块东缘及邻区的壳幔速度结构差异,获取2017年九寨沟MS7.0地震的深部构造背景,本文收集了2009年5月至2016年8月期间四川及邻区数字测震台网的203个地震台站所记录到的远震P波走时数据,应用有限频体波走时层析成像方法,反演得到了巴颜喀拉地块东缘及邻区50—600 km深度范围内的三维壳幔P波速度结构。反演结果表明:巴颜喀拉地块东缘及邻区的壳幔速度结构具有明显的横向不均匀性和分区特征,松潘—甘孜地槽褶皱系、西秦岭和祁连山褶皱系的整体速度异常较低,研究区东部具有克拉通性质的四川盆地西北缘和鄂尔多斯地块南缘则呈明显的高速异常。上地幔P波速度结构特征差异表明松潘—甘孜地块的抬升可能与地幔上涌有关,巴颜喀拉地块东缘九寨沟震区及周边50—250 km深度范围内的上地幔存在低速异常,在400—600 km地幔过渡带深度范围内表现为明显的高速异常特征。巴颜喀拉地块向东南方向运移受到东部高速、高强度的扬子克拉通地块对青藏高原物质东向挤出的强烈阻挡,而九寨沟震区处于松潘—甘孜地块重要的北东边界断裂交会处附近,应力容易在此集中,这些因素均可能是东昆仑断裂塔藏段与岷江断裂北段交会处附近发生九寨沟MS7.0地震的深部动力学背景。
    Abstract: This paper collected the teleseismic P-wave travel data recorded by 203 broadband stations in digital seismic network of Sichuan and its neighboring areas from May 2009 to August 2016. And by using the finite-frequency tomography this paper carried out the inversion for P-wave velocity structure of the crust and upper mantle in the depth of 50−600 km in the eastern margin of Bayan Har block and its surrounding areas. The results show that the velocity structure of the Bayan Har block in the eastern part of the Qinghai-Xizang (Tibetan) Plateau and the surrounding crustal-mantle is characterized by obviously lateral inhomogeneity and zoning. Specifically, the Songpan-Garze trough fold system, the western Qinling and Qilianshan fold systems in the eastern margin of the Tibetan Plateau displayed low velocity, whereas the northwestern margin of the Sichuan basin and the southern edge of the Ordos block in the eastern part of the studied area showed obvious high velocity anomalies. P wave velocity structure characteristics of upper mantle suggested that the uplift of Songpan-Garze block is related to upper mantle upwelling. There are low velocity anomalies in the depth range of 50−250 km in Jiu-zhaigou earthquake area and the surrounding upper mantle in the east margin of Bayan Har block. The three-dimensional P-wave velocity structure also reveals that the source region of Jiuzhaigou MS7.0 earthquake shows a high-velocity anomaly at the mantle transition zone with depth range of 400−600 km. Therefore, it was deduced that this anomaly may be caused by upwelling of hot asthenosphere material. With the crustal thickening and strong uplift of the Tibetan Plateau, the Sichuan-Qinghai block in the west of Longmenshan fault zone slipped and was pushed to the SE direction, which was influenced by the blocking of high velocity and high strength craton blocks to the eastern Qinghai-Tibet Plateau extrusion, its hard upper crust should form a huge stress accumulation, and Jiuzhaigou is located in the vicinity of the north-east boundary fault intersection at the Songpan-Garze block, where the stress is likely to be concentrated. These factors may result in the occurrence of the Jiuzhaigou MS7.0 earthquake near the East Kunlun fault zone and the northern section of Minjiang fault.
  • 地电阻率前兆观测从物探电法移植而来,在我国已开展50余年.多年的监测结果表明,大震前在震源区及其附近一般均会出现视电阻率变化 (钱复业等, 1982, 1990桂燮泰等,1989Lu et al,1999叶青等,2005张学民等,2009钱家栋等,2013),地电阻率是一种比较可靠的地震前兆观测方法 (张国民等,2001杜学彬,2010).为了减小乃至消除来自表层的干扰以获得可能的深部地震或构造运动信息,研究人员已经逐渐认识到开展井下地电阻率前兆监测的必要性,并陆续开展了相关试验与理论研究 (苏鸾声等,1982刘允秀等,1985孟庆武,阎洪朋,1991聂永安,姚兰予,2009聂永安等,2010解滔等,2012).近年来我国加快了井下地电阻率监测台站的建设并加强了观测数据的分析工作 (王兰炜等,2015),杨兴悦等 (2015)张磊等 (2015)的研究表明,无论是获取强震前的视电阻率变化信息,还是压制表层干扰,井下地电阻率观测均优于传统的地表观测,是一种十分有发展前景的地震前兆观测方式.

    目前在我国地电阻率井下观测台站建设中,关于装置电极布设深度对观测结果的影响仍缺乏深入研究,且观测井深和极距的设计缺乏合理性,因此应加快推动相关理论和技术研究,以保障此类观测系统建设的科学性和合理性 (王兰炜等,2015).以观测目的为出发点,装置电极的合理埋深取决于地电阻率的影响系数 (毛先进等,2014解滔等,2016) 沿深度的分布和理论探测深度,二者均与地电结构密切相关,同时需要避开地表干扰源.物探中研究探测深度的目的是为了将观测值与某个深度相关联,通过选取最佳的电极距使观测数据与地质目标最相关 (霍军廷等,2011).在地震前兆监测方面,赵和云和钱家栋 (1982)研究了对称四极装置布置于地表时的勘探深度和探测范围,认为对于给定的电极距,勘探深度和探测范围与监测区电性结构密切相关;杜学彬等 (2008)分析了强震附近对称四极装置电阻率观测的探测深度,其结果显示对于各向异性介质,在强震孕震晚期和震中附近可检测到较深部地壳介质的电阻率变化.这些工作对台址选择及布极参数的确定均有很好的指导意义,但其仅针对观测装置位于地表的情况.

    在井下电阻率观测方面, 毛先进等 (2014)解滔等 (2016)从影响系数的角度, 研究了其在水平层状介质中的变化特征, 结果显示,不同地层地电阻率影响系数的大小与电阻率结构、装置电极埋深和供电极距等密切相关.本文则在此基础上,进一步研究井下地电阻率观测的探测深度,为确定井下地电阻率观测中最佳装置电极埋深等参数提供理论依据.

    常规物探电法对探测深度的定义是,对于均匀半空间,在不同供电极距AB的情况下,AB中垂线上给定深度处的水平方向电流密度是随AB变化的,当水平方向电流密度达到最大时,该深度称为探测深度 (傅良魁,1983),这一定义给出了探测深度与供电极距AB的关系.由于地震前兆监测中实际台站的台址多为多层介质,电流密度的最大值可能存在多值性.为了克服该缺陷,赵和云和钱家栋 (1982)给出了新的探测深度的定义:设地表至深度z处测量电极MN之间水平方向的面电流为IMN(z),全部面电流为IMN(),令二者的比值

    (1)

    则满足上式的z即为探测深度.比值取为约定用法,认为对于均匀半空间介质,当MN→0时探测深度等于供电极距的一半 (赵和云,钱家栋,1982).

    在地电阻率前兆监测分析中,采用式 (1) 作为探测深度的定义更为合理,本文采用该式计算均匀半空间、水平层状介质地表及井下地电阻率观测的探测深度.

    若均匀半空间的电阻率为ρ,对称四极装置中供电极AB与测量极MN的埋深均为h(简称为装置电极埋深),AB=2L(L为半供电极距),MN=2a (a为半测量极距),供电电流强度为I,则深度z处分别与MN水平坐标相同的两点间的电位差为

    (2)

    式中,Q=ρI/(2π),深度z处分别与MN水平坐标相同的两点间的面电流密度为

    (3)

    地表至深度z处的面电流为

    (4)

    由式 (2),(3),(4) 计算得到

    (5)

    (6)

    式 (5) 与式 (6) 相除得

    (7)

    根据式 (1),求出使式 (7) 等于z,即为探测深度.

    对于水平层状结构,当供电电极及测量电极位于地表或地下时,可用边界积分方程法或有限元法求得点电流源激励下的地下任意两点间的电位差.本文选用边界积分方程法,该方法能对任意层数的一维及二维介质进行模拟,且其在理论和数值模拟两方面的准确性已被证明 (毛先进,鲍光淑,1998).求得地下各层分界面上分别与MN水平坐标相同的两个网格节点间的电位差后,根据式 (1),(3),(4) 计算得到探测深度.

    我国地电阻率观测中半供电极距L为500 m左右,表 1给出了目前常用装置 (装置参数分别用C1C2C3C4C5表示,下同) 在不同埋深时探测深度z的计算结果.探测深度随埋深的变化见图 1.

    表  1  几种常用观测装置在井下的探测深度 (均匀半空间)
    Table  1.  The borehole probing depths of several common observation configurations (homogeneous half-space)
    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 148.2 292.1 394.1 486.8 589.0
    10 148.8 292.3 394.3 486.9 589.1
    20 150.2 293.1 394.8 487.4 589.5
    50 160.3 298.4 398.8 490.6 592.2
    100 190.9 316.3 412.5 501.8 601.5
    200 276.5 378.1 462.5 543.9 637.3
    300 371.9 459.4 533.4 606.1 691.9
    500 569.1 644.2 705.6 765.7 838.2
    注:L=AB/2,a=MN/2,下同.
    下载: 导出CSV 
    | 显示表格
    图  1  几种常用观测装置的探测深度z随电极埋深h的变化 (均匀半空间)
    Figure  1.  The variation curves of probing depths z along with electrode buried depths h of several common observation configurations (homogeneous half-space)

    表 1图 1可知,与观测装置位于地表时 (h=0) 的探测深度z相比,h分别为10,20,50 m时探测深度的增加值依次为0.1—0.6 m,0.5—2.0 m,3.2—12.1 m;h < 100 m时探测深度随埋深的增加速度缓慢,且L越大这一现象越明显;h>100 m时探测深度随埋深的增加速度明显增大.

    水平层状结构的探测深度与地电阻率的结构有关 (赵和云,钱家栋,1982霍军廷等,2011),实际地电阻率的结构因地而异.水平层状电阻率均匀分层结构可定性地分为下伏高阻与下伏低阻两种情形,本文则针对这两种情形分别进行研究.

    给定一个4层电阻率水平层状均匀分层结构,从上至下电阻率依次为80,40,90, 20 Ω·m,第1—3层厚度均为50 m,第4层厚度趋于∞.计算中设定对称四极装置中供电极AB与测量极MN在地表或地下同一深度,不同装置 (C1C2C3C4C5) 在不同埋深时探测深度z的计算结果见表 2,探测深度随埋深的变化情况如图 2a所示.

    表  2  几种常见观测装置在井下的探测深度 (下伏低阻)
    Table  2.  The borehole probing depths of several common observation configurations (underlying low resistivity structure)
    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 184.4 344.3 458.2 551.3 645.0
    10 184.9 344.6 458.5 551.5 645.2
    20 186.2 345.3 459.0 551.8 645.6
    50 194.9 350.0 462.3 554.7 647.8
    100 221.5 365.3 473.6 563.9 655.7
    200 297.7 419.4 516.3 600.0 686.4
    300 377.9 477.6 563.2 639.6 720.6
    500 570.2 646.9 712.9 773.8 841.1
    下载: 导出CSV 
    | 显示表格
    图  2  几种常用观测装置的探测深度z随电极埋深h的变化
    (a) 下伏低阻; (b) 下伏高阻
    Figure  2.  The variation curves of probing depths z along with electrode buried depths h of several common observation configurations
    (a) Underlying low resistivity structure; (b) Underlying high resistivity structure

    表 2图 2a可知,与观测装置位于地表时 (h=0) 的探测深度z相比,h分别为10,20,50 m时探测深度的增加值依次为0.2—0.5 m,0.6—1.8 m,2.8—10.5 m;h < 100 m时探测深度随埋深的增加速度缓慢,且L越大这一现象越明显;h>100 m时探测深度随埋深的增加速度明显增大.

    将上述下伏低阻结构中底层 (即第四层) 的电阻率改为200 Ω·m,其它各层电阻率及层厚保持不变,依然设定对称四极装置中供电极AB与测量极MN在地表或地下同一深度处,不同装置 (C1C2C3C4C5) 在不同埋深时探测深度z的计算结果见表 3,探测深度随埋深的变化见图 2b.

    表  3  几种常见观测装置在井下的探测深度 (下伏高阻)
    Table  3.  The borehole probing depths of several common observation configurations (underlying high resistivity structure)
    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 104.5 162.6 238.8 305.6 388.7
    10 104.9 162.7 239.0 305.8 388.8
    20 105.8 163.3 239.5 306.2 389.2
    50 111.0 167.3 242.4 308.6 391.2
    100 124.3 180.3 252.4 317.1 398.1
    200 251.1 300.0 351.0 402.4 469.7
    300 365.5 424.3 472.5 516.3 572.1
    500 568.0 632.2 681.2 721.9 769.7
    下载: 导出CSV 
    | 显示表格

    表 3图 2b可知,与观测装置位于地表时 (h=0) 的探测深度z相比,h分别为10,20,50 m时探测深度的增加值依次为0.1—0.4 m,0.5—1.3 m,2.5—6.5 m;h < 100 m时探测深度随埋深的增加速度缓慢,且L越大这一现象越明显;h>100 m时探测深度随埋深的增加速度明显增大.

    本文以电流的主要分布范围为指标,讨论了均匀半空间和电阻率均匀分层模型中下伏低阻及下伏高阻两种典型结构,并通过模拟计算的方法对不同结构下地电阻率在井下前兆观测中的探测深度进行了初步研究.结果显示,在供电极距为数百米至上千米时,与地表观测相比,井下观测的探测深度的增加值具有如下特点:

    1) 对于目前我国常用的观测装置和典型的地电阻率结构来说,当装置电极埋深h≤100 m时,与观测装置位于地表时相比,探测深度随埋深增加的速率比埋深h>100 m时小得多.作者此前对其影响系数的研究 (毛先进等,2014) 也得到相似的结论:对于均匀分层结构,在装置电极埋深h≤100 m时基底层 (最下层) 的影响系数随埋深的增加速率比埋深h>100 m时小得多,同时表层介质的影响系数还呈现“减小—增加—减小”起伏变化的现象.

    2) 当供电极距在数百米至上千米、装置电极埋深在50 m以内时,与地表观测相比,其探测深度的增加很小,最大只有十余米,且当装置电极埋深相同时,供电极距越大,探测深度的增加值越小.这表明,虽然这样的装置电极埋深对减小来自地表的干扰是有利的,但从获得深部电阻率变化信息的角度来看,并不能达到井下观测的目的.

    3) 当装置和电极埋深均相同时,下伏高阻结构的探测深度最小,下伏低阻结构的探测深度最大,均匀半空间的探测深度介于二者之间.比较表 2表 3可知,按照本文选取的典型地电结构参数,在装置相同的情况下,下伏低阻结构中装置电极埋深为100 m时的探测深度与下伏高阻结构中装置电极埋深为200—300 m时的探测深度相当.实际上,下伏高阻结构是一种比较常见的情形,在这种情况下要增加探测深度就需要加大装置电极埋深.

    根据上述特点,本文认为,为获得深部电阻率的变化信息,在井下观测中观测装置应达到一定的埋深,才能获得与地表观测相比更有意义的探测深度.为此,首先需要查明测区电性结构,然后通过计算分析,确定井下地电阻率观测的装置电极埋深.对于我国目前常用的观测装置 (供电极距为数百米至上千米),在均匀分层电性结构下:当观测区为下伏低阻结构时,装置电极埋深应不小于100 m;当观测区为下伏高阻结构时,装置电极埋深应不小于200 m.

    需要指出的是,本文仅计算了给定分层参数时两种典型电性结构下 (高阻、低阻) 的装置电极埋深结果,并不能代表所有的高阻或低阻分层结构的情况.对于不同台址,由于电性分层结构存在差异,因此合理的装置电极埋深亦有所差异,应通过具体的计算分析而确定.

  • 图  1   巴颜喀拉地块及邻区的构造背景及地震分布

    Figure  1.   Tectonic settings and distribution of earthquakes around the Bayan Har block and its surroundings

    图  2   远震事件分布

    Figure  2.   Teleseismic events used in this study

    图  3   检测板测试结果

    (a) 不同深度h上的水平向分辨率;(b) 沿不同经纬度的垂向分辨率

    Figure  3.   Test results of checkboard test

    (a) Resolution in the horizontal direction at different depths h;(b) Resolution in the vertical direction along different longitudes and latitudes

    图  3   检测板测试结果

    (a) 不同深度h上的水平向分辨率;(b) 沿不同经纬度的垂向分辨率

    Figure  3.   Test results of checkboard test

    (a) Resolution in the horizontal direction at different depths h;(b) Resolution in the vertical direction along different longitudes and latitudes

    图  4   剩余走时残差与速度模型间的权衡曲线

    图中数字为反演过程中采用的阻尼值

    Figure  4.   The trade-off curve between traveltime residual variances and velocity anomaly

    The figures denote the damping values used in inversion

    图  5   反演前(a)、后(b)走时残差对比图

    Figure  5.   Distribution of the travel-time residuals before (a) and after (b) inversion

    图  6   不同深度h上的P波速度扰动结果

    Figure  6.   P wave velocity disturbance results at different depth h

    (a) h=50 km;(b) h=150 km;(c) h=200 km;(d) h=250 km;(e) h=300 km;(f) h=400 km;(g) h=500 km;(h) h=600 km

    图  7   各剖面分布以及P波速度纵剖面的层析成像图

    Figure  7.   Location of vertical sections and their tomographic results

  • 邓起东,高翔,陈桂华,杨虎. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘,17(5):163–178.

    Deng Q D,Gao X,Chen G H,Yang H. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau[J]. Earth Science Frontiers,17(5):163–178 (in Chinese).

    丁志峰,何正勤,孙为国,孙宏川. 1999. 青藏高原东部及其边缘地区的地壳上地幔三维速度结构[J]. 地球物理学报,42(2):197–205. doi: 10.3321/j.issn:0001-5733.1999.02.007

    Ding Z F,He Z Q,Sun W G,Sun H C. 1999. 3-D crust and upper mantle velocity structure in eastern Tibetan Plateau and its surrounding areas[J]. Chinese Journal of Geophysics,42(2):197–205 (in Chinese).

    杜方,龙锋,阮祥,易桂喜,宫悦,赵敏,张致伟,乔慧珍,汪智,吴江. 2013. 四川芦山7.0级地震及其与汶川8.0级地震的关系[J]. 地球物理学报,56(5):1772–1783. doi: 10.6038/cjg20130535

    Du F,Long F,Ruan X,Yi G X,Gong Y,Zhao M,Zhang Z W,Qiao H Z,Wang Z,Wu J. 2013. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan,China[J]. Chinese Journal of Geophysics,56(5):1772–1783 (in Chinese). doi: 10.6038/cjg20130535

    杜方,闻学泽,冯建刚,梁明剑,龙锋,吴江. 2018. 六盘山断裂带的地震构造特征与强震危险背景[J]. 地球物理学报,61(2):545–559. doi: 10.6038/cjg2018L0181

    Du F,Wen X Z,Feng J G,Liang M J,Long F,Wu J. 2018. Seismo-tectonics and seismic potential of the Liupanshan fault zone (LPSFZ),China[J]. Chinese Journal of Geophysics,61(2):545–559 (in Chinese). doi: 10.6038/cjg2018L0181

    郭飚,刘启元,陈九辉,刘立申,李顺成,李昱,王峻,齐少华. 2009. 川西龙门山及邻区地壳上地幔远震P波层析成像[J]. 地球物理学报,52(2):346–355.

    Guo B,Liu Q Y,Chen J H,Liu L S,Li S C,Li Y,Wang J,Qi S H. 2009. Teleseismic P-wave tomography of the crust and upper mantle in Longmenshan area,west Sichuan[J]. Chinese Journal of Geophysics,52(2):346–355 (in Chinese).

    郭慧丽,丁志峰,徐小明. 2017. 南北地震带北段的远震P波层析成像研究[J]. 地球物理学报,60(1):86–97.

    Guo H L,Ding Z F,Xu X M. 2017. Upper mantle structure beneath the northern South-Nouth Seismic Zone from teleseismic traveltime data[J]. Chinese Journal of Geophysics,60(1):86–97 (in Chinese). doi: 10.6038/cjg20170108

    嘉世旭,张先康. 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报,51(5):1431–1443. doi: 10.3321/j.issn:0001-5733.2008.05.016

    Jia S X,Zhang X K. 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics,51(5):1431–1443 (in Chinese).

    嘉世旭,林吉焱,郭文斌,赵楠,邱勇. 2017. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报,60(6):2226–2238. doi: 10.6038/cjg20170616

    Jia S X,Lin J Y,Guo W B,Zhao N,Qiu Y. 2017. Investigation on diversity of crustal structures beneath the Bayan Har block[J]. Chinese Journal of Geophysics,60(6):2226–2238 (in Chinese). doi: 10.6038/cjg20170616

    李松林,张先康,张成科,赵金仁,成双喜. 2002. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J]. 地球物理学报,45(2):210–217. doi: 10.3321/j.issn:0001-5733.2002.02.007

    Li S L,Zhang X K,Zhang C K,Zhao J R,Cheng S X. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile[J]. Chinese Journal of Geophysics,45(2):210–217 (in Chinese).

    李永华,田小波,吴庆举,曾融生,张瑞青. 2006a. 青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比:地质与地球物理含义[J]. 地球物理学报,49(4):1037–1044.

    Li Y H,Tian X B,Wu Q J,Zeng R S,Zhang R Q. 2006a. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH-Ⅲ teleseismic waveforms:Geological and geophysical implications[J]. Chinese Journal of Geophysics,49(4):1037–1044 (in Chinese).

    李永华,吴庆举,安张辉,田小波,曾融生,张瑞青,李红光. 2006b. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报,49(5):1359–1368.

    Li Y H,Wu Q J,An Z H,Tian X B,Zeng R S,Zhang R Q,Li H G. 2006b. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics,49(5):1359–1368 (in Chinese).

    李大虎,丁志峰,吴萍萍,郑晨,叶庆东,梁明剑. 2015. 鲜水河断裂带南东段的深部孕震环境与2014年康定MS6.3地震[J]. 地球物理学报,58(6):1941–1953. doi: 10.6038/cjg20150610

    Li D H,Ding Z F,Wu P P,Zheng C,Ye Q D,Liang M J. 2015. The deep seismogenic environment of the southeastern section of the Xianshuihe fault zone and the 2014 Kangding MS6.3 earthquake[J]. Chinese Journal of Geophysics,58(6):1941–1953 (in Chinese).

    汤吉,詹艳,赵国泽,邓前辉,王继军,陈小斌,赵俊猛,宣飞. 2005. 青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究[J]. 地球物理学报,48(5):1205–1216. doi: 10.3321/j.issn:0001-5733.2005.05.032

    Tang J,Zhan Y,Zhao G Z,Deng Q H,Wang J J,Chen X B,Zhao J M,Xuan F. 2005. Electrical conductivity structure of the crust and upper mantle in the northeastern margin of the Qinghai-Tibet Plateau along the profile Maqên-Lanzhou-Jingbian[J]. Chinese Journal of Geophysics,48(5):1205–1216 (in Chinese).

    闻学泽,杜方,张培震,龙锋. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J]. 地球物理学报,54(3):706–716. doi: 10.3969/j.issn.0001-5733.2011.03.010

    Wen X Z,Du F,Zhang P Z,Long F. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block,and its relation to the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(3):706–716 (in Chinese).

    吴福元,黄宝春,叶凯,方爱民. 2008. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报,24(1):1–30.

    Wu F Y,Huang B C,Ye K,Fang A M. 2008. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J]. Acta Petrologica Sinica,24(1):1–30 (in Chinese).

    徐果明,姚华建,朱良保,沈玉松. 2007. 中国西部及其邻域地壳上地幔横波速度结构[J]. 地球物理学报,50(1):193–208. doi: 10.3321/j.issn:0001-5733.2007.01.026

    Xu G M,Yao H J,Zhu L B,Shen Y S. 2007. Shear wave velocity structure of the crust and upper mantle in western China and its adjacent area[J]. Chinese Journal of Geophysics,50(1):193–208 (in Chinese).

    徐锡伟,陈文彬,于贵华,马文涛,戴华光,张志坚,陈永明,何文贵,王赞军,党光明. 2002. 2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征[J]. 地震地质,24(1):1–13. doi: 10.3969/j.issn.0253-4967.2002.01.001

    Xu X W,Chen W B,Yu G H,Ma W T,Dai H G,Zhang Z J,Chen Y M,He W G,Wang Z J,Dang G M. 2002. Characteristic features of the Hoh Sai Hu (Kunlunshan) earthquake (MS8.1),northern Tibetan Plateau,China[J]. Seismology and Geology,24(1):1–13 (in Chinese).

    徐锡伟,闻学泽,陈桂华,于贵华. 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学:D辑,38(5):529–542.

    Xu X W,Wen X Z,Chen G H,Yu G H. 2008. Discovery of the Longriba fault zone in eastern Bayan Har block,China and its tectonic implication[J]. Science in China:Series D,51(9):1209–1223. doi: 10.1007/s11430-008-0097-1

    杨峰,黄金莉,杨挺. 2010. 应用远震有限频率层析成像反演首都圈上地幔速度结构[J]. 地球物理学报,53(8):1806–1816. doi: 10.3969/j.issn.0001-5733.2010.08.006

    Yang F,Huang J L,Yang T. 2010. Upper mantle structure beneath the Chinese capital region from teleseismic finite-frequency tomography[J]. Chinese Journal of Geophysics,53(8):1806–1816 (in Chinese).

    杨歧焱,吴庆举,盛艳蕊,高家乙,宋键,邸龙. 2018. 张渤地震带及邻区近震体波成像及孕震环境分析[J]. 地球物理学报,61(8):3251–3262. doi: 10.6038/cjg2018L0628

    Yang Q Y,Wu Q J,Sheng Y R,Gao J Y,Song J,Di L. 2018. Regional seismic body wave tomography and deep seismogenic environment beneath Zhangbo seismic belt and its adjacent area[J]. Chinese Journal of Geophysics,61(8):3251–3262 (in Chinese). doi: 10.6038/cjg2018L0628

    詹艳. 2008. 青藏高原东北缘地区深部电性结构及构造涵义[D]. 北京: 中国地震局地质研究所: 59−70.

    Zhan Y. 2008. Deep Electric Structures Beneath the Northeastern Margin of the Tibetan Plateau and Its Tectonic Implications[D]. Beijing: Institute of Geology, China Earthquake Administration: 59−70 (in Chinese).

    詹艳,赵国泽,王立凤,王继军,陈小斌,赵凌强,肖骑彬. 2014. 西秦岭与南北地震构造带交汇区深部电性结构特征[J]. 地球物理学报,57(8):2594–2607. doi: 10.6038/cjg20140819

    Zhan Y,Zhao G Z,Wang L F,Wang J J,Chen X B,Zhao L Q,Xiao Q B. 2014. Deep electric structure beneath the intersection area of West Qinling orogenic zone with North-South Seismic tectonic zone in China[J]. Chinese Journal of Geophysics,57(8):2594–2607 (in Chinese).

    张风雪,吴庆举,李永华. 2013. 中国东北地区远震P波走时层析成像研究[J]. 地球物理学报,56(8):2690–2700. doi: 10.6038/cjg20130818

    Zhang F X,Wu Q J,Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the Northeast China area[J]. Chinese Journal of Geophysics,56(8):2690–2700 (in Chinese).

    张风雪,吴庆举,丁志峰. 2018. 青藏高原东部P波速度结构及其对高原隆升的启示[J]. 科学通报,63(19):1949–1961.

    Zhang F X,Wu Q J,Ding Z F. 2018. A P-wave velocity study beneath the eastern area of Tibetan Plateau and its implication for plateau growth[J]. Chinese Science Bulletin,63(19):1949–1961 (in Chinese). doi: 10.1360/N972018-00337

    张风雪,吴庆举. 2019. 松辽盆地北缘的上地幔速度结构及该区火山成因探讨[J]. 地球物理学报,62(8):2918–2929. doi: 10.6038/cjg2019M0665

    Zhang F X,Wu Q J. 2019. Velocity structure in upper mantle and its implications for the volcanism nearby the north edge of Songliao Basin[J]. Chinese Journal of Geophysics,62(8):2918–2929 (in Chinese). doi: 10.6038/cjg2019M0665

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.

    Dahlen F A,Hung S H,Nolet G. 2000. Fréchet kernels for finite-frequency traveltimes: Ⅰ . Theory[J]. Geophys J Int,141(1):157–174. doi: 10.1046/j.1365-246X.2000.00070.x

    Densmore A L,Ellis M A,Li Y,Zhou R J,Hancock G S,Richardson N. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics,26(4):TC4005.

    Huang Z C,Wang P,Xu M J,Wang L S,Ding Z F,Wu Y,Xu M J,Mi N,Yu D Y,Li H. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth Planet Sci Lett,411:100–111. doi: 10.1016/j.jpgl.2014.11.040

    Hung S H,Dahlen F A,Nolet G. 2000. Fréchet kernels for finite-frequency traveltimes: Ⅱ . Examples[J]. Geophys J Int,141(1):175–203. doi: 10.1046/j.1365-246X.2000.00072.x

    Hung S H,Shen Y,Chiao L Y. 2004. Imaging seismic velocity structure beneath the Iceland hot spot:A finite frequency approach[J]. J Geophys Res,109(B8):B08305.

    Hung S H,Chen W P,Chiao I Y. 2011. A data-adaptive,multiscale approach of finite-frequency,traveltime tomography with special reference to P and S wave data from central Tibet[J]. J Geophys Res,116(B6):B06307.

    Kirby E,Whipple K X,Burchfiel B C,Tang W Q,Berger G,Sun Z M,Chen Z L. 2000. Neotectonics of the Min Shan,China:Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau[J]. Geol Soc Am Bull,112(3):375–393. doi: 10.1130/0016-7606(2000)112<375:NOTMSC>2.0.CO;2

    Laske G,Masters G,Ma Z T,Pasyanos M. 2013. Update on CRUST1.0:A 1-degree global model of Earth’s crust[J]. Geophys Res Abstr,15:EGU2013-2658.

    Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosyst,17(5):1861–1884. doi: 10.1002/2016GC006262

    Li D H,Liao H,Ding Z F,Zhan Y,Wu P P,Xu X M,Zheng C. 2018. Joint inversion of the 3D P wave velocity structure of the crust and upper mantle under the southeastern margin of the Tibetan Plateau using regional earthquake and teleseismic data[J]. Acta Geologica Sinica,92(1):16–33. doi: 10.1111/1755-6724.13492

    Liu Z,Tian X B,Gao R,Wang G C,Wu Z B,Zhou B B,Tan P,Nie S T,Yu G P,Zhu G H,Xu X. 2017. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth Planet Sci Lett,480:33–41. doi: 10.1016/j.jpgl.2017.09.048

    Meyer B,Tapponnier P,Bourjot L,Métivier F,Gaudemer Y,Peltzer G,Guo S M,Chen Z T. 1998. Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet Plateau[J]. Geophys J Int,135(1):1–47. doi: 10.1046/j.1365-246X.1998.00567.x

    Paige C C,Saunders M A. 1982a. Algorithm 583:LSQR:Sparse linear equations and least squares problems[J]. ACM Trans Math Softw,8(2):195–209. doi: 10.1145/355993.356000

    Paige C C,Saunders M A. 1982b. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989

    Rawlinson N,Kennett B L N. 2004. Rapid estimation of relative and absolute delay times across a network by adaptive stacking[J]. Geophys J Int,157(1):332–340. doi: 10.1111/j.1365-246X.2004.02188.x

    Shen X Z,Mei X P,Zhang Y S. 2011. The crustal and upper-mantle structures beneath the northeastern margin of Tibet[J]. Bull Seismol Soc Am,101(6):2782–2795. doi: 10.1785/0120100112

    Tian Y,Zhao D P,Sun R M,Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton[J]. Phys Earth Planet Inter,172(3/4):169–182.

    van der Woerd J,Tapponnier P,Ryerson F J,Meriaux A S,Meyer B,Gaudemer Y,Finkel R C,Caffee M W,Zhao G G,Xu Z Q. 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun fault (Tibet),from 26Al,10Be,and 14C dating of riser offsets,and climatic origin of the regional morphology[J]. Geophys J Int,148(3):356–388. doi: 10.1046/j.1365-246x.2002.01556.x

    Wang C Y,Wu J,Lou H,Lü Z Y. 2003. P-wave crustal velocity structure in the western Sichuan and eastern Tibetan region[J]. Scice in Chin:Series D,46(Suppl):254–265.

    Yao H J,Beghein C,van der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: Ⅱ . Crustal and upper-mantle structure[J]. Geophys J Int,173(1):205–219. doi: 10.1111/j.1365-246X.2007.03696.x

  • 期刊类型引用(2)

    1. 包文超,赵铁锁,郭雷,郭晔,王西. 额肯呼都格地震台地震观测波形干扰分析. 地震地磁观测与研究. 2024(03): 94-99 . 百度学术
    2. 苏世兵,王旭东,叶子青,高源. 沙尘暴天气对内蒙古自治区西部测震台站环境背景噪声的影响. 地震地磁观测与研究. 2024(06): 129-136 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  2132
  • HTML全文浏览量:  890
  • PDF下载量:  161
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-04-27
  • 修回日期:  2019-09-03
  • 网络出版日期:  2019-12-28
  • 发布日期:  2019-10-31

目录

/

返回文章
返回