多因素形变异常诊断方法及其动力学来源分析

李文静, 尹宝军

李文静, 尹宝军. 2020: 多因素形变异常诊断方法及其动力学来源分析. 地震学报, 42(6): 707-718. DOI: 10.11939/jass.20200018
引用本文: 李文静, 尹宝军. 2020: 多因素形变异常诊断方法及其动力学来源分析. 地震学报, 42(6): 707-718. DOI: 10.11939/jass.20200018
Li Wenjing, Yin Baojun. 2020: Identification of multifactor deformation anomaly and analysis of its dynamic sources. Acta Seismologica Sinica, 42(6): 707-718. DOI: 10.11939/jass.20200018
Citation: Li Wenjing, Yin Baojun. 2020: Identification of multifactor deformation anomaly and analysis of its dynamic sources. Acta Seismologica Sinica, 42(6): 707-718. DOI: 10.11939/jass.20200018

多因素形变异常诊断方法及其动力学来源分析

基金项目: 中国地震局地壳应力研究所基本科研业务费专项(ZDJ2018-19)资助
详细信息
    通讯作者:

    李文静: e-mail:wenjing410@126.com

  • 中图分类号: daibuchong

Identification of multifactor deformation anomaly and analysis of its dynamic sources

  • 摘要: 气温的升降会造成介质的热胀冷缩,含水量的补充蒸发会导致介质的膨胀收缩,在将这两种因素同时考虑的情况下,提出了基于跨断层短基线测量的形变异常诊断方法,并将其实践于唐山地震台4个测段的短基线观测。研究结果表明,基于短基线观测的形变响应比序列在保持总体趋势稳定变化的同时,在不同的时间出现了显著的幅度变化。经过进一步分析,观察到:① 对于同一测段,形变响应比变化与温度-降雨的变换系数γ有关,当γ过小或者过大时,序列会保持稳定,失去观测分析价值;② 形变响应比幅度变化的动力学来源可能是台站周边的地震,而且是台站东北方向50 km以内的M≥4.0地震。对于不同测段,形变响应比幅值变化与地震的相关性有所差异,其中垂直于断层测量方向的两个测段得到的形变相应比与地震的相关性最好,与断层斜交但近乎平行断层走向的测段次之,与断层斜交的测段相关性最差。
    Abstract: The rise or fall of air temperature will lead to medium bilge or shrink, so does the supplement or evaporation of the moisture content. Here taking into the two factors, the identification method of deformation abnormality based on short baseline measurements across faults is brought out and is applied to 4 segments of cross-fault short baseline observation in Tangshan station. The result shows that the series of the deformation response ratio always keep constant, with some markable amplitude variations at different time. From the detailed work, we found that: ① For the same segment, the deformation response ratios are related with the transition coefficient γ of the temperature and rain, and the series will keep stable if γ is enough small or large, which means the useless of this parameter analysis; ② The dynamic source of the amplitude variation of deformation response ratio is possibly related to the M≥4.0 earthquakes within 50 km northeast to the station. For different segments, the correlations between the amplitude of deformation response ratio and the earthquakes are some different. In the four segments, correlations for the two segments perpendicular to the fault are high, while the segment that is oblique to and in the same time nearly parallel to the fault, and that for the cross-fault segment is the worst.
  • 地震地表破裂带指震源断层错动在地表产生的破裂和形变的总称,由地震断层、地震鼓包、地震裂缝、地震沟槽等组成(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2012),中强地震产生的地震地表破裂带的分布范围、运动特征、位移分布、古地震特征等方面的研究对于中强地震特别是缺乏仪器测定地震参数的历史地震震中、震级及发震构造等的确定具有重要意义(聂宗笙等,2010李文巧等,2011李西等,2018)。

    我国活动构造研究始于20世纪二三十年代(邓起东,闻学泽,2008),其中包括对广西灵山地震的考察与研究。关于1936年灵山M6¾ 地震的研究始于陈国达院士,他通过对震区地表破坏、房屋破坏、极震区房屋破坏及同震运动方向等的调查,认为极震区及发震断层呈NE向展布于罗阳山西北坡及山麓的高塘、鸦山岭、六鹅、夏塘和山鸡麓一带(陈国达,1939)。70年代以后,相关单位按照自身的任务对该地震再度进行调查和研究。陈恩民和黄咏茵(1984)李伟琦(1992)以及任镇寰等(1996)重新修正了极震区的烈度分布,增加了NNW方向的极震区长轴;潘建雄和黄日恒(1995)黄河生等(1990)周本刚等(2008)张沛全和李冰溯(2012)及何军等(2012)对震区的断裂系统及断裂活动性进行了研究,其结果表明震区NE−ENE向的灵山断裂、NW向的友僚—蕉根坪断裂、NNW向的泗州断裂具有较强的活动性。

    总体上看,前人对于灵山地震的研究主要集中于烈度分布和断裂活动性这两方面,而对于地震地表破裂带的研究多集中于地裂缝、崩塌、陷落等地表破坏现象调查(陈国达,1939任镇寰等,1996)。关于灵山地震的地震参数及发震构造,前人也多从极震区烈度分布或断裂活动性来探讨,而从地震地表破裂带的空间展布及位移数据出发探讨此次地震的参数和发震构造则较少涉及。目前对于该地震的微观震中、宏观震中、震级等地震参数及发震构造均存在不确定性甚至是不同的认识(国家地震局全国地震烈度区划编图组,1979陈恩民,黄咏茵,1984黄河生等,1990李伟琦,1992潘建雄,黄日恒,1995任镇寰等,1996周本刚等,2008张沛全,李冰溯,2012)。通过研究古地震地表破裂带讨论无仪器地震记录的历史地震的震中、震级、烈度等地震参数和发震构造已经在我国西部历史地震遗迹保留较好的地区有较多报道(聂宗笙等,2010李文巧等,2011),但在华南中强地震构造区的陆域部分,由于地震和构造活动强度较弱、气候湿热以及地表人工改造较多等原因难以保留历史地震所产生的地震地表破裂带等遗迹,所以对于该地区缺乏仪器地震记录的历史中强地震的地震参数,多通过调查震区建筑物或地表破坏程度等所圈定的等震线图间接地获取,自然存在一定的不确定性。

    鉴于此,本文拟在详细总结前人研究成果的基础上,从研究1936年灵山M6¾ 地震极震区的地表破裂特征入手,综合分析该地表破裂带的分布特征、运动性质、同震位移量等参数,并进一步讨论灵山地震的宏观震中、微观震中、震级、地震烈度,以期确定该地震的地震参数和发震构造。

    1936年4月1日9时31分,灵山县(震时属广东省)平山圩东罗阳山发生一次M6¾强烈地震,震中位于灵山县东北约20 km的罗阳山西北麓一带,震中烈度达Ⅸ度或Ⅸ度强。该地震造成101人死亡,263人受伤,8 000余间房屋倒塌破坏,是华南沿海地震带内陆地区自有地震记载以来发生的最大地震(国家地震局全国地震烈度区划编图组,1979陈恩民,黄咏茵,1984李伟琦,1992任镇寰等,1996)。

    灵山地震震区的大地构造位于扬子板块与华夏板块的结合部位,此次地震发生在区域性NW向巴马—博白断裂带与NE向防城—灵山断裂带的交会部位,罗阳山前的灵山断裂为震区断裂活动性最强的段落(黄河生等,1990任镇寰等,1996周本刚等,2008何军等,2012) (图1)。灵山断裂沿罗阳山北西坡山麓展布,断裂南东侧罗阳山山地主要由印支期花岗岩组成,断裂北西侧钦江谷地主要由古生代、中生代沉积岩组成。

    震区新构造位置处于广西新构造运动和地震活动均较强的桂东南断块区(李伟琦,1989)。新构造运动主要为间隙性抬升运动及断块差异运动。由于NE向防城—灵山断裂带的活动形成了NE向的断块隆起和断陷,造就了“两隆夹一陷”的新构造格局,断裂带南北两侧分别为罗阳山断块隆起和东山断块隆起,中间为钦江断陷谷地。由于间歇性抬升运动,在钦江谷地形成三至四级河流阶地,在罗阳山山前形成三至六级台地。在罗阳山前至少发育了五级台地或洪积残留台地(任镇寰,1983),灵山断裂切割了第二级洪积台地,在其上形成断层槽地或陡坎并右旋错移山前水系,周本刚等(2008)的研究表明其在晚更新世以来有明显活动,李细光等(2017a)的最新调查表明沿该断裂在高塘—夏塘—六蒙、蕉根坪—合口一带断续出露了1936年灵山地震地表破裂带(图1)。

    图  1  1936年灵山M6¾地震震区的地震构造图
    左下角为区域构造简图。F1-2:灵山断裂;F2:蕉根坪—友僚断裂;F3:石塘断裂;F4:六银—寨圩断裂;F5:寨圩—浦北断裂;F6:佛子圩断裂;F7:泗州断裂
    Figure  1.  Local seismic structure of the M6¾ Lingshan earthquake in 1936
    The inset in the bottom-left corner shows the regional geological structure. F1-2:Lingshan fault;F2:Jiaogenping-Youliao fault;F3:Shitang fault;F4:Liuyin-Zhaixu fault;F5:Zhaixu-Pubei fault;F6:Fozi fault;F7:Sizhou fault

    根据我们的最新调查与核实,1936年4月1日灵山M6¾地震的地表破裂带分布在罗阳山西北麓,沿着灵山断裂的高塘—六蒙、蕉根坪—合口一带形成了断续的地震裂缝、地震陡坎、断层槽地(图2a)、地震滑坡、冲沟错移等同震地表破裂现象,全长约12.5 km (图1),总体走为NE−ENE,同震右旋位移介于36—290 cm之间,同震垂直位移介于15—102 cm之间,同震最大右旋水平、垂直位移分别可达2.9 m和1.02 m (李细光等,2017b)。

    整个地震地表破裂带的分布并不连续,有的段落上地震陡坎、地裂缝不发育,仅发育地震滑坡或断层槽地等,随着观察尺度的缩小,每一个地震陡坎均是由更次一级的阶梯状断层陡坎、地震裂缝等组成,总体运动形式表现为正-右旋走滑性质(图2b)。

    图  2  高垌南东断层槽地和老陡坎(a)以及校椅麓南东的地震陡坎、地震裂缝和同震运动方向(b)
    Figure  2.  Fault trough and old fault scarp in southeastern Gaodong (a) as well as earthquake scarp,fissures,old fault scarp and co-seismic motion direction in southeastern Xiaoyilu (b)

    地震震中分为宏观震中和微观震中,其中宏观震中一般指极震区的几何中心(鄢家全等,2010),随着震级增大宏观震中与微观震中的差距可能愈加明显。特别是近年来发生的一系列大震如汶川地震改变了传统的宏观震中是一个点的认识,例如李志强等(2008)认为汶川地震的宏观震中是一条狭长的中间断开的线或窄带。

    根据陈国达(1939)的考察结果,1936年灵山地震烈度最高、面积最小、同震地表破裂现象最明显的范围集中在罗阳山西北坡及山麓的高塘、鸦山岭、六鹅、夏塘、山鸡麓一带,并据此推断宏观震中位于罗阳山西北麓高塘—夏塘一线,呈一狭窄带状。陈恩民和黄咏茵(1984)以及李伟琦(1992)通过调查震区房屋破坏情况修正了极震区等震线的形状(图3c),陈恩民和黄咏茵(1984)认为本次地震的震中位于校椅麓附近。任镇寰等(1996)认为存在平山—蕉根坪和龙湾—高架岭这两个长轴走向分别为ENE和NNW的极震区,而宏观震中位于NNW向极震区长轴延长线与ENE向极震区长轴交点的高塘附近。已有研究显示地震地表破裂带与极震区分布范围具有很强的一致性(李志强等,2008徐锡伟等,2008马寅生等,2010),根据位错理论,断层每一段落所释放的能量与其错距平方成正比,地震断层上的最大位错点为初始破裂点,即宏观震中位置(张四昌,1989)。本研究调查显示,友僚—蕉根坪断裂以西的最大位移带位于夏塘水库东北至鸭子塘—蕉根坪一线附近,友僚—蕉根坪断裂以东发育两条地震地表破裂带(图3c),因此可以认为同震位错量为这两条地震地表破裂带位移量之和,即最大位移带位于蕉根坪至镇安一带,以此最大同震位移带为中心向NE和SW两个方向位移量呈递减的趋势。为此,我们在此最大位移带开挖了一系列探槽,其结果也揭示了地震断层、地震陡坎及地震崩积楔等丰富的地震地表破裂现象,据此推断本次地震的宏观震中极有可能位于灵山断裂北段与友僚—蕉根坪断裂交会处附近。

    此前由于观测资料的缺失,本次地震没有可靠的微观仪器震中数据。据郭培兰等(2017)的最新研究成果,微观震中测定结果如图1所示,两种不同方法测定的震中位置分别位于灵家南东侧约30 km和灵家北西侧约15 km。由于灵山地震发生的时间较早,台站记录缺乏,且在灵山主震前不足5分钟发生了印度尼西亚卡拉克隆岛MW7.7地震,其记录强烈影响或覆盖了灵山地震的记录(郭培兰等,2017),依据微观震中位置在误差范围内与宏观震中位置基本保持一致,结合发震断层倾向SE,本文推断微观震中位置应在灵山断裂南东罗阳山一侧。

    由于灵山地震长期以来缺乏仪器记录,目前多数文献中均根据震中烈度Ⅸ度推算出灵山地震震级为M6¾ (李善邦,1960顾功叙,1983莫敬业,1990中国地震局震害防御司,1999),郭培兰等(2017)根据仅有的上海徐家汇台记录图纸测定该地震的震级为MS7.0。但由于当时监测手段落后且记录单一,所测地震震级无法达到现代多台仪器所测定的地震震级精度。

    鉴于上述原因,本文利用我们最新获得的地震地表破裂带参数,对比前人研究成果来推算1936年灵山地震震级,各种方法计算出的地震震级列于表1

    表  1  根据多种经验关系式推算的1936年灵山地震震级
    Table  1.  Magnitude of 1936 Lingshan earthquake estimated according to severval empirical relationships between earthquake parameters and magnitude of historical earthquakes
    计算方法 公式 地震地表破裂
    长度L/km
    最大同震地表
    位移D/m
    震中烈度
    Ie
    推算震级
    M
    邓起东等(1992) M=6.25+0.8lgL 12.5 7.1
    Wells和Coppersmith (1994) M=5.16+1.12lgL 12.5 6.4
    陈达生(1984) M=6.636 2+0.565 1lgL 12.5 7.3
    Wells和Coppersmith (1994) M=6.81+0.78lgD 2.9 7.2
    李善邦(1960) M=0.58Ie+1.5 9.5 7.0
    刘昌森(1989) M=0.67Ie+0.66 9.5 7.0
    许卫晓等(2016) M=0.549Ie+1.859 9.5 7.1
    下载: 导出CSV 
    | 显示表格

    根据陈恩民和黄咏茵(1984)任镇寰等(1996)李细光等(2017a)可知,极震区发育了长约12.5 km断续分布的地震地表破裂带以及丰富的滑坡、崩塌、砂土液化、地陷、地裂缝等同震地表破裂现象,所以我们认为震中烈度为Ⅸ度强并将其用于相关计算中。对比表1中结果可知,通过地表破裂带长度推算出的震级与通过震中烈度推算出的震级有较好的一致性,大部分均为M7左右,Wells和Coppersmith (1994)的计算结果较小,可能与我国采用的面波震级普遍大于国际上采用的矩震级且二者差值平均为0.3有关(戴志阳等,2008)。

    由于1936年灵山M6¾ 地震的Ⅸ度强区域面积非常狭小,不到1平方千米(图3c),且灵山地区湿热多雨的环境和较为频繁的人类活动可能导致同震位移测量值偏大,因此,结合华南沿海地震带内陆地区的历史地震特征,我们推测1936年灵山地震的震级应在M6.8左右,这一结果与地表破裂带参数及极震区地表破坏现象吻合得较好。但值得注意的是,灵山M6¾ 地震的烈度衰减速度远大于其它地区发生的类似震级地震(陈国达,1939),所以通过烈度区的长轴半径来计算震级会出现计算结果偏小的现象。

    前人对于灵山地震的烈度分布特别是震中(极震区)的烈度分布已作过很多研究(陈国达,1939李伟琦,1992任镇寰等,1996),由于评定烈度的标准不同,掌握的资料有异,所给出的地震烈度图和极震区形态也不尽相同(图3)。陈国达(1939)根据梅卡里(Mercalli)烈度表评定标准,将灵山地震震中的烈度评定为Ⅹ级;国家地震局全国地震烈度区划编图组(1979)汇编的 《中国地震等烈度线图集》 中灵山地震的震中烈度为Ⅸ度(图3a), 《中国地震目录》 (顾功叙,1983)和 《中国近代地震目录》 (中国地震局震害防御司,1999)均采用了此图。此后陈恩民和黄咏茵(1984)李伟琦(1992)以及任镇寰等(1996)均对震中区烈度进行了重新评定,震中烈度达Ⅸ度强,分别如图3b图3c所示。

    野外调查显示1936年灵山地震地表破裂带延伸至蕉根坪以东约3.5 km的合口和六蒙一带,与上述前人所绘制的极震区烈度图对比可见,地震地表破裂带分布范围与NE向Ⅸ度区的长轴方向基本一致,据此我们将灵山地震震中Ⅸ度区范围向东延伸至蕉根坪以东约4 km,沿地表破裂带两侧约1—2 km范围分布。

    对于灵山地震的发震构造,前人的认识不尽相同。陈国达(1939)认为,灵山地震震中为一长短轴比约5:1的狭长形椭圆,从“罗阳山脉西北麓一带水源断绝及水井干涸之原因推测,此次地震之发生,似即为该处原有断层继续活动之结果”,再结合烈度向南东衰减相对慢的特点推断此次地震的发震断层为罗阳山西北麓山前的SE倾向的NE向断裂。陈恩民和黄咏茵(1984)根据极震区的长轴方向认为,本次灵山地震的震源断裂面以ENE走向为主,NNW走向为辅;李伟琦(1992)根据极震区的等震线形状和低烈度区的长轴方向推测灵山地震可能是ENE向断裂与NNW向断裂共轭破裂的结果,其中ENE向构造是控震构造;潘建雄(1994)认为,在现代WNW−ESE向区域构造应力场作用下,NE向的防城—灵山断裂带和NW向的巴马—博白断裂带拟合为活动性较高的共轭构造,1936年灵山地震可能是这组共轭构造同时活动的结果,主破裂面以ENE向断裂为主;任镇寰等(1996)认为“ENE向、NNW向断裂均参与了本次地震的孕育过程,ENE向是主破裂”。

    图  3  1936年灵山M6¾地震等烈度线图(a,b)以及极震区等烈度线与地震构造叠合图(c)
    图(a)引自国家地震局全国地震烈度区划编图组(1979),图(b)引自陈恩民和黄咏茵(1984);图(c)中断裂编号与图1相同,极震区烈度图分别引自李伟琦(1992)和任镇寰等(1996)
    Figure  3.  Isoseismal contours of the 1936 Lingshan M6¾ earthquake (a,b) and its superposition with seismic structure (c)
    Fig. (a) is from Mapping Group of Seismic Intensity Zoning in China,State Seismological Bureau (1979),Fig. (b) is from Chen and Huang (1984). In Fig. (c),the isoseismal contours are from Li (1992) and Ren et al (1996),and fault number is the same as Fig. 1

    罗阳山西北麓的高塘—合口、六蒙一带沿灵山断裂发育了长约12.5 km的地震地表破裂带,并且该断裂在地貌上表现为断层槽地、断层陡坎等;而NW向的蕉根坪断裂未有错断地表表现(图4),不是此次地震的发震构造。罗阳山南麓的泗州、根竹水、龙湾等地也有地裂缝,房屋破坏较为严重(陈恩民,黄咏茵,1984李伟琦,1992任震寰等,1996)。本研究调查发现罗阳山南麓的破坏以小规模滑坡为主,地裂缝等其它地表破坏的规模较罗阳山西北麓偏小,发育程度较其偏低,所以罗阳山南麓的地表破坏应为沿泗州断裂等NNW向小断裂的同震感应震动造成。综上认为,1936年灵山地震的发震构造为罗阳山西北麓NE−ENE走向的灵山断裂,南麓的NNW向、NW向断裂在主断层破裂影响下发生了感应震动,造成了局部烈度增强。

    图  4  蕉根坪—友僚断裂野外照片及构造剖面图
    Figure  4.  Outcrop and structural section of Jiaogenping−Youliao fault

    基于最新发现的1936年灵山地震地表破裂带的特征,本文分析探讨了此次地震的参数及发震构造,主要结论如下:

    1) 在罗阳山西北麓,沿着灵山断裂的高塘—六蒙、蕉根坪—合口一带发育断续的以地震裂缝、地震陡坎、地震滑坡、冲沟错移等为标志的地震地表破裂带,全长约12.5 km,总体走向为NE−ENE,沿此地震地表破裂带同震右旋位移介于36—290 cm之间,同震垂直位移介于15—102 cm之间,最大同震水平、垂直位移分别为2.9 m和1.02 m,运动性质为正-右旋走滑。

    2) 根据地震地表破裂带分布特征及极震区烈度分布判断灵山地震的宏观震中位于灵山断裂北段与友僚—蕉根坪断裂交会处附近,结合发震断层倾向SE,微观震中位置应在灵山断裂南东罗阳山一侧;综合多种方法认为1936年灵山地震震级为M6.8左右,目前仅有的单一仪器记录所测震级为MS7.0;前人调查结果显示震中烈度达Ⅸ度强,根据地震地表破裂带展布,将Ⅸ度区范围向东延伸至蕉根坪以东约4 km,沿地表破裂带两侧约1—2 km范围分布;罗阳山前灵山断裂构造地貌特征及受其控制的地表破裂带的发育说明灵山地震的发震构造为晚更新世以来活动的灵山断裂北段。

    本文获得的同震位移量略大于其它地区相似震级地震所产生的地表位移(如1936年甘肃康乐M6¾ 地震),这一方面与历史地震参数的不确定性有关,另一方面1936年灵山地震的地表破裂带多发育在山麓地带,垂直位移可能受后期重力作用的影响偏大,而南方湿热多雨的环境可能会导致水平位移测量值偏大(如流水侧蚀作用较强)。此外,1936年灵山地震烈度的衰减速度远大于其它地区发生的类似震级的地震(陈国达,1939),这可能是导致地震地表破裂长度偏小的原因之一。

    在本研究实施过程中,中国地震局地震研究所徐锡伟、冉永康、杨晓平、汪一鹏、宋方敏、田勤俭、何正勤、李伟琦等研究员在探槽选址、探槽编录解译、年龄样品采集等方面给予了悉心指导和帮助,桂林理工大学的陈磊、蒙南忠、李金峰参与了野外调查,审稿专家提出了重要的修改意见,作者在此一并表示衷心的感谢!

  • 图  1   唐山地震台短基线测量方位示意图

    Figure  1.   Scheme of the short baseline observation compass at the Tangshan seismic station

    图  2   同时段唐山地震台与唐山市气象局记录的降雨量对比

    Figure  2.   Precipitation record comparison between the Tangshan Municipality Meteorological Administration and Tangshan seismic station at the same time

    图  3   地震与台站距离直方图

    (a) 基于全部目录的统计;(b) 基于选择目录的统计

    Figure  3.   Histogram of the earthquake-station distance

    (a) Based on the whole catalogue;(b) Based on the chosen catalogue

    图  4   台站-地震的方位角分布

    (a) 按照不同震级统计;(b) 按照不同距离统计

    Figure  4.   Azimuth angle histogram of the station-earthquake

    (a) Based on magnitude; (b) Based on distance

    图  5   短基线1-2测段(a)、2-3测段(b)、3-4测段(c)和4-1测段(d)所对应的形变响应比序列

    Figure  5.   Deformation response ratio series corresponding to segments 1-2 (a),2-3 (b),3-4 (c) and 4-1 (d)

    图  6   按地震与台站之间的方位角显示的M-t

    Figure  6.   Magnitude-time plot based on angle between epicenters and Tangshan station

    图  7   不同γ值对基线1-2测段加卸载响应比结果的影响对比

    Figure  7.   Compare of the ratios with different γ values

    图  8   各测段的月形变响应比序列

    Figure  8.   Monthly series of the deformation response ratio for different segments

    表  1   唐山地震台观测项目及仪器情况一览表

    Table  1   Observation items and instruments list at the Tangshan seismic station

    观测项目仪器名称仪器精度测量方法
    气温干湿仪0.2 ℃记录基线和水准各自观测时的温度
    降雨量筒0.1 ml每日记录一次
    短水准Ni007,Ni002,DiNi110.01 mm上午往测、下午返测,求平均
    短基线铟瓦基线尺0.01 mm往测和返测中间不间断,求平均
    下载: 导出CSV

    表  2   短基线4个测段的形变响应比幅值异常时间点

    Table  2   Time of the amplitude abnormality from the deformation response ratio for the 4 short baseline segments

    基线测段形变响应比序列形变响应比序列异常日期
    1-2F1   2003-11-05,2004-01-14,2004-12-29,2006-02-08,2006-07-26,2008-02-06
    2-3F2   2003-11-05,2004-11-24,2005-07-20,2005-12-21,2008-02-06
    3-4F3   2003-11-05,2004-01-07,2004-01-14,2005-02-02,2008-02-06
    4-1F4   2003-11-05,2004-01-14,2008-02-06
      注:因为计算的是周形变响应比序列,表中给出的时间是以2003年1月1日为一周的起始时间,各个形变响应比异常所在周的第一天的日期。
    下载: 导出CSV
  • 程海琴,陈强,刘国祥,杨莹辉. 2014. 短基线InSAR探测龙门山主断裂带两侧震后雨期的滑坡空间分布特征[J]. 测绘学报,43(9):931–938.

    Cheng H Q,Chen Q,Liu G X,Yang Y H. 2014. Post-earthquake landsides distribution along Longmenshan major fault during rainy season with short-baseline InSAR[J]. Acta Geodaetica et Cartographica Sinica,43(9):931–938 (in Chinese).

    邓琳,刘国祥,张瑞,王晓文,于冰,唐嘉,张亨. 2016. 多平台MC-SBAS长时序建模与形变提取方法[J]. 测绘学报,45(2):213–223. doi: 10.11947/j.AGCS.2016.20140614

    Deng L,Liu G X,Zhang R,Wang X W,Yu B,Tang J,Zhang H. 2016. A multi-platform MC-SBAS method for extracting long-term ground deformation[J]. Acta Geodaetica et Cartographica Sinica,45(2):213–223 (in Chinese).

    黄建平,李文静. 2011. 唐山地震台短水准、短基线数据的分段特征[J]. 地震,31(2):50–58. doi: 10.3969/j.issn.1000-3274.2011.02.006

    Huang J P,Li W J. 2011. Segmentary characteristics of short-baseline and short-leveling data at Tangshan station[J]. Earthquake,31(2):50–58 (in Chinese).

    黄建平,石耀霖,孙玉军,李文静. 2012. 气温变化对唐山地震台跨断层形变观测的影响[J]. 中国地震,28(2):222–230. doi: 10.3969/j.issn.1001-4683.2012.02.011

    Huang J P,Shi Y L,Sun Y J,Li W J. 2012. Effect of air temperature variation on the cross-fault deformation observations at the Tangshan seismic station[J]. Earthquake Research in China,28(2):222–230 (in Chinese).

    李伟,龚耀,赵文舟,陈军. 2014. 地磁加卸载响应比方法在上海及其邻区地震研究中的应用[J]. 地震,34(1):125–133. doi: 10.3969/j.issn.1000-3274.2014.01.015

    Li W,Gong Y,Zhao W Z,Chen J. 2014. Application of geomagnetic LURR method in seismic studies in Shanghai and its adjacent areas[J]. Earthquake,34(1):125–133 (in Chinese).

    李文静,杨国华,武艳强. 2009. 地震前后唐山地震台地形变数据频谱特征分析[J]. 地震,29(2):141–146. doi: 10.3969/j.issn.1000-3274.2009.02.017

    Li W J,Yang G H,Wu Y Q. 2009. Autoregression and spectrum analysis of Tangshan deformation data before and after earthquakes[J]. Earthquake,29(2):141–146 (in Chinese).

    李文静,杨国华,贺建明,褚秋然,郭胜军,尹宝军. 2013. 唐山地震台短水准观测中复测数据特征分析[J]. 华北地震科学,31(2):67–72. doi: 10.3969/j.issn.1003-1375.2013.02.014

    Li W J,Yang G H,He J M,Chu Q R,Guo S J,Yin B J. 2013. Characteristics of repeated measurement data of short-line leveling in Tangshan station[J]. North China Earthquake Sciences,31(2):67–72 (in Chinese).

    刘峡,马瑾,傅容珊,杨国华,绍志刚,郑智江. 2010. 华北地区现今地壳运动动力学初步研究[J]. 地球物理学报,53(6):1418–1427.

    Liu X,Ma J,Fu R S,Yang G H,Shao Z G,Zheng Z J. 2010. Primary study on the dynamics of the present-day crustal motion in North China region[J]. Chinese Journal of Geophysics,53(6):1418–1427 (in Chinese).

    楼关寿,周伟,金鹏,刘文义,李杰. 2010. 跨断层形变观测干扰因素的调查[J]. 大地测量与地球动力学,30(增刊):68–74.

    Lou G S,Zhou W,Jin P,Liu W Y,Li J. 2010. Investigation on interference factors of cross-fault deformation observation[J]. Journal of Geodesy and Geodynamics,30(S2):68–74 (in Chinese).

    王敏,沈正康,牛之俊,张祖胜,孙汉荣,甘卫军,王琪,任群. 2003. 现今中国大陆地壳运动与活动块体模型[J]. 中国科学:地球科学,33(增刊):21–32.

    Wang M,Shen Z K,Niu Z J,Zhang Z S,Sun H R,Gan W J,Wang Q,Ren Q. 2003. Contemporary crustal deformation of the Chinese continent and tectonic block model[J]. Science China Earth Science,46(2):25–40.

    王文利,郭春喜,丁黎,赵红. 2019. 全国一等水准点高程近20年变化分析[J]. 测绘学报,48(1):1–8. doi: 10.11947/j.AGCS.2019.20170589

    Wang W L,Guo C X,Ding L,Zhao H. 2019. Elevation change analysis of the national first order leveling points in recent 20 years[J]. Acta Geodaetica et Cartographica Sinica,48(1):1–8 (in Chinese).

    吴晶,王辉,曹建玲,高原,王琼. 2011. 地壳介质非均匀性对华北地区强震活动的影响[J]. 地球物理学报,54(8):2023–2033. doi: 10.3969/j.issn.0001-5733.2011.08.009

    Wu J,Wang H,Cao J L,Gao Y,Wang Q. 2011. Influence of crustal inhomogeneity on seismicity in North China[J]. Chinese Journal of Geophysics,54(8):2023–2033 (in Chinese).

    姚武,郑欣. 2007. 配合比参数对混凝土热膨胀系数的影响[J]. 同济大学学报(自然科学版),35(1):77–81.

    Yao W,Zheng X. 2007. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University (Natural Science),35(1):77–81 (in Chinese).

    尹祥础,李世愚,李红,王敏. 1987. 从断裂力学观点探讨b值的物理实质[J]. 地震学报,9(4):364–374.

    Yin X C,Li S Y,Li H,Wang M. 1987. On the physical essence of b value for AE of rock tests and natural earthquakes in terms of fracture mechanics[J]. Acta Seismologica Sinica,9(4):364–374 (in Chinese).

    余怀忠,程佳,万永革. 2010. 加卸载响应比与震前应力积累模式研究[J]. 地震学报,32(5):517–528. doi: 10.3969/j.issn.0253-3782.2010.05.002

    Yu H Z,Cheng J,Wan Y G. 2010. Load/unload response ratio and stress accumulation model before large earthquakes[J]. Acta Seismologica Sinica,32(5):517–528 (in Chinese).

    郑海刚,王雪莹,何康,李军辉,方震. 2014. 安徽肥东形变台短水准降雨干扰特征分析[J]. 内陆地震,28(1):92–96. doi: 10.3969/j.issn.1001-8956.2014.01.014

    Zheng H G,Wang X Y,He K,Li J H,Fang Z. 2014. Analysis on interference characteristic of rainfall for short leveling in Feidong deformation station[J]. Inland Earthquake,28(1):92–96 (in Chinese).

    Avouac J P,Tapponnier P. 1993. Kinematic model of active deformation in Central Asia[J]. Geophys Res Lett,20(10):895–898. doi: 10.1029/93GL00128

    Matsumoto N,Kitagawa G,Roeloffs E A. 2003. Hydrological response to earthquakes in the Haibara well,central Japan: I. Groundwater level changes revealed using state space decomposition of atmospheric pressure,rainfall and tidal responses[J]. Geophys J Int,155(3):885–898. doi: 10.1111/j.1365-246X.2003.02103.x

    Matsumoto N,Roeloffs E A. 2003. Hydrological response to earthquakes in the Haibara well,central Japan: II. Possible mechanism inferred from time-varying hydraulic properties[J]. Geophys J Int,155(3):899–913. doi: 10.1111/j.1365-246X.2003.02104.x

    Wang Y C,Mora P,Yin C,Place D. 2004. Statistical tests of load-unload response ratio signals by lattice solid model:Implication to tidal triggering and earthquake prediction[J]. Pure Appl Geophys,161(9):1829–1839.

    Yin X C,Cheng X Z,Song Z P,Yin C. 1995. A new approach to earthquake prediction:The load/unload response ratio (LURR) theory[J]. Pure Appl Geophys,145(3):701–715.

    Yin X C,Yu H Z,Kukshenko V,Xu Z Y,Wu Z S,Li M,Peng K Y,Elizarov S,Li Q. 2004. Load-unload response ratio (LURR),accelerating moment/energy release (AM/ER) and state vector saltation as precursors to failure of rock specimens[J]. Pure Appl Geophys,161(11):2405–2416.

图(8)  /  表(2)
计量
  • 文章访问数:  549
  • HTML全文浏览量:  298
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-05
  • 修回日期:  2020-06-07
  • 网络出版日期:  2021-02-06
  • 发布日期:  2020-11-14

目录

/

返回文章
返回