A damping modification factor model for vertical acceleration spectrum from slab earthquakes in subduction zone
-
摘要: 基于日本K-NET和KiK-net台网的4 695条俯冲带板内地震记录,采用最小二乘法对阻尼修正系数(DMF)的几何均值进行关于阻尼比和谱周期的回归拟合,分场地类别建立了考虑阻尼比和谱周期的竖向加速度谱DMF模型。为探究震源、路径和场地效应对该模型残差分布的影响,采用随机效应模型将残差分离得到各类残差及相应的残差标准差,在此基础上进行DMF模型残差分析。研究结果表明,DMF可以采用阻尼比对数值的三次多项式、周期对数值的四次多项式来模拟。由于规范设计反应谱并非针对某一特定地震,规范提出的DMF模型并不包含震源和路径参数,但事件间和事件内残差关于矩震级、断层距离和断层深度的分布表明,在给定地震事件下,包含地震动参数的DMF模型将会改善模型的预测能力。Abstract: In this study, 4695 strong-motion records from subduction slab earthquakes in Japan obtained by the K-NET and KiK-net networks were used to develop a damping modification factor (DMF) model for the vertical acceleration spectrum. The DMF model considering the damping ratio and spectral period is established for four site classes, and the geometric mean values for DMF are used to perform regression fitting in respect to the damping ratio and spectral period by least squares method. To evaluate the influence of hypocenter, path, and site effects on the residual distribution of the model, the total model residuals and standard deviations were separated into between-event and within-event parts, and the within-event residuals were further divided into the between-site and within-site parts by using a random effects model. The results show that the effect of damping ratios on DMF can be modelled by the third-order polynomial of the logarithm of the damping ratios, a fourth-order polynomial of the logarithm of spectral periods can be used to model the effect of spectral periods for the DMF. The effects of source and path parameters were not modelled in this study because of DMF model is used to scale a design spectrum not associated with a given scenario earthquake. The distribution of the between- and within-event residual distributions with respect to moment magnitude, fault depth and source distance suggests that including these terms would improve prediction capability of the model when a DMF is designed for scaling a 5% acceleration spectrum associated with a scenario event for a give magnitude and source distance.
-
2021年5月22日青海果洛州玛多县发生MS7.4地震,震中位于(34.59°N,98.34°E),其震源机制解显示该地震为高倾角走滑型(张喆,许立生,2021)。玛多地震的发震构造为昆仑山口—江错断裂,是东昆仑断裂的一条分支断裂(王未来等,2021)。玉树地震台位于甘孜—玉树断裂附近。玛多地震震中和玉树地震台均位于巴颜喀拉次级地块内,玉树地震台位于巴颜喀拉地块的南边界。此次地震震中处于玉树地震台的NE方向,距巴颜喀拉地块北边界85 km (图1)。
玛多地震前玉树地震台井水温呈现异常变化。2021年3月15日9时玉树地震台井水温出现突降,截止到16日0时,最大降幅约0.002 6 ℃,之后水温逐步回返恢复,总体呈不规则的“V”型变化(图2)。2021年5月22日青海果洛州玛多县发生MS7.4地震,异常测项距震中220 km。
玉树地震台水温观测井深105 m,井内套管下设深度100 m,水温观测仪器为SWY- Ⅰ 型数字水温仪,传感器到井口的距离为12.168 m,井孔岩芯为中生代侏罗纪浅成花岗岩。自2007年6月开始观测,数据稳定连续,高频波动明显,2012年至2013年间断性仪器故障,存在长时间的数据缺失(图3)。2017年11月仪器改造,更换为SZW- Ⅱ 型水温仪,数据连续稳定(图4)。
2021年3月15日玉树地震台井水温出现异常变化后观测人员进行现场异常核实。现场调查可知:仪器工作状态正常,附近无施工和灌溉抽水情况,基本排除了人类活动和自然环境造成的干扰(孙小龙等,2020)。对观测井和距观测井20 m的饮用泉进行取样,与2018年的取样结果进行对比分析,结果(表1)显示:两次采样结果均在“未成熟水”范围内,水化学类型均属HCO3-Ca型(张磊等,2019);2021年饮用泉的
${\rm{HCO}}_3^{-} $ 浓度较2018年显著增大,考虑其水体溶解的CO2含量增加,可能指示区域存在断裂活动的迹象(康来迅等,1999)。表 1 2018年与2021年玉树地震台水样结果对比Table 1. Comparison of water sample results in Yushu seismic station in the year 2018 and 2021样品编号 各组分浓度/(mg·L−1) Ca2+ Mg2+ Na+ K+ HCO3− ${\rm{SO} }_4^{2 - }$ Cl− 2021年观测井 51.31 22.9 23.09 4.52 354.1 33.71 2.15 2021年饮用泉 72.88 27.16 22.07 4.51 423.1 39.48 2.45 2018年观测井 67.16 24.25 26.56 9.91 346 45.56 9.95 2018年饮用泉 75.29 23.68 22.84 10.07 340.5 49.9 9.73 玉树地震台井水温测项自2007年观测以来,一共出现7次异常,异常对应率为100%,对应于M5.0以上地震(图3,4),一般在异常出现后3个月内发震,地震分散在青藏高原内部(何案华等,2012;王博等,2016;杨晓霞等,2016)。为获得更为明确的时空强指示信息,以本次“突降—缓慢上升”的异常形态对震例进一步梳理,结果列于表2,可见:震例指示异常开始的三个月内青藏高原巴颜喀拉地块边界及其附近的M7.0以上地震(图5)(芦山MS7.0地震发生在观测数据断记期间,故未统计在内)。异常指标通过预报效能检验的R值评分为R=0.61,R0=0.45 (张国民等,2002)。因此在井水温异常上升恢复的过程中发生于2021年3月19日的西藏那曲MS6.1地震经研判认为非目标地震,异常仍需跟踪,而2021年5月22日玛多MS7.4满足异常所指示的时空强三要素特征。
表 2 玉树地震台井水温震例统计Table 2. Earthquake case statistics of water temperature in Yushu seismic station序号 异常起始时间 异常形态 异常幅度/℃ 持续时间/d 井震距km 对应地震 1 2008-03-15 突降—上升 0.022 18 643 2008年3月21日于田MS7.3,2008年5月12日汶川MS8.0 2 2010-01-19 突降—上升 0.029 24 46 2010年4月14日青海玉树MS7.1 3 2021-03-15 突降—上升 0.002 6 36 20 2021年5月22日玛多MS7.4 在地震孕育过程中,区域应力应变状态发生改变,在应力加载作用下,含水层岩体变形、相应的孔隙压力发生变化,导致井-含水层系统的水动力条件改变,进而引起井水微温度场发生改变(车用太等,1996;鱼金子等,1997;孙小龙,刘耀炜,2006)。玛多MS7.4为左旋走滑型地震,玉树地震台井水温测项位于其主动盘一侧,在孕震后期临近发震时,应力加载作用显著增强,可能造成水温测项所在区域的短期应力加载,微破裂大量发育,使不同含水层的地下水串通混合,进而水温快速下降,之后井-含水层系统趋于稳定,水温缓慢上升恢复。
综合异常核实和震例梳理结果显示,此次玉树地震台井水温异常信度较高,从时空强三要素较好地对应于2021年5月22日玛多MS7.4地震。通过对水温前兆异常的可能机理探讨分析,玉树地震台作为巴颜喀拉地块上地球物理场观测的构造敏感点,其井水温的异常变化对该地块上的地震孕震过程具有较好的短期指示意义,在未来震情跟踪过程中应予以重点关注。
-
图 3 四类场地间显著性检验统计值|Z|
(a) Ⅰ类场地与Ⅱ类场地;(b) Ⅰ类场地与Ⅲ类场地;(c) Ⅰ类场地与Ⅳ类场地;(d) Ⅱ类场地与Ⅲ类场地;(e) Ⅱ类场地与Ⅳ类场地;(f) Ⅲ类场地与Ⅳ类场地
Figure 3. |Z| values for the statistical tests between each pair of four site classes
(a) Site class Ⅰ vs site class Ⅱ;(b) Site class Ⅰ vs site class Ⅲ;(c) Site class Ⅰ vs site class Ⅳ; (d) Site class Ⅱ vs site class Ⅲ;(e) Site class Ⅱ vs site class Ⅳ;(f) Site class Ⅲ vs site class Ⅳ
图 8 阻尼比为25%时阻尼修正系数DMF模型事件间残差分布图
(a) T=0.1 s时残差关于断层深度的分布图;(b) T=0.1 s时残差关于矩震级的分布图;(c) T=3.0 s时残差关于断层深度的分布图;(d) T=3.0 s时残差关于矩震级的分布图
Figure 8. The distributions of between-event residuals of DMF model for a damping ratio of 25%
(a) The distribution of residuals with respect to fault depth at T=0.1 s;(b) The distribution of residuals with respect to moment magnitude at T=0.1 s;(c) The distribution of residuals with respect to fault depth at T=3.0 s;(d) The distribution of residuals with respect to moment magnitude at T=3.0 s
图 9 阻尼比为25%时DMF模型事件内残差分布图
(a) T=0.1 s时残差关于断层距离的分布图;(b) T=0.1 s时残差关于矩震级的分布图;(c) T=3.0 s时残差关于断层距离的分布图;(d) T=3.0 s时残差关于矩震级的分布图
Figure 9. The distributions of within-event residuals of DMF model for a damping ratio of 25%
(a) The distribution of residuals with respect to fault distance at T=0.1 s;(b) The distribution of residuals with respect to moment magnitude at T=0.1 s;(c) The distribution of residuals with respect to fault distance at T=3.0 s;(d) The distribution of residuals with respect to moment magnitude at T=3.0 s
表 1 场地类别定义和各类场地记录数量
Table 1 Site class definition and number of the records in each site class
场地类别 土质类型 场地周期/s 记录条数 Ⅰ 岩石 Ts<0.2 2 022 Ⅱ 硬土 0.2≤Ts<0.4 1 353 Ⅲ 中硬土 0.4≤Ts<0.6 442 Ⅳ 软土 Ts≥0.6 878 表 2 四类场地下阻尼修正系数模型的系数值
Table 2 Coefficients of DMF model for four site classes
T/s Ⅰ类场地 Ⅱ类场地 Ⅲ类场地 Ⅳ类场地 $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ 0.03 −0.020 0 −0.011 3 −0.015 0 −0.020 0 −0.005 4 −0.008 0 −0.008 3 −0.004 8 −0.008 0 −0.007 1 −0.004 7 −0.010 0 0.04 −0.234 3 0.012 9 0.001 0 −0.152 1 0.016 7 −0.005 0 −0.138 9 0.018 3 −0.004 0 −0.120 8 0.013 3 −0.004 0 0.05 −0.294 9 0.005 7 0.000 1 −0.235 9 0.012 9 0.001 4 −0.213 8 0.012 3 −0.001 1 −0.220 4 0.013 0 0.002 4 0.06 −0.322 8 0.001 8 0.002 6 −0.283 5 0.006 7 0.003 1 −0.262 1 0.009 1 0.001 9 −0.273 8 0.008 2 0.005 0 0.07 −0.340 8 −0.001 1 0.004 4 −0.314 7 0.002 1 0.004 4 −0.294 4 0.006 1 0.003 8 −0.308 7 0.004 7 0.006 6 0.08 −0.352 8 −0.003 2 0.005 9 −0.335 7 −0.001 4 0.005 4 −0.317 1 0.003 4 0.005 1 −0.332 4 0.002 0 0.007 7 0.09 −0.361 1 −0.004 9 0.007 1 −0.350 3 −0.004 0 0.006 2 −0.333 4 0.001 0 0.006 1 −0.349 1 −0.000 1 0.008 5 0.10 −0.366 8 −0.006 3 0.008 1 −0.360 5 −0.006 1 0.007 0 −0.345 4 −0.001 0 0.006 8 −0.361 1 −0.001 8 0.009 1 0.12 −0.373 5 −0.008 2 0.009 7 −0.372 8 −0.008 9 0.008 2 −0.361 2 −0.004 4 0.007 9 −0.376 3 −0.004 3 0.009 9 0.14 −0.376 5 −0.009 4 0.011 0 −0.378 8 −0.010 6 0.009 3 −0.370 3 −0.007 0 0.008 7 −0.384 6 −0.006 1 0.010 5 0.15 −0.377 1 −0.009 8 0.011 5 −0.380 3 −0.011 2 0.009 9 −0.373 4 −0.008 1 0.009 0 −0.387 3 −0.006 7 0.010 8 0.16 −0.377 4 −0.010 1 0.012 1 −0.381 2 −0.011 6 0.010 4 −0.375 7 −0.009 0 0.009 3 −0.389 3 −0.007 3 0.011 0 0.18 −0.377 1 −0.010 5 0.013 0 −0.381 6 −0.012 0 0.011 3 −0.378 8 −0.010 5 0.009 9 −0.391 8 −0.008 2 0.011 4 0.20 −0.376 2 −0.010 7 0.013 9 −0.380 8 −0.012 1 0.012 2 −0.380 4 −0.011 6 0.010 5 −0.393 1 −0.008 8 0.011 8 0.25 −0.372 3 −0.010 4 0.015 7 −0.376 3 −0.011 3 0.014 2 −0.381 1 −0.013 1 0.011 8 −0.393 4 −0.009 6 0.012 9 0.30 −0.367 6 −0.009 5 0.017 2 −0.370 3 −0.009 7 0.016 0 −0.379 3 −0.013 5 0.013 1 −0.392 2 −0.009 7 0.013 9 0.35 −0.362 7 −0.008 3 0.018 6 −0.364 2 −0.007 7 0.017 6 −0.376 6 −0.013 1 0.014 4 −0.390 6 −0.009 5 0.014 9 0.40 −0.357 9 −0.006 9 0.019 8 −0.358 2 −0.005 5 0.019 2 −0.373 5 −0.012 2 0.015 6 −0.388 9 −0.008 9 0.016 0 0.45 −0.353 2 −0.005 4 0.020 8 −0.352 5 −0.003 1 0.020 5 −0.370 1 −0.011 0 0.016 8 −0.387 3 −0.008 2 0.017 0 0.50 −0.348 6 −0.003 8 0.021 8 −0.347 1 −0.000 8 0.021 8 −0.366 7 −0.009 5 0.018 0 −0.385 7 −0.007 3 0.018 0 0.60 −0.339 8 −0.000 5 0.023 6 −0.337 0 0.003 9 0.024 1 −0.359 9 −0.006 2 0.020 2 −0.382 5 −0.005 4 0.020 0 0.70 −0.331 3 0.002 9 0.025 0 −0.327 7 0.008 4 0.026 0 −0.353 1 −0.002 6 0.022 2 −0.379 3 −0.003 1 0.021 8 0.80 −0.323 0 0.006 2 0.026 3 −0.319 0 0.012 8 0.027 7 −0.346 2 0.001 1 0.024 1 −0.375 9 −0.000 8 0.023 5 0.90 −0.314 9 0.009 4 0.027 5 −0.310 6 0.016 9 0.029 2 −0.339 2 0.004 8 0.025 8 −0.372 2 0.001 6 0.025 1 1.00 −0.306 8 0.012 6 0.028 5 −0.302 4 0.020 9 0.030 5 −0.332 2 0.008 5 0.027 3 −0.368 1 0.004 1 0.026 6 1.25 −0.286 8 0.020 2 0.030 6 −0.282 5 0.030 0 0.033 1 −0.314 2 0.017 4 0.030 5 −0.356 2 0.010 4 0.029 8 1.50 −0.266 7 0.027 4 0.032 1 −0.262 7 0.038 1 0.034 9 −0.295 4 0.025 6 0.033 1 −0.342 1 0.016 7 0.032 4 2.00 −0.226 4 0.040 4 0.034 2 −0.222 5 0.052 1 0.037 2 −0.256 0 0.040 4 0.036 5 −0.307 9 0.029 0 0.036 2 2.50 −0.185 6 0.052 2 0.035 3 −0.181 3 0.063 7 0.038 1 −0.214 6 0.053 0 0.038 4 −0.267 9 0.040 9 0.038 7 3.00 −0.144 7 0.062 9 0.035 8 −0.139 1 0.073 8 0.038 1 −0.171 9 0.064 0 0.039 1 −0.223 6 0.052 3 0.040 3 3.50 −0.103 8 0.072 8 0.035 9 −0.096 2 0.082 6 0.037 6 −0.128 3 0.073 7 0.039 1 −0.176 3 0.063 2 0.041 1 4.00 −0.063 1 0.082 0 0.035 6 −0.052 9 0.090 4 0.036 6 −0.084 1 0.082 2 0.038 4 −0.126 9 0.073 8 0.041 3 4.50 −0.022 6 0.090 6 0.035 1 −0.009 2 0.097 4 0.035 2 −0.039 6 0.089 8 0.037 3 −0.075 9 0.084 0 0.041 1 5.00 0.017 7 0.098 7 0.034 4 0.034 6 0.103 8 0.033 6 0.005 0 0.096 7 0.035 8 −0.023 8 0.093 9 0.040 6 表 3 阻尼修正系数模型的总残差标准差
${\sigma _T} $ Table 3 Total standard deviations
${\sigma _T} $ of DMF modelT/s σT ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.056 0 0.014 7 0.011 6 0.005 7 0.000 0 0.005 4 0.010 4 0.015 2 0.019 8 0.024 3 0.046 0 0.066 5 0.086 4 0.04 0.242 6 0.146 3 0.084 4 0.039 9 0.030 8 0.055 7 0.079 9 0.094 8 0.110 7 0.167 6 0.204 1 0.229 5 0.248 6 0.05 0.238 6 0.148 7 0.087 9 0.042 5 0.033 0 0.060 1 0.082 9 0.102 7 0.120 2 0.184 1 0.225 5 0.255 4 0.277 7 0.06 0.225 0 0.144 4 0.092 9 0.042 7 0.035 8 0.061 4 0.090 2 0.105 6 0.123 7 0.190 9 0.235 1 0.267 0 0.290 8 0.07 0.215 5 0.139 6 0.090 0 0.041 5 0.034 6 0.059 8 0.088 0 0.103 0 0.120 7 0.187 6 0.232 0 0.263 6 0.287 1 0.08 0.206 3 0.141 4 0.085 5 0.039 8 0.033 2 0.057 5 0.084 0 0.099 0 0.115 9 0.178 7 0.220 1 0.250 3 0.273 1 0.09 0.200 4 0.136 4 0.082 7 0.038 5 0.030 8 0.056 2 0.082 3 0.096 2 0.112 7 0.174 6 0.215 7 0.245 1 0.266 9 0.10 0.192 7 0.132 4 0.080 7 0.037 3 0.029 5 0.053 7 0.078 7 0.097 7 0.107 8 0.165 9 0.205 1 0.233 3 0.254 2 0.12 0.188 5 0.122 9 0.077 8 0.034 5 0.030 5 0.055 6 0.076 6 0.094 8 0.105 7 0.160 9 0.197 3 0.223 8 0.243 6 0.14 0.189 9 0.123 0 0.077 2 0.035 7 0.029 7 0.053 7 0.073 4 0.090 3 0.104 6 0.157 0 0.184 4 0.208 3 0.227 0 0.15 0.188 8 0.122 1 0.076 8 0.033 1 0.029 4 0.053 4 0.069 3 0.090 8 0.105 9 0.159 4 0.194 3 0.208 6 0.227 8 0.16 0.190 8 0.122 6 0.077 6 0.033 9 0.030 1 0.054 4 0.074 8 0.092 2 0.107 1 0.161 3 0.196 2 0.210 3 0.230 1 0.18 0.191 8 0.123 9 0.074 0 0.035 2 0.029 0 0.052 6 0.072 0 0.088 5 0.102 9 0.155 7 0.190 8 0.207 5 0.228 1 0.20 0.191 2 0.123 5 0.076 8 0.035 7 0.029 7 0.053 9 0.070 9 0.090 9 0.105 6 0.159 2 0.194 6 0.212 3 0.233 3 0.25 0.191 7 0.124 3 0.077 0 0.035 5 0.029 5 0.053 3 0.069 8 0.085 9 0.104 5 0.150 0 0.184 4 0.211 7 0.235 5 0.30 0.195 6 0.125 8 0.075 4 0.035 9 0.029 8 0.053 5 0.073 1 0.089 7 0.104 2 0.152 3 0.189 1 0.219 4 0.246 6 0.35 0.191 2 0.129 8 0.077 5 0.034 0 0.029 5 0.053 4 0.070 0 0.090 9 0.106 4 0.163 8 0.195 2 0.227 4 0.256 7 0.40 0.195 0 0.131 8 0.078 4 0.033 9 0.030 1 0.051 6 0.070 9 0.093 2 0.108 9 0.159 6 0.201 9 0.238 1 0.270 9 0.45 0.198 7 0.128 2 0.077 9 0.035 8 0.029 8 0.054 4 0.072 8 0.089 9 0.108 6 0.163 8 0.208 5 0.247 5 0.283 4 0.50 0.200 2 0.127 6 0.079 8 0.036 7 0.030 7 0.056 0 0.077 1 0.095 4 0.111 5 0.168 6 0.216 1 0.257 7 0.296 3 0.60 0.199 6 0.128 4 0.077 5 0.037 7 0.030 1 0.054 9 0.076 1 0.097 8 0.111 4 0.177 9 0.231 7 0.278 7 0.321 8 0.70 0.204 6 0.131 8 0.083 3 0.036 7 0.032 3 0.056 4 0.081 9 0.097 9 0.115 5 0.187 3 0.246 8 0.299 6 0.347 5 0.80 0.208 8 0.133 9 0.084 6 0.037 0 0.033 2 0.058 0 0.084 9 0.100 9 0.119 3 0.196 4 0.260 3 0.316 3 0.367 4 0.90 0.207 7 0.132 6 0.085 0 0.036 9 0.033 4 0.057 8 0.086 0 0.102 1 0.121 3 0.202 3 0.270 0 0.329 0 0.382 3 1.00 0.211 5 0.134 7 0.086 1 0.039 8 0.031 8 0.058 9 0.083 2 0.104 9 0.125 0 0.210 3 0.281 6 0.343 5 0.398 6 1.25 0.212 4 0.139 3 0.084 3 0.041 0 0.033 8 0.063 0 0.088 8 0.112 6 0.134 9 0.230 7 0.309 6 0.377 6 0.436 5 1.50 0.216 5 0.143 5 0.087 8 0.041 0 0.036 1 0.067 9 0.096 3 0.122 6 0.147 1 0.252 2 0.340 2 0.413 0 0.475 9 2.00 0.226 1 0.153 8 0.095 2 0.045 1 0.040 4 0.076 7 0.109 0 0.139 1 0.167 8 0.290 5 0.389 2 0.470 3 0.536 1 2.50 0.231 1 0.160 7 0.100 6 0.048 0 0.043 9 0.083 5 0.119 7 0.153 3 0.185 1 0.321 3 0.426 2 0.510 2 0.576 5 3.00 0.237 0 0.166 7 0.105 6 0.050 8 0.046 7 0.089 1 0.128 2 0.164 5 0.198 3 0.341 7 0.450 8 0.533 9 0.598 3 3.50 0.245 7 0.175 6 0.112 1 0.054 3 0.050 2 0.096 0 0.137 5 0.176 2 0.212 8 0.363 0 0.473 3 0.556 3 0.619 1 4.00 0.248 4 0.179 3 0.115 3 0.055 5 0.051 5 0.098 9 0.142 6 0.183 2 0.220 5 0.372 7 0.481 9 0.561 4 0.621 2 4.50 0.258 3 0.187 3 0.120 4 0.058 4 0.054 0 0.103 5 0.149 1 0.191 1 0.229 9 0.385 1 0.495 0 0.573 2 0.630 5 5.00 0.264 9 0.194 2 0.126 4 0.061 3 0.056 7 0.108 0 0.154 9 0.197 5 0.237 1 0.391 7 0.498 4 0.573 2 0.627 1 表 4 阻尼修正系数模型的事件内残差标准差σ
Table 4 Within-event standard deviation σ of DMF model
T/s σ ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.017 8 0.013 8 0.009 7 0.005 1 0.000 0 0.004 9 0.009 4 0.013 7 0.017 6 0.021 3 0.037 9 0.051 1 0.061 9 0.04 0.221 0 0.134 7 0.078 6 0.035 3 0.028 8 0.051 8 0.071 2 0.088 0 0.102 6 0.154 9 0.188 3 0.211 5 0.228 8 0.05 0.222 3 0.140 0 0.083 1 0.037 9 0.031 0 0.056 3 0.077 6 0.096 1 0.112 2 0.171 2 0.209 1 0.236 1 0.256 0 0.06 0.213 5 0.137 8 0.083 2 0.038 4 0.032 3 0.058 5 0.080 8 0.100 1 0.117 0 0.178 8 0.218 8 0.247 1 0.268 1 0.07 0.206 4 0.134 0 0.081 1 0.037 4 0.031 2 0.057 0 0.078 6 0.097 3 0.113 7 0.174 8 0.214 5 0.242 4 0.263 1 0.08 0.199 1 0.129 5 0.078 4 0.036 4 0.030 4 0.055 0 0.075 8 0.093 8 0.109 3 0.165 9 0.202 6 0.229 2 0.249 4 0.09 0.195 3 0.126 8 0.076 6 0.035 5 0.029 9 0.054 4 0.074 8 0.092 4 0.107 6 0.163 7 0.200 8 0.227 1 0.246 8 0.10 0.186 1 0.121 2 0.073 6 0.034 1 0.028 5 0.051 8 0.071 4 0.088 4 0.103 1 0.157 0 0.193 1 0.218 9 0.238 2 0.12 0.183 3 0.119 8 0.072 4 0.033 5 0.028 2 0.051 3 0.070 7 0.087 4 0.101 8 0.154 2 0.188 5 0.213 6 0.232 3 0.14 0.182 7 0.119 0 0.071 6 0.033 2 0.027 6 0.050 0 0.068 7 0.084 6 0.098 2 0.147 6 0.179 5 0.202 2 0.219 6 0.15 0.181 4 0.117 5 0.070 3 0.032 2 0.027 0 0.049 1 0.067 5 0.083 2 0.097 0 0.146 6 0.178 9 0.202 1 0.220 1 0.16 0.184 5 0.118 7 0.071 9 0.033 2 0.027 6 0.050 0 0.068 8 0.084 8 0.098 5 0.148 4 0.180 6 0.204 1 0.222 8 0.18 0.185 3 0.120 0 0.072 3 0.033 1 0.027 3 0.049 4 0.067 5 0.082 7 0.096 1 0.144 7 0.177 1 0.201 1 0.220 6 0.20 0.184 5 0.119 5 0.071 5 0.033 2 0.027 8 −0.050 5 0.069 2 0.085 1 0.098 8 0.148 5 0.181 4 0.206 0 0.225 5 0.25 0.184 0 0.118 8 0.071 4 0.032 9 0.027 3 0.049 3 0.067 8 0.083 4 0.096 9 0.144 5 0.176 5 0.201 1 0.221 7 0.30 0.188 1 0.120 8 0.072 9 0.033 5 0.027 9 −0.050 2 0.068 8 0.084 7 0.098 3 0.147 6 0.181 7 0.208 7 0.231 9 0.35 0.185 6 0.119 7 0.072 1 0.033 3 0.027 7 0.050 1 0.068 7 0.085 0 0.099 2 0.151 9 0.188 5 0.217 7 0.242 9 0.40 0.188 7 0.120 7 0.072 3 0.033 2 0.027 9 −0.050 6 0.069 5 0.085 8 0.100 1 0.154 8 0.194 0 0.226 4 0.254 2 0.45 0.192 2 0.123 6 0.073 6 0.033 7 0.028 3 0.051 4 0.070 8 0.087 3 0.101 8 0.156 9 0.197 7 0.231 8 0.261 7 0.50 0.193 4 0.123 4 0.074 5 0.034 3 0.028 6 0.052 2 0.071 9 0.088 8 0.103 6 0.160 3 0.202 0 0.237 1 0.268 4 0.60 0.191 4 0.122 7 0.074 2 0.034 3 0.029 0 0.052 8 0.072 9 0.090 4 0.105 9 0.165 7 0.211 6 0.250 0 0.283 3 0.70 0.195 4 0.125 9 0.075 5 0.035 1 0.029 5 0.053 8 0.074 5 0.092 4 0.108 5 0.171 5 0.220 6 0.262 2 0.297 4 0.80 0.199 8 0.128 1 0.076 8 0.035 5 0.030 1 0.054 7 0.075 6 0.093 8 0.110 2 0.176 3 0.228 3 0.271 8 0.308 7 0.90 0.198 2 0.127 1 0.076 4 0.035 4 0.029 9 0.054 9 0.076 5 0.095 7 0.113 0 0.182 0 0.236 1 0.280 8 0.318 7 1.00 0.199 6 0.127 0 0.075 8 0.035 0 0.029 7 0.054 8 0.076 8 0.096 2 0.113 9 0.185 8 0.242 1 0.287 9 0.326 1 1.25 0.201 3 0.130 1 0.078 4 0.036 5 0.031 3 0.058 0 0.081 2 0.102 1 0.121 5 0.199 9 0.259 8 0.307 2 0.346 0 1.50 0.201 9 0.131 7 0.080 0 0.037 2 0.032 4 0.060 1 0.084 6 0.106 5 0.126 4 0.208 1 0.271 4 0.321 3 0.361 7 2.00 0.196 5 0.130 1 0.080 4 0.038 1 0.033 7 0.063 1 0.088 9 0.112 2 0.133 5 0.219 6 0.284 9 0.336 0 0.376 7 2.50 0.195 7 0.132 5 0.082 4 0.039 2 0.035 0 0.065 4 0.092 5 0.117 2 0.139 9 0.232 2 0.299 5 0.351 3 0.390 6 3.00 0.190 2 0.130 3 0.082 1 0.039 5 0.035 4 0.066 6 0.094 4 0.119 6 0.142 4 0.234 6 0.302 1 0.352 0 0.390 3 3.50 0.194 9 0.135 9 0.086 0 0.041 2 0.036 9 0.069 5 0.098 4 0.124 7 0.148 3 0.243 0 0.309 7 0.358 2 0.395 1 4.00 0.187 0 0.132 2 0.084 8 0.040 8 0.037 0 0.069 8 0.099 2 0.125 7 0.149 5 0.242 6 0.307 1 0.353 0 0.387 1 4.50 0.185 7 0.132 6 0.085 0 0.041 1 0.037 0 0.069 5 0.098 5 0.124 5 0.147 9 0.239 3 0.301 5 0.345 3 0.378 0 5.00 0.189 1 0.135 9 0.087 4 0.042 1 0.037 9 0.070 5 0.099 4 0.125 2 0.148 3 0.237 2 0.296 4 0.337 8 0.368 3 表 5 阻尼修正系数模型的事件间残差标准差τ
Table 5 Between-event standard deviation τ of DMF model
T/s τ ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.053 1 0.004 9 0.006 3 0.002 5 0.000 0 0.002 2 0.004 4 0.006 7 0.009 1 0.011 7 0.026 1 0.042 6 0.060 3 0.04 0.100 1 0.056 9 0.030 9 0.018 6 0.011 0 0.020 5 0.036 2 0.035 3 0.041 5 0.064 0 0.078 6 0.089 1 0.097 1 0.05 0.086 7 0.050 1 0.028 4 0.019 4 0.011 3 0.020 9 0.029 1 0.036 4 0.043 0 0.067 7 0.084 4 0.097 4 0.107 6 0.06 0.071 0 0.043 3 0.041 4 0.018 6 0.015 4 0.018 6 0.040 0 0.033 5 0.040 1 0.066 9 0.086 2 0.101 2 0.112 7 0.07 0.062 1 0.039 3 0.039 0 0.017 8 0.014 8 0.018 0 0.039 7 0.033 9 0.040 6 0.068 0 0.088 3 0.103 5 0.114 9 0.08 0.053 8 0.056 8 0.034 0 0.016 0 0.013 3 0.016 7 0.036 1 0.031 7 0.038 3 0.066 3 0.086 0 0.100 5 0.111 4 0.09 0.044 7 0.050 5 0.031 2 0.014 9 0.007 4 0.014 3 0.034 3 0.027 0 0.033 7 0.060 6 0.078 9 0.092 2 0.101 7 0.10 0.050 1 0.053 4 0.033 1 0.015 1 0.007 5 0.014 1 0.033 2 0.041 7 0.031 6 0.053 6 0.069 1 0.080 8 0.088 8 0.12 0.044 0 0.027 6 0.028 5 0.008 1 0.011 6 0.021 3 0.029 4 0.036 7 0.028 2 0.046 1 0.058 3 0.066 9 0.073 3 0.14 0.051 8 0.031 1 0.028 7 0.013 0 0.010 9 0.019 5 0.025 9 0.031 5 0.035 8 0.053 5 0.042 1 0.050 2 0.057 5 0.15 0.052 3 0.033 3 0.031 0 0.007 9 0.011 7 0.021 1 0.015 7 0.036 4 0.042 6 0.062 5 0.075 9 0.051 7 0.058 7 0.16 0.048 6 0.030 5 0.029 1 0.006 8 0.012 0 0.021 4 0.029 4 0.036 3 0.042 1 0.063 2 0.076 7 0.050 6 0.057 5 0.18 0.049 5 0.030 7 0.028 5 0.011 9 0.010 0 0.018 2 0.025 3 0.031 5 0.036 8 0.057 4 0.071 0 0.051 0 0.057 7 0.20 0.050 0 0.031 0 0.027 9 0.013 0 0.010 4 0.019 0 0.015 3 0.032 0 0.037 2 0.057 2 0.070 4 0.051 6 0.059 5 0.25 0.053 6 0.036 4 0.028 7 0.013 5 0.011 2 0.020 1 0.016 7 0.020 7 0.039 0 0.040 4 0.053 6 0.066 1 0.079 4 0.30 0.053 8 0.035 3 0.028 6 0.013 0 0.010 4 0.018 4 0.024 5 0.029 5 0.034 4 0.037 6 0.052 4 0.067 6 0.084 0 0.35 0.045 9 0.050 1 0.028 5 0.006 8 0.010 1 0.018 3 0.013 4 0.032 4 0.038 4 0.061 4 0.050 7 0.065 6 0.083 0 0.40 0.049 3 0.053 1 0.030 3 0.007 2 0.011 3 0.010 0 0.014 1 0.036 3 0.042 8 0.038 6 0.055 7 0.073 7 0.093 7 0.45 0.050 5 0.034 2 0.025 4 0.012 2 0.009 4 0.017 8 0.017 0 0.021 6 0.037 8 0.047 1 0.066 3 0.086 9 0.108 7 0.50 0.051 6 0.032 5 0.028 5 0.013 2 0.011 0 0.020 1 0.027 7 0.034 7 0.041 1 0.052 3 0.076 9 0.101 0 0.125 5 0.60 0.056 4 0.037 7 0.031 9 0.015 4 0.008 0 0.015 2 0.021 7 0.037 2 0.034 7 0.064 8 0.094 3 0.123 3 0.152 8 0.70 0.060 5 0.039 1 0.035 2 0.010 8 0.013 2 0.016 8 0.034 0 0.032 2 0.039 6 0.075 3 0.110 6 0.144 9 0.179 7 0.80 0.060 8 0.038 9 0.035 5 0.010 7 0.014 1 0.019 2 0.038 6 0.037 0 0.045 7 0.086 3 0.125 1 0.161 9 0.199 3 0.90 0.062 2 0.037 9 0.037 3 0.010 3 0.014 8 0.018 2 0.039 3 0.035 4 0.044 1 0.088 4 0.131 0 0.171 5 0.211 1 1.00 0.069 7 0.044 8 0.040 7 0.019 0 0.011 3 0.021 6 0.031 9 0.041 8 0.051 7 0.098 6 0.143 8 0.187 3 0.229 1 1.25 0.067 6 0.049 9 0.038 5 0.018 6 0.012 8 0.024 5 0.036 0 0.047 5 0.058 7 0.115 0 0.168 3 0.219 5 0.266 2 1.50 0.078 1 0.057 1 0.044 7 0.017 1 0.016 0 0.031 5 0.046 0 0.060 7 0.075 3 0.142 6 0.205 2 0.259 5 0.309 3 2.00 0.111 8 0.082 0 0.050 9 0.024 2 0.022 3 0.043 5 0.063 1 0.082 2 0.101 6 0.190 2 0.265 2 0.329 1 0.381 4 2.50 0.123 0 0.091 0 0.057 7 0.027 8 0.026 5 0.051 9 0.076 0 0.098 9 0.121 2 0.222 1 0.303 3 0.370 0 0.423 9 3.00 0.141 4 0.103 9 0.066 4 0.032 0 0.030 4 0.059 1 0.086 8 0.112 9 0.138 0 0.248 5 0.334 6 0.401 4 0.453 5 3.50 0.149 6 0.111 2 0.071 8 0.035 3 0.034 1 0.066 2 0.096 0 0.124 5 0.152 6 0.269 6 0.357 9 0.425 6 0.476 6 4.00 0.163 6 0.121 1 0.078 2 0.037 7 0.035 9 0.070 1 0.102 4 0.133 3 0.162 0 0.282 9 0.371 4 0.436 5 0.485 8 4.50 0.179 5 0.132 3 0.085 3 0.041 4 0.039 3 0.076 7 0.111 9 0.145 0 0.176 0 0.301 7 0.392 6 0.457 5 0.504 5 5.00 0.185 6 0.138 7 0.091 3 0.044 6 0.042 2 0.081 9 0.118 8 0.152 8 0.185 0 0.311 7 0.400 7 0.463 1 0.507 5 -
郝安民,周德源,李亚明,张晖. 2012. 考虑震级影响的规范阻尼修正系数评估[J]. 同济大学学报(自然科学版),40(5):657–661. Hao A M,Zhou D Y,Li Y M,Zhang H. 2012. Evaluation of damping modification factors in codes with a consideration of effect of earthquake magnitude[J]. Journal of Tongji University (Natural Science)
,40(5):657–661 (in Chinese). 蒋建,吕西林,周颖,蒋欢军. 2009. 考虑场地类别的阻尼比修正系数研究[J]. 地震工程与工程振动,29(1):153–161. Jiang J,Lü X L,Zhou Y,Jiang H J. 2009. Research on modification factors of damping ratios considering site conditions[J]. Journal of Earthquake Engineering and Engineering Vibration,29(1):153–161 (in Chinese).
Abrahamson N A,Youngs R R. 1992. A stable algorithm for regression analyses using the random effects model[J]. Bull Seismol Soc Am,82(1):505–510. doi: 10.1785/BSSA0820010505
Ambraseys N N,Douglas J. 2003. Near-field horizontal and vertical earthquake ground motions[J]. Soil Dyn Earthq Eng,23(1):1–18. doi: 10.1016/S0267-7261(02)00153-7
Bozorgnia Y,Campbell K W. 2004. The vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra[J]. J Earthq Eng,8(2):175–207.
Brillinger D R,Preisler H K. 1984. An exploratory analysis of the Joyner-Boore attenuation data[J]. Bull Seismol Soc Am,74(4):1441–1450.
Japan Road Association. 1980. Specifications for Highway Bridges. Part V, Seismic Design[S]. Tokyo: Maruzen Company Limited: 24–25.
Jiang F,Zhao J X. 2017. A ground‐motion prediction equation for vertical spectra of the strong‐motion records from the subduction slab events in Japan using site class as the site term[J]. Bull Seismol Soc Am,107(5):2328–2341. doi: 10.1785/0120160387
Li H,Chen F. 2017. Damping modification factors for acceleration response spectra[J]. Geodesy Geodyn,8(5):361–370. doi: 10.1016/j.geog.2017.04.009
Lin Y Y,Chang K C. 2003. Study on damping reduction factor for buildings under earthquake ground motions[J]. J Struct Eng,129(2):206–214. doi: 10.1061/(ASCE)0733-9445(2003)129:2(206)
Lin Y Y,Chang K C. 2004. Effects of site classes on damping reduction factors[J]. J Struct Eng,130(11):1667–1675. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1667)
Newmark N M, Hall W J. 1982. Earthquake Spectra and Design[M]. Berkeley: Earthquake Engineering Research Institute: 1–103.
Rezaeian S,Bozorgnia Y,Idriss I M,Abrahamson N,Campbell K,Silva W. 2014. Damping scaling factors for vertical elastic response spectra for shallow crustal earthquakes in active tectonic regions[J]. Earthq Spectra,30(3):1335–1358. doi: 10.1193/100512EQS298M
Xiang Y,Huang Q L. 2019. Damping modification factor for the vertical seismic response spectrum:A study based on Japanese earthquake records[J]. Eng Struct,179:493–511. doi: 10.1016/j.engstruct.2018.11.021
Zhao J X,Irikura K,Zhang J,Fukushima Y,Somerville P G,Asano A,Ohno Y,Oouchi T,Takahashi T,Ogawa H. 2006a. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio[J]. Bull Seismol Soc Am,96(3):914–925. doi: 10.1785/0120050124
Zhao J X,Zhang J,Asano A,Ohno Y,Oouchi T,Takahashi T,Ogawa H,Irikura K,Thio H K,Somerville P G,Fukushima Y,Fukushima Y. 2006b. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bull Seismol Soc Am,96(3):898–913. doi: 10.1785/0120050122
Zhao J X,Zhou S L,Gao P J,Long T,Zhang Y B,Thio H K,Lu M,Rhoades D A. 2015. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations[J]. Bull Seismol Soc Am,105(5):2750–2763. doi: 10.1785/0120150013
Zhao J X,Zhou S L,Zhou J,Zhao C,Zhang H,Zhang Y B,Gao P J,Lan X W,Rhoades D,Fukushima Y,Somerville P G,Irikura K. 2016a. Ground-motion prediction equations for shallow crustal and upper-mantle earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1552–1569. doi: 10.1785/0120150063
Zhao J X,Liang X,Jiang F,Xing H,Zhu M,Hou R B,Zhang Y B,Lan X W,Rhoades D A,Irikura K,Fukushima Y,Somerville P G. 2016b. Ground-motion prediction equations for subduction interface earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1518–1534. doi: 10.1785/0120150034
Zhao J X,Jiang F,Shi P,Xing H,Huang H F,Hou R B,Zhang Y B,Yu P C,Lan X W,Rhoades D A,Somerville P G,Irikura K,Fukushima Y. 2016c. Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1535–1551. doi: 10.1785/0120150056
Zhao J X,Jiang F,Ma Y,Zhou J,Cheng Y,Chang Z W. 2017. Ground‐motion prediction equations for the vertical component from shallow crustal and upper‐mantle earthquakes in Japan using site classes as the site term[J]. Bull Seismol Soc Am,107(5):2310–2327. doi: 10.1785/0120160376
Zhao J X,Yang Q S,Su K W,Liang J G,Zhou J,Zhang H,Yang X G. 2019. Effects of earthquake source,path,and site conditions on damping modification factor for the response spectrum of the horizontal component from subduction earthquakes[J]. Bull Seismol Soc Am,109(6):2594–2613. doi: 10.1785/0120190105
Zhou J,Zhao J X. 2020. A damping modification factor prediction model for horizontal displacement spectrum from subduction interface earthquakes in Japan accounting for site conditions[J]. Bull Seismol Soc Am,110(3):1231–1246. doi: 10.1785/0120190275
-
期刊类型引用(0)
其他类型引用(1)