利用远震接收函数研究华北克拉通北部造山带地壳厚度及泊松比

刘嘉栋 丁志峰 武岩 姜磊

刘嘉栋,丁志峰,武岩,姜磊. 2022. 利用远震接收函数研究华北克拉通北部造山带地壳厚度及泊松比. 地震学报,44(3):357−373 doi: 10.11939/jass.20210001
引用本文: 刘嘉栋,丁志峰,武岩,姜磊. 2022. 利用远震接收函数研究华北克拉通北部造山带地壳厚度及泊松比. 地震学报,44(3):357−373 doi: 10.11939/jass.20210001
Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica,44(3):357−373 doi: 10.11939/jass.20210001
Citation: Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica44(3):357−373 doi: 10.11939/jass.20210001

利用远震接收函数研究华北克拉通北部造山带地壳厚度及泊松比

doi: 10.11939/jass.20210001
基金项目: 科技部国家重点研发计划项目(2017YFC1500200)资助
详细信息
    作者简介:

    刘嘉栋,硕士研究生,主要从事地球内部结构方面的研究,e-mail:liu_seis@163.com

    通讯作者:

    丁志峰,博士,研究员,主要从事地震学、地球内部结构及动力学研究,e-mail:dingzf@cea-igp.ac.cn

  • 中图分类号: P315.63

Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions

  • 摘要: 对2006年10月—2009年9月华北克拉通北部太行山—燕山造山带及相邻区域115套宽频带流动台和6套甚宽频流动台的接收函数数据,使用预测反褶积方法进行处理,消除沉积层的影响;然后利用谐波校正的H-κ-c叠加方法,得到了华北克拉通北部造山带及邻近区域消除地壳S波方位各向异性及倾斜界面影响的地壳厚度及泊松比。研究结果表明,研究区地壳厚度呈现西厚东薄的整体特征,地壳厚度与地形存在高度相关性,且基本符合艾里(Airy)均衡理论。西部陆块泊松比较低,表明其相对稳定,中部造山带和东部陆块的泊松比分布不均匀,可能遭受过复杂的改造过程。结合前人的研究结果,推测怀来—延庆盆地及唐山南部存在地壳部分熔融和上地幔物质的上侵,石家庄北部存在下地壳拆沉,保定—房山一带下地壳拆沉后,受伸展作用影响遭遇地幔物质底侵。不同区域地壳结构的差异性导致了谐波矫正前后研究区地壳厚度及平均泊松比变化的分布不同。

     

  • 图  1  研究区位置(a)、地震事件分布(b)和地形及台站(c)

    Figure  1.  Studied area and its location in North China Craton (a) and the distribution of events (b),topography and stations (c)

    图  2  K009台接收函数及地壳厚度和波速比

    (a) 按反方位角排列的径向接收函数;(b) 预测反褶积处理消除沉积层多次波后的径向接收函数;(c) 传统H-κ叠加得到的地壳厚度及波速比;(d) 对反褶积处理后的接收函数使用时间校正的H-κ叠加得到的地壳厚度及波速比(黑色虚线、蓝色虚线及绿色虚线代表在射线参数0.06时的PS,M1,M2震相理论到时,青色星形为最优解,黑点表示Bootstrap重采样结果)

    Figure  2.  Receiver functions of station K009, and crustal thicknesses of this station accompany with vP/vS

    (a) Radial receiver functions arrayed by back azimuth;(b) Radial receiver functions after predictive deconvolution;(c) Crustal thickness and vP/vS obtained by tradition H-κ stacking;(d) Crustal thickness and vP/vS obtained by time corrected H-κ stacking (Black,blue and green dashed lines indicate the travel-time of PS,M1 and M2 when the ray parameteris 0.06;the cyan star indicates the optimal solution,and black dots are the solutions of Bootstrap)

    图  3  K009台谐波校正参数及校正后径向接收函数和最优解

    图(a)−(c)为接收函数莫霍面转换波PS震相及其多次波震相M1,M2谐波拟合参数搜索结果;图(d)为各震相校正到对应中心到时后的径向接收函数;图(e)为对图(d)中的接收函数使用时间校正的H-κ叠加扫描结果

    Figure  3.  Harmonic correcting parameters, radial receiver functions and optimal solution after corrected of station K009

    Figs. (a)−(c) are harmonic correcting parameters of PS,M1 and M2;Fig. (d) is radial receiver functions after correction; Fig. (e) is optimal solution of receiver functions from Fig. (d) by using time corrected H-κ stacking

    图  4  Bootstrap重采样得到的地壳厚度H (a)和波速比κ (b)的标准差柱状分布图

    Figure  4.  Histograms of standard deviations of crust thicknesses H (a) and vP/vS ratios κ (b) from the bootstrap resampling

    图  5  H-κ-c叠加与H-κ叠加及前人研究结果的对比

    (a) 地壳厚度H对比;(b) 平均波速比κ对比

    Figure  5.  Solutions from H-κ-c stacking compared with H-κ stacking and previous results (a) Comparison of crust thicknesses;(b) Comparison of vP/vS ratios κ

    图  6  H-κ-c叠加得到的地壳厚度(a)、泊松比分布(b)及Zhang等(2019)的地壳厚度(c)

    Figure  6.  Distribution of crust thickness (a) and Poisson’s ratio (b) from H-κ-c stacking, and crustal thicknesses of Zhang et al2019)(c)

    图  7  地壳厚度H与海拔的关系

    Figure  7.  Relationship of elevation and crustal thickness

    图  8  H-κ-c叠加得到的结果与传统H-κ叠加结果的差异及历史地震分布

    (a) 地壳厚度差ΔH;(b) 平均泊松比差Δσ

    Figure  8.  The differences of the results from H-κ-c and H-κ,and the locations of historical earthquakes

    (a) Crust thickness difference ΔH;(b) Poisson’s ratio difference Δσ

  • [1] 常利军,王椿镛,丁志峰. 2012. 华北上地幔各向异性研究[J]. 地球物理学报,55(3):886–896. doi: 10.6038/j.issn.0001-5733.2012.03.018
    [2] Chang L J,Wang C Y,Ding Z F. 2012. Upper mantle anisotropy beneath North China[J]. Chinese Journal of Geophysics,55(3):886–896 (in Chinese).
    [3] 段永红,王夫运,张先康,林吉焱,刘志,刘保峰,杨卓欣,郭文斌,魏运浩. 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0)[J]. 中国科学:地球科学,46(6):845–856.
    [4] Duan Y H,Wang F Y,Zhang X K,Lin J Y,Liu Z,Liu B F,Yang Z X,Guo W B,Wei Y H. 2016. Three-dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Science China Earth Sciences,59(7):1477–1488. doi: 10.1007/s11430-016-5301-0
    [5] 房立华,吴建平. 2009. 倾斜界面和各向异性介质对接收函数的影响[J]. 地球物理学进展,24(1):42–50.
    [6] Fang L H,Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophysics,24(1):42–50 (in Chinese).
    [7] 房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279. doi: 10.6038/cjg20130714
    [8] Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    [9] 高战武,徐杰,宋长青,孙键宝. 2001. 张家口:蓬莱断裂带的分段特征[J]. 华北地震科学,19(1):35–42. doi: 10.3969/j.issn.1003-1375.2001.01.006
    [10] Gao Z W,Xu J,Song C Q,Sun J B. 2001. The segmental character of Zhangjiakou-Penglai fault[J]. North China Earthquake Sciences,19(1):35–42 (in Chinese).
    [11] 葛粲,郑勇,熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报,54(10):2538–2548. doi: 10.3969/j.issn.0001-5733.2011.10.011
    [12] Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese).
    [13] 顾功叙. 1983. 中国地震目录 (公元前1831—公元1969年)[M]. 北京: 科学出版社: 665–685.
    [14] Gu G X. 1983. Catalogue of Chinese Earthquakes, 1831BC—1969AD[M]. Beijing: China Science Publishing & Media Ltd: 665–685 (in Chinese).
    [15] 贺传松,朱露培,丁志峰,潘纪顺. 2010. 用远震接收函数研究渤海盆地的沉积覆盖[J]. 地质学报,84(5):716–722.
    [16] He C S,Zhu L P,Ding Z F,Pan J S. 2010. Sedimentary cover in the Bohai Basin using teleseismic receiver function[J]. Acta Geologica Sinica,84(5):716–722 (in Chinese).
    [17] 嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330. doi: 10.3321/j.issn:0001-5717.2009.03.002
    [18] Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China Craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    [19] 刘琼林,王椿镛,姚志祥,常利军,楼海. 2011. 华北克拉通中西部地区地壳厚度与波速比研究[J]. 地球物理学报,54(9):2213–2224. doi: 10.3969/j.issn.0001-5733.2011.09.003
    [20] Liu Q L,Wang C Y,Yao Z X,Chang L J,Lou H. 2011. Study on crustal thickness and velocity ratio in mid-western North China Craton[J]. Chinese Journal of Geophysics,54(9):2213–2224 (in Chinese).
    [21] 罗艳,崇加军,倪四道,陈棋福,陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报,51(4):1135–1145. doi: 10.3321/j.issn:0001-5733.2008.04.022
    [22] Luo Y,Chong J J,Ni S D,Chen Q F,Chen Y. 2008. Moho depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics,51(4):1135–1145 (in Chinese).
    [23] 齐刚. 2014. 太行山与燕山交汇部位的地壳厚度与泊松比研究[D]. 北京: 中国地震局地球物理研究所: 31–34.
    [24] Qi G. 2014. The Crustal Thickness and Poisson’s Ratio in the Junction of the Taihangshan Region and the Yanshan Tectonic Belt[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–34 (in Chinese).
    [25] 齐刚,陈棋福. 2015. 太行山与燕山交汇部位的地壳厚度与泊松比分布特征[J]. 地球物理学报,58(9):3239–3250. doi: 10.6038/cjg20150919
    [26] Qi G,Chen Q F. 2015. Distribution of the crustal thickness and Poisson’s ratio beneath the junction of the Taihangshan and the Yanshan tectonic belts[J]. Chinese Journal of Geophysics,58(9):3239–3250 (in Chinese).
    [27] 曲中党,张训华,贺日政,吴志强,张洪双,吴蔚. 2018. 华北盆地边缘及邻区地壳S波速度结构及其地震孕育机制[J]. 地球物理学进展,33(3):957–968. doi: 10.6038/pg2018BB0348
    [28] Qu Z D,Zhang X H,He R Z,Wu Z Q,Zhang H S,Wu W. 2018. S wave velocity structure of the crust and the mechanisms of earthquake occurrence in the North China basin and its adjacent areas[J]. Progress in Geophysics,33(3):957–968 (in Chinese).
    [29] 谭萍,陈赟,孙维昭,李玮,唐国彬,崔田. 2018. 一种改进的适应于倾斜Moho面的H-κ-θ叠加方法及应用[J]. 地球物理学报,61(9):3689–3700. doi: 10.6038/cjg2018M0032
    [30] Tan P,Chen Y,Sun W Z,Li W,Tang G B,Cui T. 2018. An improved H-κ-θ stacking method to determine the crustal thickness and bulk vP/vS ratios in the case of a slant Moho interface[J]. Chinese Journal of Geophysics,61(9):3689–3700 (in Chinese).
    [31] 唐新功. 2009. 鄂尔多斯地区重力均衡研究[J]. 工程地球物理学报,6(4):395–398.
    [32] Tang X G. 2009. Isostatic gravity study of Ordos block[J]. Chinese Journal of Engineering Geophysics,6(4):395–398 (in Chinese).
    [33] 田宝峰,李娟,王卫民,赵连锋,姚振兴. 2008. 华北太行山区地壳各向异性的接收函数证据[J]. 地球物理学报,51(5):1459–1467. doi: 10.3321/j.issn:0001-5733.2008.05.019
    [34] Tian B F,Li J,Wang W M,Zhao L F,Yao Z X. 2008. Crust anisotropy of Taihangshan mountain range in North China inferred from receiver functions[J]. Chinese Journal of Geophysics,51(5):1459–1467 (in Chinese).
    [35] 危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514.
    [36] Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210 (in Chinese).
    [37] 吴福元,葛文春,孙德有,郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘,10(3):51–60. doi: 10.3321/j.issn:1005-2321.2003.03.004
    [38] Wu F Y,Ge W C,Sun D Y,Guo C L. 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers,10(3):51–60 (in Chinese).
    [39] 吴福元,李献华,杨进辉,郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217–1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    [40] Wu F Y,Li X H,Yang J H,Zheng Y F. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,23(6):1217–1238 (in Chinese).
    [41] 武岩. 2011. 利用接收函数方法研究华北克拉通地壳上地幔结构[D]. 北京: 中国地震局地球物理研究所: 27–28.
    [42] Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 27–28 (in Chinese).
    [43] 武岩,丁志峰,朱露培. 2014. 利用接收函数研究渤海湾盆地沉积层结构[J]. 地震学报,36(5):837–849.
    [44] Wu Y,Ding Z F,Zhu L P. 2014. Sedimentary basin structure of the Bohai Bay from teleseismic receiver functions[J]. Acta Seismologica Sinica,36(5):837–849 (in Chinese).
    [45] 武岩,丁志峰,王兴臣,朱露培. 2018. 华北克拉通地壳结构及动力学机制分析[J]. 地球物理学报,61(7):2705–2718. doi: 10.6038/cjg2018L0244
    [46] Wu Y,Ding Z F,Wang X C,Zhu L P. 2018. Crustal structure and geodynamics of the North China Craton derived from a receiver function analysis of seismic wave data[J]. Chinese Journal of Geophysics,61(7):2705–2718 (in Chinese).
    [47] 许卫卫,郑天愉. 2005. 渤海湾盆地北西盆山边界地区泊松比分布[J]. 地球物理学报,48(5):1077–1084. doi: 10.3321/j.issn:0001-5733.2005.05.014
    [48] Xu W W,Zheng T Y. 2005. Distribution of Poisson’s ratios in the northwestern basin-mountain boundary of the Bohai Bay Basin[J]. Chinese Journal of Geophysics,48(5):1077–1084 (in Chinese).
    [49] 杨妍,姚华建,张萍,陈凌. 2018. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性[J]. 中国科学:地球科学,48(7):912–923.
    [50] Yang Y,Yao H J,Zhang P,Chen L. 2018. Crustal azimuthal anisotropy in the Trans-North China Orogen and adjacent regions from receiver functions[J]. Science China Earth Sciences,61(7):903–913. doi: 10.1007/s11430-017-9209-9
    [51] 张毅. 2019. 应用接收函数方法研究中国东部壳幔间断面结构[D]. 北京: 中国地质大学(北京): 61–67.
    [52] Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 61–67 (in Chinese).
    [53] 张莹莹,高原,石玉涛,Liu K. 2015. 张家口—渤海地震活动带及其邻区的地壳厚度与泊松比分布[J]. 地震学报,37(4):541–553. doi: 10.11939/jass.2015.04.002
    [54] Zhang Y Y,Gao Y,Shi Y T,Liu K. 2015. Crustal thickness and Poisson’s ratio beneath Zhangjiakou-Bohai seismic active belt and its neighboring regions[J]. Acta Seismologica Sinica,37(4):541–553 (in Chinese).
    [55] 朱洪翔,田有,刘财,冯晅. 2018. 沉积盆地地区地壳结构估计:预测反褶积方法消除接收函数多次波混响[J]. 地球物理学报,61(9):3664–3675. doi: 10.6038/cjg2018L0152
    [56] Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary basin:Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    [57] 朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135–1159.
    [58] Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences,55(10):1565–1587. doi: 10.1007/s11430-012-4516-y
    [59] Bondár I,Storchak D. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys J Int,186(3):1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x
    [60] Chen L,Tao W,Zhao L,Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth Planet Sci Let,267(1/2):56–68.
    [61] Cheng C,Chen L,Yao H J,Jiang M M,Wang B Y. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Res,23(1):25–38. doi: 10.1016/j.gr.2012.02.014
    [62] Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res,101(B2):3139–3156. doi: 10.1029/95JB03446
    [63] Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Stat Sci,1(1):54–75.
    [64] Fu Y V,Gao Y,Li A B,Lu L Y,Shi Y T,Zhang Y. 2016. The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography[J]. Geophys J Int,204(3):1649–1661. doi: 10.1093/gji/ggv549
    [65] Gao Y,Wu J,Yi G X,Shi Y T. 2010. Crust-mantle coupling in North China:Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin,55(31):3599–3605. doi: 10.1007/s11434-010-4135-y
    [66] He C S,Dong S W,Santosh M,Li Q S,Chen X H. 2015. Destruction of the North China Craton:A perspective based on receiver function analysis[J]. Geol J,50(1):93–103. doi: 10.1002/gj.2530
    [67] Huang J L,Zhao D P. 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Phys Earth Planet Inter,173(3/4):330–348.
    [68] Jia S X,Wang F Y,Tian X F,Duan Y H,Zhang J S,Liu B F,Lin J Y. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J]. Tectonophysics,627:48–56. doi: 10.1016/j.tecto.2014.04.013
    [69] Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    [70] Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves[J]. J Geophys Res,84(B9):4749–4762. doi: 10.1029/JB084iB09p04749
    [71] Levin V,Park J. 1997. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions[J]. Geophys Res Lett,24(11):1283–1286. doi: 10.1029/97GL51321
    [72] Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
    [73] Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400. doi: 10.1785/BSSA0890051395
    [74] Owens T J,Crosson R S. 1988. Shallow structure effects on broadband teleseismic P waveforms[J]. Bull Seismol Soc Am,78(1):96–108. doi: 10.1785/BSSA0780010096
    [75] Pavlis N K,Holmes S A,Kenyon S C,Factor J K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J Geophys Res,117(B4):B04406.
    [76] Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
    [77] Wessel P,Smith W H F,Scharroo R,Luis J,Wobbe F. 2013. Generic mapping tools:Improved version released[J]. Eos Trans Am Geophys Union,94(45):409–410.
    [78] Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    [79] Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
    [80] Yuan X H,Ni J,Kind R,Mechie J,Sandvol E. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. J Geophys Res,102(B12):27491–27500. doi: 10.1029/97JB02379
    [81] Zandt G,Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature,374(6518):152–154. doi: 10.1038/374152a0
    [82] Zhang C,Yao H J,Liu Q Y,Zhang P,Yuan Y O,Feng J K,Fang L H. 2018. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton[J]. J Geophys Res:Solid Earth,123(1):368–383. doi: 10.1002/2017JB015019
    [83] Zhang P,Yao H J,Chen L,Fang L H,Wu Y,Feng J K. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. J Geophys Res:Solid Earth,124(2):1852–1870. doi: 10.1029/2018JB016122
    [84] Zhang Y,Huang J L. 2019. Structure of the sediment and crust in the northeast North China Craton from improved sequential H-κ stacking method[J]. Open Geosci,11(1):682–696. doi: 10.1515/geo-2019-0054
    [85] Zhao G C,Wilde S A,Cawood P A,Lu L Z. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. Int Geol Rev,40(8):706–721. doi: 10.1080/00206819809465233
    [86] Zhao G C,Wilde S A,Cawood P A,Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological,geochemical,structural and P–T path constraints and tectonic evolution[J]. Precambrian Res,107(1/2):45–73.
    [87] Zhao G C,Sun M,Wilde S A,Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Res,136(2):177–202. doi: 10.1016/j.precamres.2004.10.002
    [88] Zheng T Y,Chen L,Zhao L,Zhu R X. 2007. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Phys Earth Planet Inter,161(1/2):36–49.
    [89] Zheng T, Ding Z F, Ning J Y, Liu K H, Gao S S, Chang L J, Kong F S, Fan X P. 2019. Crustal azimuthal anisotropy beneath the central North China Craton revealed by receiver functions[J]. Geochem, Geophys, Geosyst, 20(5): 2235–2251.
    [90] Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 加载中
图(8)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  140
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-05-31
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回