3D P-wave velocity structure beneath Ordos block and its surrounding regions and its tectonic implications
-
摘要: 利用中国地震科学台阵密集流动地震台站和固定地震台站记录的远震P波资料,采用走时层析成像方法反演获得了鄂尔多斯及周边地区上地幔的精细速度结构。结果显示,鄂尔多斯地块下方存在较厚的高速异常,其中西部深度约为180 km,北部约为150 km,中部的局部地区可达300 km,表明鄂尔多斯地块总体上仍保持克拉通特性。鄂尔多斯地块北部相对较薄的岩石圈可能与地幔物质上涌对岩石圈进行了加热和改造有关,其西部岩石圈的减薄可能与青藏高原东北缘上地幔热物质的横向扩展有关。华北克拉通东部地块、中部地块及鄂尔多斯地块东北部的上地幔表现出大范围的低速异常,推测可能与太平洋板块后撤导致的伸展构造背景、滞留板片脱水以及板片前缘局部对流有关。在该地区的伸展背景下,岩石圈或软流圈的熔融物沿着软弱带上涌并形成了包括大同火山在内的火山群。Abstract: We obtain a high-resolution velocity structure of the upper mantle in the Ordos block and its surrounding regions by travel-time tomography, using the teleseismic P-wave data recorded by dense temporary stations of China Seismic Array and permanent stations. The results show a thick high-velocity anomaly beneath the Ordos block, which extends to a depth of about 180 km in the west, 150 km in the north, and up to 300 km in part of the central area, indicating that the Ordos block still maintains craton stability as a whole. The relatively thin lithosphere in the northern Ordos may be related to the heating and modification of the lithosphere by the mantle upwelling, whereas the lithosphere thinning in the western Ordos may be associated with the lateral expansion of the warm upper mantle of northeastern Tibet. The upper mantle of the eastern North China Craton, the central North China Craton and the northeastern Ordos block exhibit broad low-velocity anomalies, which may be related to an extensional tectonic setting caused by the rollback of Pacific Plate, the dehydration of the stagnant slab and the local convection at the front edge of the slab. In extensional environments, melts from the lithosphere or asthenosphere upwelled along the weak zone and formed volcanoes including Datong volcano.
-
Keywords:
- Ordos block /
- upper mantle structure /
- seismic tomography /
- North China Craton /
- mantle upwelling
-
-
图 1 研究区构造背景及地震活动性
圆点表示1970年1月至2020年12月的M≥3.0地震。新生代玄武岩位置修改自Liu和Ying (2020)及邹和平等(2010)
Figure 1. Tectonic background and seismicity in the study area
The dots indicate earthquakes with magnitude M3.0 or higher from January of 1970 to December of 2020 in the studied area. The locations of the Cenozoic basalts are modified from Liu and Ying (2020),Zou et al (2010)
图 2 台站(a)及地震震中(b)分布图
图(a)中实线为构造边界,虚线为南北重力梯度带,倒三角形表示固定台站,三角形表示中国地震科学台阵三期流动台阵;图(b)中圆点为地震,星形为研究中心
Figure 2. Distribution of stations (a) and epicenters (b)
In Fig. (a),solid lines delineate the tectonic units,the dashed line is the north-south gravity gradient zone,the inverted triangles indicate permanent stations,and the triangles indicate the temporary stations of phase III of the ChinArray Project;In Fig. (b),the dots denote the earthquakes,and the star denotes the center of studied region
图 7 恢复性分辨率试验结果
(a) 异常输入分布,图中HV1和HV2代表3%高速异常,LV1和LV2代表−3%低速异常,分别用蓝色和橘色方框表示,且LV2和HV2在116°E以东重合;(b,d) 输入模型;(c,e) 输出模型
Figure 7. Restoring resolution test results
(a) The distribution of input anomalies,where HV1 and HV2 denote 3% high anomalies,and LV1 and LV2 denote −3% low anomalies,noting that LV1 and LV2 overlap to the east of 116°E;(b,d) The input models;(c,e) The output models
-
韩竹军,徐杰,冉勇康,陈立春,杨晓平. 2003. 华北地区活动地块与强震活动[J]. 中国科学:D辑,33(增刊1):108–118. Han Z J,Xu J,Ran Y K,Chen L C,Yang X P. 2003. Active blocks and strong seismic activity in North China region[J]. Science in China:Series D,46(S2):153–167.
郝艳涛,夏群科,杨晓志,王汝成. 2005. 安徽女山新生代玄武岩中橄榄岩包体矿物的含水性研究[J]. 岩石学报,22(6):1713–1722. Hao Y T,Xia Q K,Yang X Z,Wang R C. 2006. Water in minerals of peridotite xenoliths from Cenozoic basalts in Nüshan volcano,SE China[J]. Acta Petrologica Sinica,22(6):1713–1722 (in Chinese).
刘池洋,黄雷,张东东,赵俊峰,邓煜,郭佩,黄翼坚,王建强. 2018. 石油贫富悬殊的成因:来自华北克拉通东部南北新生代盆地的启示[J]. 中国科学:地球科学,48(11):1506–1526. Liu C Y,Huang L,Zhang D D,Zhao J F,Deng Y,Guo P,Huang Y J,Wang J Q. 2018. Genetic causes of oil-rich and oil-poor reservoirs:Implications from two Cenozoic basins in the eastern North China Craton[J]. Science China Earth Sciences,61(12):1910–1931. doi: 10.1007/s11430-017-9271-6
马瑾. 2009. 断块大地构造与地震活动的构造物理研究[J]. 地质科学,44(4):1071–1082. Ma J. 2009. Tectonophysical research on fault-block tectonics and earthquakes[J]. Chinese Journal of Geology,44(4):1071–1082 (in Chinese).
毛慧慧,雷建设,滕吉文. 2016. 鄂尔多斯盆地北缘南北向剖面上地幔远震P波层析成像[J]. 地球物理学报,59(6):2056–2065. Mao H H,Lei J S,Teng J W. 2016. Teleseismic P-wave tomography of the upper mantle along the north-south profile under the northern Ordos basin[J]. Chinese Journal of Geophysics,59(6):2056–2065 (in Chinese).
盛书中,万永革,黄骥超,卜玉菲,李祥. 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报,58(2):436–452. Sheng S Z,Wan Y G,Huang J C,Bu Y F,Li X. 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics,58(2):436–452 (in Chinese).
宋晓燕,雷建设,杜沫霏,何静. 2020. 鄂尔多斯地块北部及邻区Pn波速度结构与各向异性[J]. 地震学报,42(3):256–268. doi: 10.11939/jass.20190137 Song X Y,Lei J S,Du M F,He J. 2020. Pn-wave velocity structure and anisotropy beneath northern Ordos block and its adjacent areas[J]. Acta Seismologica Sinica,42(3):256–268 (in Chinese).
郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
朱日祥,陈凌,吴福元,刘俊来. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学,41(5):583–592. Zhu R X,Chen L,Wu F Y,Liu J L. 2011. Timing,scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences,54(6):789–797. doi: 10.1007/s11430-011-4203-4
邹和平,张珂,刘玉亮,李刚. 2010. 鄂尔多斯地块北部中、新生代玄武岩地球化学特征及其地质意义[J]. 大地构造与成矿学,34(1):92–104. doi: 10.3969/j.issn.1001-1552.2010.01.011 Zou H P,Zhang K,Liu Y L,Li G. 2010. Geochemical characteristics and their geological implications of Meso-Cenozoic basalts in the northern Ordos block,North China[J]. Geotectonica et Metallogenia,34(1):92–104 (in Chinese).
Ai S X,Zheng Y,Wang S X. 2020. Crustal deformations of the Central North China Craton constrained by radial anisotropy[J]. J Geophys Res:Solid Earth,125(7):e2019JB018374.
An M J,Feng M,Zhao Y. 2009. Destruction of lithosphere within the North China Craton inferred from surface wave tomography[J]. Geochem Geophys Geosyst,10(8):Q08016.
Ballard S,Pollack H N. 1987. Diversion of heat by Archean cratons:A model for southern Africa[J]. Earth Planet Sci Lett,85(1/2/3):253–264.
Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369–370:129–137. doi: 10.1016/j.jpgl.2013.03.015
Chang L J,Ding Z F,Wang C Y,Flesch L M. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear-wave splitting data[J]. Tectonophysics,699:93–101. doi: 10.1016/j.tecto.2017.01.025
Chen L,Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration[J]. J Geophys Res:Solid Earth,114(B6):B06307.
Clinkscales C,Kapp P,Wang H Q. 2020. Exhumation history of the north-central Shanxi Rift,North China,revealed by low-temperature thermochronology[J]. Earth Planet Sci Lett,536:116146. doi: 10.1016/j.jpgl.2020.116146
Dong H,Wei W B,Ye G F,Jin S,Jones A G,Jing J N,Zhang L T,Xie C L,Zhang F,Wang H. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos block and adjacent area:Evidence of regional lithospheric modification[J]. Geochem Geophys Geosyst,15(6):2414–2425. doi: 10.1002/2014GC005270
Guo Z,Afonso J C,Qashqai M T,Yang Y J,Chen Y J. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion:Extent and causes of cratonic lithosphere modification[J]. Gondwana Res,37:252–265. doi: 10.1016/j.gr.2016.07.002
Guo Z,Chen Y J. 2017. Mountain building at northeastern boundary of Tibetan Plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions[J]. Earth Planet Sci Lett,463:232–242. doi: 10.1016/j.jpgl.2017.01.026
He L J. 2015. Thermal regime of the North China Craton:Implications for craton destruction[J]. Earth-Sci Rev,140:14–26. doi: 10.1016/j.earscirev.2014.10.011
Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[G]//Inside the Subduction Factory. Washington DC: AGU: 83–105.
Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res:Solid Earth,111(B9):B09305.
Jiang M M,Ai Y S,Chen L,Yang Y J. 2013. Local modification of the lithosphere beneath the central and western North China Craton:3-D constraints from Rayleigh wave tomography[J]. Gondwana Res,24(3/4):849–864.
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
Laske G, Masters G, Ma Z, Pasyanos M E. 2012. CRUST1.0: An updated global model of Earth’s crust[C]//EGU General Assembly Conference Abstracts. Vienna: EGU, 15: 2658.
Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res:Solid Earth,117(B6):B06313.
Li S L,Guo Z,Chen Y J,Yang Y J,Huang Q H. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. J Geophys Res:Solid Earth,123(8):6940–6957.
Liu J,Wu J P,Wang W L,Fang L H,Chang K. 2020. Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations[J]. Tectonophysics,785:228430. doi: 10.1016/j.tecto.2020.228430
Liu J,Wu J P,Wang W L,Cai Y,Fang L H. 2021. Seismic anisotropy and implications for lithospheric deformation beneath the Ordos block and surrounding regions[J]. Geophys J Int,226(3):1885–1896. doi: 10.1093/gji/ggab154
Liu X,Zhao D P,Li S Z,Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth Planet Sci Lett,464:166–174. doi: 10.1016/j.jpgl.2017.02.024
Liu Y D,Ying J F. 2020. Origin of clinopyroxene megacrysts in volcanic rocks from the North China Craton:A comparison study with megacrysts worldwide[J]. Int Geol Rev,62(15):1845–1861. doi: 10.1080/00206814.2019.1663766
Lü Z Q. 2019. Uppermost mantle velocity and anisotropy structure beneath the North China Craton and its adjacent regions[J]. Tectonophysics,754:45–55. doi: 10.1016/j.tecto.2019.01.014
Menzies M,Xu Y G,Zhang H F,Fan W M. 2007. Integration of geology,geophysics and geochemistry:A key to understanding the North China Craton[J]. Lithos,96(1/2):1–21.
Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature,230(5288):42–43. doi: 10.1038/230042a0
Morgan W J. 1981. Hotspot tracks and the opening of the Atlantic and Indian Oceans[G]//The Oceanic Lithosphere. New York: Wiley: 443–487.
Niu Z J,Wang M,Sun H R,Sun J Z,You X Z,Gan W J,Xue G J,Hao J X,Xin S H,Wang Y Q,Wang Y X,Li B. 2005. Contemporary velocity field of crustal movement of Chinese mainland from Global Positioning System measurements[J]. China Science Bulletin,50(9):939–941.
Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989
Pollack H N,Hurter S J,Johnson J R. 1993. Heat flow from the Earth’s interior:Analysis of the global data set[J]. Rev Geophys,31(3):267–280. doi: 10.1029/93RG01249
Rawlinson N,Kennett B L N. 2004. Rapid estimation of relative and absolute delay times across a network by adaptive stacking[J]. Geophys J Int,157(1):332–340. doi: 10.1111/j.1365-246X.2004.02188.x
Shen X Z,Yuan X H,Liu M. 2015. Is the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions[J]. Earth Planet Sci Lett,428:172–180. doi: 10.1016/j.jpgl.2015.07.041
Sun Y J,Dong S W,Zhang H,Li H,Shi Y L. 2013. 3D thermal structure of the continental lithosphere beneath China and adjacent regions[J]. J Asian Earth Sci,62:697–704. doi: 10.1016/j.jseaes.2012.11.020
Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
Tang Y C,Obayashi M,Niu F L,Grand S P,Chen Y J,Kawakatsu H,Tanaka S,Ning J Y,Ni J F. 2014. Changbaishan volcanism in Northeast China linked to subduction-induced mantle upwelling[J]. Nat Geosci,7(6):470–475. doi: 10.1038/ngeo2166
Tao K,Grand S P,Niu F L. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography[J]. Geochem Geophys Geosyst,19(8):2732–2763. doi: 10.1029/2018GC007460
Tapponnier P,Molnar P. 1977. Active faulting and tectonics in China[J]. J Geophys Res,82(20):2905–2930. doi: 10.1029/JB082i020p02905
Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978
Thybo H,Nielsen C A. 2009. Magma-compensated crustal thinning in continental rift zones[J]. Nature,457(7231):873–876. doi: 10.1038/nature07688
Tian Y,Zhao D P,Sun R M,Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton[J]. Phys Earth Planet Inter,172(3/4):169–182.
Wang W,Wu J P,Hammond J O S. 2021. Mantle dynamics beneath the Sichuan basin and eastern Tibet from teleseismic tomography[J]. Tectonics,40(2):e2020TC006319.
Wang X C,Wilde S A,Li Q L,Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone[J]. Nat Commun,6(1):7700. doi: 10.1038/ncomms8700
Wang Z S,Kusky T M,Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone[J]. Geophys Res Lett,43(22):11567–11577.
Wei W,Xu J D,Zhao D P,Shi Y L. 2012. East Asia mantle tomography:New insight into plate subduction and intraplate volcanism[J]. J Asian Earth Sci,60:88–103. doi: 10.1016/j.jseaes.2012.08.001
Wilson J T. 1973. Mantle plumes and plate motions[J]. Tectonophysics,19(2):149–164. doi: 10.1016/0040-1951(73)90037-1
Xia B,Thybo H,Artemieva I M. 2020. Lithosphere mantle density of the North China Craton[J]. J Geophys Res:Solid Earth,125(9):e2020JB020296.
Xia Q K,Dallai L,Deloule E. 2004. Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano,SE China[J]. Chem Geol,209(1/2):137–151.
Xia Q K,Liu J,Kovács I,Hao Y T,Li P,Yang X Z,Chen H,Sheng Y M. 2019. Water in the upper mantle and deep crust of eastern China:Concentration,distribution and implications[J]. Natl Sci Rev,6(1):125–144. doi: 10.1093/nsr/nwx016
Xu H R,Luo Y H,Yang Y J,Shen W S,Yin X F,Chen G X,Yang X Z,Sun S D. 2020. Three-dimensional crustal structures of the Shanxi rift constructed by Rayleigh wave dispersion curves and ellipticity:Implication for sedimentation,intraplate volcanism,and seismicity[J]. J Geophys Res:Solid Earth,125(11):e2020JB020146. doi: 10.1029/2020JB020146
Xu X W,Ma X Y. 1992. Geodynamics of the Shanxi Rift system,China[J]. Tectonophysics,208(1/2/3):325–340.
Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament[J]. Lithos,96(1/2):281–298.
Xu Y G,Chung S L,Ma J L,Shi L B. 2004. Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean Craton:Constraints from geochemistry of basalts and mantle xenoliths[J]. J Geol,112(5):593–605. doi: 10.1086/422668
Xu Y G,Ma J L,Frey F A,Feigenson M D,Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton[J]. Chem Geol,224(4):247–271. doi: 10.1016/j.chemgeo.2005.08.004
Yang X Z,Xia Q K,Deloule E,Dallai L,Fan Q C,Feng M. 2008. Water in minerals of the continental lithospheric mantle and overlying lower crust:A comparative study of peridotite and granulite xenoliths from the North China Craton[J]. Chem Geol,256(1/2):33–45.
Yang Z F,Zhou J H. 2013. Can we identify source lithology of basalt?[J]. Sci Rep,3(1):1856. doi: 10.1038/srep01856
Yao Z X,Eric S,Wang C Y,Ding Z F,Chen Y S. 2020. Asthenospheric upwelling beneath northeastern margin of Ordos block:Constraints from Rayleigh surface-wave tomography[J]. Tectonophysics,790:228548. doi: 10.1016/j.tecto.2020.228548
Yin A. 2010. Cenozoic tectonic evolution of Asia:A preliminary synthesis[J]. Tectonophysics,488(1/2/3/4):293–325.
Yin Y T,Jin S,Wei W B,Ye G F,Jing J,Zhang L T,Dong H,Xie C L,Liang H D. 2017. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin,North China) constrained from magnetotelluric data:Implications for seismicity and rift evolution[J]. Tectonophysics,717:1–15. doi: 10.1016/j.tecto.2017.07.014
Yu Y,Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen,China:Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth Planet Sci Lett,455:1–6. doi: 10.1016/j.jpgl.2016.08.026
Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
Zhang H J,Thurber C. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2/3):373–403.
Zhang H Q,Huang Q H,Zhao G Z,Guo Z,Chen Y J. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen:Evidence for a mantle source of Datong volcanoes[J]. Earth Planet Sci Lett,453:182–192. doi: 10.1016/j.jpgl.2016.08.025
Zhang Y Q,Mercier J L,Vergély P. 1998. Extension in the graben systems around the Ordos (China),and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia[J]. Tectonophysics,285(1/2):41–75.
Zhao L,Allen R M,Zheng T Y,Hung S H. 2009. Reactivation of an Archean craton:Constraints from P- and S-wave tomography in North China[J]. Geophys Res Lett,36(17):L17306. doi: 10.1029/2009GL039781
Zhao L,Zheng T Y,Lu G. 2013. Distinct upper mantle deformation of cratons in response to subduction:Constraints from SKS wave splitting measurements in eastern China[J]. Gondwana Res,23(1):39–53. doi: 10.1016/j.gr.2012.04.007
Zhu G,Jiang D Z,Zhang B L,Chen Y. 2012a. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics[J]. Gondwana Res,22(1):86–103. doi: 10.1016/j.gr.2011.08.005
Zhu R X,Yang J H,Wu F Y. 2012b. Timing of destruction of the North China Craton[J]. Lithos,149:51–60. doi: 10.1016/j.lithos.2012.05.013
-
期刊类型引用(1)
1. 王再骄,高国明,李业成. 青藏高原及周边地区的重磁异常多尺度横向构造分析. 云南大学学报(自然科学版). 2025(01): 79-87 . 百度学术
其他类型引用(1)