Crustal structure in the Dasanjiang basin and its adjacent areas
-
摘要: 收集了大三江盆地及其邻区区域地震台网及多个流动台阵的连续波形及远震事件资料,采用背景噪声层析成像和接收函数叠加方法,分别获得了研究区三维S波速度结构、基底及莫霍面深度和泊松比。结果显示:浅层速度结构较好地反映了地表地形及地质特征,三江盆地呈明显的低速,虎林和勃利等小型盆地的S波速度也相对较低,而小兴安岭、张广才岭等则呈高速;到中下地壳层,盆地区则表现为明显的高速,表明到该深度层盆地已趋于稳定;依兰—伊通断裂下的低速异常延伸较深,表明它是一条较深的区域性断裂。接收函数结果显示:区内莫霍面的深度大约为30—36 km,整体较为平缓;在三江盆地内,前进坳陷的沉积层最厚,可达5.4 km,最薄处位于富锦隆起,为2.7 km,到西部绥滨断陷内沉积层又变厚,这与该盆地已知的两坳夹一隆的构造相一致。Abstract: We collected continuous waveforms and teleseismic events both from the regional permanent seismic network and several temporary seismic arrays in the Dasanjiang basin and its adjacent areas and obtained the 3D S-wave velocity structure, basement depth, Moho depth and Poisson’s ratio by using the ambient noise tomography and receiver function methods. Our results show that the shallow velocity structure corresponds well to the surface topography and geological features. The Sanjiang basin shows obvious low-velocity and small basins such as Hulin and Boli basins are also imaged as relatively low velocities, while the Xiaoxing’anling and Zhangguangcailing are characterized by high velocities. In the mid-lower crust, all basins show obvious high velocities, which indicates that they are stable at this depth. The low-velocity anomaly beneath the Yilan-Yitong fault extends down to deep, indicating that it is a regional deep fault. The results of the receiver function show that the Moho depth varies gently in the range of 30 km to 36 km. In the Sanjiang basin, the sedimentary thickness beneath Qianjin depression is the thickest, which could reach 5.4 km. While the sedimentary thickness beneath Fujin uplift is the thinnest, which could be 2.7 km. Beneath the western Suibin depression, sedimentary layer becomes thick again. The above features are consistent with the known tectonics of two depressions sandwiching one uplift.
-
引言
地震动参数及其衰减关系是地震工程的重点研究对象, 在地震区划和工程抗震设防中占有重要地位.地震动参数包括地震动三要素即地震动幅值、频谱和持时中的一个或多个,如幅值特征参数峰值加速度、频谱特征参数反应谱、持时特征参数括弧持时等.
地震动作用下工程结构的破坏情况与其吸收的地震动总能量相关.从能量的角度出发,Arias(1970)提出一种新型的地震动参数阿里亚斯强度,表示输入到单自由度体系单位质量的能量.阿里亚斯强度包含地震动的幅值和持时信息,其本身又是一种能量参数,与地震引起的灾害现象具有很强的相关性,被广泛应用于地震灾害危险性分析. Jibson(1993)发现与地震滑坡有关的纽马克(Newmark)累积位移与阿里亚斯强度具有很好的相关性;Cabanas等(1997)以当地建筑物损坏情况作为地震烈度评定标准的分析结果表明,阿里亚斯强度与本地烈度拟合得很好;王秀英等(2010)的研究显示汶川地震中整个龙门山震区的阿里亚斯强度能够诱发崩塌滑坡的水平向下限为0.4 m/s.
地震动衰减关系简化了地震的震级、断层类型、传播路径和场地条件等因素对地震动特征的影响,利用已知的地震动分布规律,将地震动参数表达为以上因素的函数.鉴于阿里亚斯强度在地震灾害危险性分析中的广泛应用,Abdrakhmatov等(2003),Travasarou等(2003),Stafford等(2009)和Lee等(2012)基于不断丰富的强震动数据,建立了不同地区的阿里亚斯强度衰减关系.由于缺乏强震动数据资料,我国大陆地区尚未建立明确的阿里亚斯强度衰减关系.
不同区域地壳结构和构造特征的不同导致地震动特性及其衰减关系具有差异性,我国大陆地区与美国西部、中亚和我国台湾地区同为构造活动区,地下介质品质因子Q值较低,地震波非弹性衰减较高,所发地震多为浅源强震,地震动衰减关系相近,但与日本、欧洲等地区的地震勘探特性及其衰减关系差异较大(Chen,Atkinson,2002;Douglas,2004;Akkar,Bommer,2007; 靳超宇,俞言祥,2009).
强震目录数据库NGA-west1(Next Generation Attenuation relationships for western US)中不包含我国大陆地震(Chiou et al, 2008),NGA-west2中增加了我国2008汶川MW7.9地震(Ancheta et al,2014),但其强震动加速度记录获取受限.考虑到未来我国大陆地区阿里亚斯强度研究的需求以及数据格式和标度(面波震级或矩震级、震中距或断层投影距等)的差异性,本文拟选取NGA-west1数据库中与我国大陆构造环境相近的美国西部、中亚和我国台湾地区的强震记录,采用肖亮和俞言祥(2010)提出的分步回归法求取回归系数,对阿里亚斯强度衰减关系予以分析,以期获取强震动的震级饱和及近场距离饱和特征,检验回归所得结果与实际数据的拟合程度.
1. 阿里亚斯强度
阿里亚斯强度的表达式为
(1) 式中,g为当地重力加速度,a(t)为某一分量的地震动加速度时程,T为地震动加速度记录的总持续时间,λ为结构物的阻尼比.对于一般的结构物,λ取值为0.05,则
(2) 进而可以近似得到阿里亚斯强度的简洁形式:
(3) 2. 强震数据
根据NGA数据库中GMX’s C1的分类方法,选择标注为自由地表或4层(含)以下轻型建筑物底层或附近的台站记录,以除去土结相互作用的影响;同时为了减少地形效应带来的影响,剔除隧道、大坝等特殊地形附近的台站记录.由于部分台站三分量记录不完整,为保证数据平衡,剔除水平分量不完整的台站记录.以场地地表 30 m土层等效剪切波波速vS30为分类依据,相应的场地分类见表 1.
表 1 本文场地分类标准Table 1. Site classification standards in this study场地类别 vS30/(m·s-1) 代码 基岩 >500 A 硬土 250-500 B 软土 <250 C 本文集中分析主震的阿里亚斯强度衰减关系,故将1999年台湾集集MW7.6地震的余震记录全部除去.由于此次地震主震的地震动相对于同样震级的其它地震偏低,其强震记录共401组,数量远超其它地震;为避免其对衰减关系高震级段的回归产生太大影响,从中随机选取50组(100条)数据纳入衰减关系的分析中.最终用于本文的地震目录见表 2.
表 2 本文所用地震目录Table 2. Catalog of earthquakes used in this study序号 地震 发震时间 MW 记录条数 1 Kern County 1952-07-21 7.4 4 2 Parkfield 1966-06-28 6.2 10 3 Borrego Mountain 1968-04-09 6.6 2 4 San Fernando 1971-02-09 6.6 56 5 Tabas 1978-09-16 7.4 2 6 Coyote Lake 1979-08-06 5.7 18 7 Imperial Valley-06 1979-10-15 6.5 60 8 Victoria 1980-06-09 6.3 2 9 Westmorland 1981-04-26 5.9 12 10 Coalinga-01 1983-05-02 6.4 90 11 Borah Peak-01 1983-10-28 6.9 4 12 Morgan Hill 1984-04-24 6.2 46 13 North Palm Springs 1986-07-08 6.1 52 14 Chalfant Valley-01 1986-07-20 5.8 10 15 Chalfant Valley-02 1986-70-21 6.2 20 16 Whittier Narrows-01 1987-10-01 6.0 208 17 Superstition Hills-01 1987-11-24 6.2 2 18 Superstition Hills-02 1987-11-24 6.5 6 19 Loma Prieta 1989-10-18 6.9 146 20 Cape Mendocino 1992-04-25 7.0 8 21 Landers 1992-06-28 7.3 136 22 Northridge-01 1994-01-17 6.7 282 23 Double Springs 1994-09-12 5.9 2 24 Chi-Chi 1999-09-20 7.6 100 25 Manji-01 1990-06-20 7.4 2 26 Sierra Madre 1991-06-28 5.6 16 27 Little Skull Mountain 1992-06-29 5.7 16 28 Hector Mine 1999-10-16 7.1 158 本文采用的震级为MW,取值范围为5.5—8.0;距离为断层投影距RJB, 取值范围为0—200 km.原始记录中地震为127次,强震动记录共有3275组,每组含三分量(部分分量无记录);筛选后的地震为28次,强震动记录为735组,两个水平分量看作两条独立的记录,共有1470条记录进行分析.数据整体的分布状况如图 1所示.
3. 衰减模型与回归结果
衰减关系中的协变量有矩震级MW、断层投影距RJB、场地类别和断层类型.按照表 1的分类标准,硬土场地共有记录1050条,基岩场地有238条,软土场地有182条.土层对地震动的放大效应表现为在衰减关系上增加一个常数.由于硬土场地记录较多,本文以硬土场地作为主要对象,基岩和软土场地的阿里亚斯强度衰减关系通过硬土场地加减常数得到.设定SA和SC两个哑指标表示场地类别,即SA=1和SC=0表示基岩场地;SA=0和SC=0表示硬土场地; SA=0和SC=1表示软土场地.考虑到正断层与走滑断层引起的地震动相近,且二者均小于逆断层,本文采用哑指标V表示断层类型:V=1表示逆断层,V=0表示其它类型断层.
3.1 衰减模型的建立
本文采用的衰减关系为
(4) 式中:Ia为阿里亚斯强度,单位为m/s;M(MW)为震级项,是关于MW的函数;G(MW,RJB)为矩震级与断层投影距的耦合项;S(SA,SC)为场地类型的函数,F(V)为与断层类型相关的函数,F(V)=fV,f为系数,V为哑指标;ε为期望值为0、标准差为σ的随机量.
场地类别和断层类型对阿里亚斯强度的影响采用简单的线性形式表示:S(SA, SC)=mSA+nSC,式中m,n为系数.
3.2 回归系数的求取
首先对硬土场地的记录进行分析.对于硬土场地,S=0,对回归分析无影响,因此式(4)可写为
(5) 式中:Iaij为第i个地震事件在第j个台站引起的阿里亚斯强度;Li为第i个地震事件的参数,与震级MW和断层类型有关,对于单个地震,其为常数;clg(Rij+Hi)为距离衰减项,在MW5.5—8.0内,系数c可以看作一个常数,Hi表示与第i个地震事件相关的近断层饱和项参数,采用Campbell(1981)提出并使用多年的形式,即Hi=dexp(eMWi),其中d,e为系数; ε为期望值为0、标准差为σ的随机量.
距离衰减项中断层投影距与距震级耦合在一起,回归系数的求取对数据的分布比较敏感,本文的近场饱和项系数经验性地借鉴肖亮和俞言祥(2010)的结果,取d=0.956, e=0.462.我们选取震级不同,距离分布较广的多组记录进行分析,求取每个地震事件的回归系数ci,取其平均后得到c=2.494,则距离衰减项为
(6) 考虑到地震动参数的震级饱和性,采用与Boore和Atkinson(2012)类似的方法,Li的回归采用分段函数的形式,具体如下:
(7) 对式(7)进行回归可得系数a1=-3.407,b1=1.065,a2=-1.073,b2=0.715,f=0.089.
在上述对硬土数据分析的基础上,增加基岩和软土的数据,对所有数据进行分析,进而得到最终的阿里亚斯强度相对于矩震级、断层投影距、断层类型和场地类别的衰减关系,即
(8) 式中系数m,n如前所述, 下标A, B, C为表 1中场地类型代码.对式(8)进行回归分析可得系数m=-0.262,n=0.099.这样,可得最终的衰减系数(表 3),相应的衰减关系为
表 3 阿里亚斯强度衰减关系系数Table 3. Coefficients of attenuation relations of Arias intensity震级 a b c d e m n f MW≤6.5 -3.407 1.065 2.494 0.956 0.462 -0.262 0.099 0.089 MW> 6.5 -1.073 0.715 2.494 0.956 0.462 -0.262 0.099 0.089 (9) 3.3 回归结果与实际数据对比
将得到的阿里亚斯强度衰减关系式与实际数据进行对比,观察数据点相对于衰减曲线的分布状况,如图 2所示.可知一定震级范围(如MW7.0—8.0)内的阿里亚斯强度值,大部分均位于相应的两条衰减曲线MW=7.0与MW=8.0之间.对于不同的场地类别或断层类型,以上所得衰减关系均与实际数据拟合得较好.
3.4 残差分析
由图 2可以看出阿里亚斯强度衰减关系的计算结果与实际数据拟合得较好.接下来计算实际与拟合的阿里亚斯强度残差,并观察其随矩震级或断层投影距这两个主要变量的变化情况,进一步检查拟合的优劣.由图 3可以看出:拟合残差随矩震级的波动较大,MW7.6为集集地震的主震,其阿里亚斯强度偏低;拟合残差随断层投影距的波动较小,整体较对称地分布于零线两侧.
4. 结果分析
4.1 与其它模型对比
由于研究区域不同以及所用强震动数据资料存在差异,导致了衰减关系的震级项、距离项和场地项所选取的形式不同,由此得到不同的衰减模型.为说明本文方法和结果的合理性,将其与Travasarou等(2003),Stafford等(2009)文中的模型Ⅰ以及Lee等(2012)所用的衰减模型进行比较,结果如图 4所示.
Travasarou等(2003)将vS30≥760 m/s或土层厚度<6 m归类为基岩,震源机制分为正断层、逆断层和走滑断层等3类,研究了全球活动板块边界的75次浅源地震;Stafford等(2009)将基岩定义为单轴抗压强度大于1 MPa且vS30>360 m/s,震源机制分为逆断层和非逆断层两类,以此对新西兰的23次地震进行分析;Lee等(2012)采用的震源机制分类标准与Travasarou等(2003)相同,场地项不再进行分类,统一表示成vS30的自然对数,研究对象为台湾的62次地震.
Stafford等(2009)的模型Ⅰ中包含震源深度项,本文未将其纳入衰减关系中,在应用其模型时,令震源深度为本文所用地震的加权平均值11.043 km;Lee等(2012)的模型中直接包含vS30的对数项,本文在应用其模型时,令vS30=760 m/s.
由图 4可以看出,4种模型均考虑了近场的距离饱和效应,所得阿里亚斯强度在MW为6.5时比较接近.震级方面:本文与Travasarou等(2003)近场震级饱和效应较明显;Stafford等(2009)的模型1直接采用震级的线性形式,未考虑震级饱和;Lee等(2012)对线性震级进行了对数修正,震级饱和效应不明显.距离衰减方面,4种模型得到的衰减系数不同,在远场区有较大差异.
综上,本文的模型采用了表示震级饱和的分段线性函数,距离衰减项体现了近场的距离饱和特性,与其它衰减模型相比,在MW6.5或远场区域比较接近,近场区域在震级过高(MW=7.5)或震级过低(MW=5.5)时有一定差异.
4.2 国内数据检验
近年来我国大陆地区逐渐获得了大量强震动加速度记录数据.为检验本文所得衰减关系对大陆数据的适用性,特选取两个典型地震即2008年汶川MW7.9地震和2013年芦山MW6.8地震,将实际数据计算得到的阿里亚斯强度与本文模型进行对比.图 5分别给出了芦山地震和汶川地震阿里亚斯强度衰减曲线与实际数据的对比结果.由于国内强震记录中场地仅包含基岩和土层两种类型,且前文得到的阿里亚斯强度衰减关系中硬土与软土差异较小,图中土层项衰减曲线对应于前文的硬土场地.国内数据未给出断层投影距RJB,对于芦山地震,断层尺度较小,震中距与断层投影距相近,实际数据点的RJB用震中距代替;对于汶川地震,由于其断层破裂尺度较大(长300 km),用震中距代替RJB会出现很大偏差,因此本文根据NGA-west2地震目录中给出的台站位置和RJB与国内强震记录提供的台站位置对照,阿里亚斯强度由国内强震记录计算得出,RJB取NGA-west2中数值.
基岩场地记录数较少且整体无太大偏差,不作分析.对于土层场地的数据,由图 5可以看出:芦山地震数据离散性较大,近场数据较预测值偏大,远场数据分布在预测值两侧,数据整体拟合得较好;汶川地震阿里亚斯强度离散性较小,实际数据整体较预测值偏大且随距离的衰减较慢,一方面主要是由于1999年台湾集集MW7.6地震导致高震级地震的阿里亚斯强度拟合值偏低,另一方面,汶川地震断层破裂长度太大(300 km),本文衰减关系分析中RJB取值不超过200 km,在该距离范围内,场点仍可看作近场,故实际数据的衰减速度偏小.
5. 讨论与结论
考虑到未来我国大陆地区阿里亚斯强度研究的需求,本文对NGA-west1数据库中的强震资料进行了针对性的筛选,初步建立了以美国西部数据为主的阿里亚斯强度的衰减关系.该模型很好地体现了阿里亚斯强度近场饱和、震级饱和特性,采用分步回归的方式可以减少变量之间相关性的影响.
回归过程中对地震动偏低且强震记录较多的集集地震记录进行了缩减,以降低其对高震级回归所产生的影响.由于研究区域和所采用模型的差异,不同研究人员所得阿里亚斯强度衰减关系的系数不同,将本文结果与相关的3个衰减模型进行比较,结果显示对于中等震级(MW6.5)而言,本文与其结果相近,而对于高震级或地震级由于近场和距离饱和项所采用的模型形式不同,本文与其结果差异较大.
我国大陆强震数据与本文结果拟合得较好,随着国内强震动数据的增多,可以根据已有的结果,利用转换方法建立我国大陆地区的阿里亚斯强度衰减关系.随着震源机理的深入研究和处理方法的改进,现有的衰减模型还可进一步修正细化,例如丰富的近断层样本可用于研究阿里亚斯强度的方向性效应和上下盘效应等,而且可以并入衰减关系中;进一步的残差分析可用于区域的概率危险性分析.
-
图 1 研究区主要构造背景及所用地震台站分布
图中白色三角形为中国数字地震台网固定台站,黑色圆点为多国合作布设的东北流动台阵(NECESSArray)的流动台站,黑色三角形为中国地震局地球物理研究所布设的五大连池—虎林和满洲里—绥芬河宽频带地震测线的流动台站;黑色粗线为图4中5条S波速度剖面Ⅰ −Ⅴ。灰色线为三江盆地内的次级构造单元边界,其中① 前进坳陷,② 富锦隆起,③ 绥滨断陷. 黑线代表区域主要断裂,F1:牡丹江断裂;F2:敦密断裂;F3:依兰—伊通断裂,下同
Figure 1. Map showing the major geological features of the studied area and distribution of seismic stations used in the study
White triangles represent permanent stations from China digital seismic network,black dots represent temporary stations from the NECESSArray,the black triangles represent temporary stations of Wudalianchi-Hulin and Manzhouli-Suifenhe broadband seismic survey lines which were performed by Institute of Geophysics,China Earthquake Administration. The thick black lines are the location of five profiles,the serial numbers of which are marked at the left end of the profile. The gray lines are the boundary of secondary tectonic units in Sanjiang basin,① Qianjin depression;② Fujin uplift;③ Suibin depression. The black lines represent major faults in the region,F1:Mudanjiang fault; F2:Dunmi fault;F3:Yilan-Yitong fault,the same below
图 6 不同深度层上的S波速度平面图
每层的深度标在各子图的右上角,蓝色三角形为中国数字地震台网固定台站,红色三角形为多国合作布设的东北台阵(NECESSArray)的流动台站,黑色三角形为中国地震局地球物理所布设的五大连池—虎林和满洲里—绥芬河宽频带地震测线的流动台站。其它标识同图1
Figure 6. S-wave velocity map at each depth slice
The depth of each layer is shown at the upper right corner of each panel. Blue triangles represent permanent stations from China digital seismic network,red triangles represent temporary stations from the NECESSArray,the black triangles represent temporary stations of Wudalianchi-Hulin and Manzhouli-Suifenhe broadband seismic survey lines. Other labels are the same as those in Fig. 1 (a) 3 km;(b) 5 km;(c) 10 km;(d) 15 km;(e) 20 km;(f) 25 km
图 8 研究区地震台站下方沉积层厚度图
白色圆点表示计算后得到的台站下方沉积层厚度为零或者小于1.5 km,接收函数不能分辨;“无”表示该台站的数据质量较差,未得到计算结果,下同
Figure 8. Distribution of the sedimentary depth beneath the stations in the studied area
The white dot indicates the station beneath which the thickness of the sedimentary layer is zero or less than 1.5 km,which are not resolved by the receiver function. “None” indicates that the data quality of the station is poor and the calculation result is not obtained,the same below
-
高东辉,陈永顺,孟宪森,张永刚,唐有彩. 2011. 黑龙江地区背景噪声面波群速度层析成像[J]. 地球物理学报,54(4):1043–1051. doi: 10.3969/j.issn.0001-5733.2011.04.019 Gao D H,Chen Y J,Meng X S,Zhang Y G,Tang Y C. 2011. Crustal and uppermost mantle structure of the Heilongjiang region from ambient noise tomography[J]. Chinese Journal of Geophysics,54(4):1043–1051 (in Chinese).
葛肖虹,刘俊来,任收麦,袁四化. 2014. 中国东部中—新生代大陆构造的形成与演化[J]. 中国地质,41(1):19–38. doi: 10.3969/j.issn.1000-3657.2014.01.002 Ge X H,Liu J L,Ren S M,Yuan S H. 2014. The formation and evolution of Mesozoic-Cenozoic continental tectonic in eastern China[J]. Geology in China,41(1):19–38 (in Chinese).
和钟铧,刘招君,张晓冬,陈永成,董林森. 2009. 黑龙江东部晚中生代盆地群构造层划分及构造沉积演化[J]. 世界地质,28(1):20–27. doi: 10.3969/j.issn.1004-5589.2009.01.003 He Z H,Liu Z J,Zhang X D,Chen Y C,Dong L S. 2009. Subdivisions of structural layers and tectonic-sedimentary evolution of eastern basin in Heilongjiang in Late Mesozoic[J]. Global Geology,28(1):20–27 (in Chinese).
贾承造,郑民. 2010. 东北白垩纪大三江盆地沉积构造演化及其残留盆地群的油气勘探意义[J]. 大庆石油学院学报,34(6):1–12. Jia C Z,Zheng M. 2010. Sedimentary history,tectonic evolution of Cretaceous Dasanjiang basin in Northeast China and the significance of oil and gas exploration of its residual basin[J]. Journal of Daqing Petroleum Institute,34(6):1–12 (in Chinese).
李天觉,陈棋福. 2019. 利用接收函数方法研究中国东北东南部地区不同构造体的地壳特征[J]. 地球物理学报,62(8):2899–2917. doi: 10.6038/cjg2019M0379 Li T J,Chen Q F. 2019. Crustal structure of different tectonic units in southeastern part of Northeast China using receiver functions[J]. Chinese Journal of Geophysics,62(8):2899–2917 (in Chinese).
刘国兴,张兴洲,杨宝俊,翁爱华,唐君辉,李雪森. 2006. 佳木斯地块及东缘岩石圈电性结构特征[J]. 地球物理学报,49(2):598–603. doi: 10.3321/j.issn:0001-5733.2006.02.037 Liu G X,Zhang X Z,Yang B J,Weng A H,Tang J H,Li X S. 2006. Electrical structures of the lithosphere along the Jiamusi massif and its eastern edge[J]. Chinese Journal of Geophysics,49(2):598–603 (in Chinese).
卢造勋,夏怀宽. 1993. 内蒙古东乌珠穆沁旗至辽宁东沟地学断面[J]. 地球物理学报,36(6):765–772. doi: 10.3321/j.issn:0001-5733.1993.06.008 Lu Z X,Xia H K. 1993. Geoscience transect from Dong Ujimqinqi of Inner Mongolia to Donggou of Liaoning,China[J]. Acta Geophysica Sinica,36(6):765–772 (in Chinese).
孙斌. 2013. 东北盆地群重磁特征与深部结构研究[D]. 南京: 南京大学: 52–60. Sun B. 2013. A Study of Gravity-Magnetic Features and Deep Tectonics of the NE China Basin Groups[D]. Nanjing: Nanjing University: 52–60 (in Chinese).
王枫. 2010. 黑龙江省东部张广才岭群新兴组: 岩石组合、时代及其构造意义[D]. 长春: 吉林大学: 3–5. Wang F. 2010. The Xinxing Formation From Zhangguangcai Range Group in Eastern Heilongjiang Province: Rock Association, Geochronology and Tectonic Implications[D]. Changchun: Jilin University: 3–5 (in Chinese).
危自根,陈凌. 2012. 东北地区至华北北缘地壳结构的区域差异:地壳厚度与波速比的联合约束[J]. 地球物理学报,55(11):3601–3614. doi: 10.6038/j.issn.0001-5733.2012.11.009 Wei Z G,Chen L. 2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton:Constrains from crustal thickness and vP/vS ratio[J]. Chinese Journal of Geophysics,55(11):3601–3614 (in Chinese).
危自根,储日升,陈凌,崇加军,李志伟. 2016. 复杂地壳接收函数H-κ叠加:以安纳托利亚板块为例[J]. 地球物理学报,59(11):4048–4062. doi: 10.6038/cjg20161110 Wei Z G, Chu R S, Chen L, Chong J J, Li Z W. 2016. Analysis of H-κ and vP/vS receiver function beneath crust with complex structure: Taking the Anatolia Plate as an example[J]. Chinese Journal of Geophysics, 59(11): 4048–4062 (in Chinese).
许卫卫,郑天愉. 2005. 渤海湾盆地北西盆山边界地区泊松比分布[J]. 地球物理学报,48(5):1077–1084. doi: 10.3321/j.issn:0001-5733.2005.05.014 Xu W W,Zheng T Y. 2005. Distribution of Poisson’s ratios in the northwestern basin-mountain boundary of the Bohai Bay basin[J]. Chinese Journal of Geophysics,48(5):1077–1084 (in Chinese).
许英才,王琼,曾宪伟,马禾青,许文俊,金涛. 2018. 鄂尔多斯地块西缘莫霍面起伏及泊松比分布[J]. 地震学报,40(5):563–581. Xu Y C,Wang Q,Zeng X W,Ma H Q,Xu W J,Jin T. 2018. Moho depth and Poisson’s ratio distribution in the western edge of Ordos block[J]. Acta Seismologica Sinica,40(5):563–581 (in Chinese).
杨宝俊,穆石敏,金旭,刘财. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报,39(6):772–782. doi: 10.3321/j.issn:0001-5733.1996.06.007 Yang B J,Mu S M,Jin X,Liu C. 1996. Synthesized study on the geophysics of Manzhouli-Suifenhe geoscience transect,China[J]. Acta Geophysica Sinica,39(6):772–782 (in Chinese).
姚华建,徐果明,肖翔,朱良保. 2004. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究,25(1):1–8. doi: 10.3969/j.issn.1003-3246.2004.01.001 Yao H J,Xu G M,Xiao X,Zhu L B. 2004. A quick tracing method based on image analysis technique for the determination of dual stations phase velocities dispersion curve of surface wave[J]. Seismological and Geomagnetic Observation and Research,25(1):1–8 (in Chinese).
曾正彬. 2012. 分析三江盆地石油地质条件与勘探前景[J]. 中国石油和化工标准与质量,33(9):140. doi: 10.3969/j.issn.1673-4076.2012.10.115 Zeng Z B. 2012. Analysis of petroleum geological conditions and exploration prospects in Sanjiang basin[J]. China Petroleum and Chemical Standard and Quality,33(9):140 (in Chinese).
张风雪,吴庆举,李永华. 2014. 中国东北地区远震S波走时层析成像研究[J]. 地球物理学报,57(1):88–101. Zhang F X,Wu Q J,Li Y H. 2014. A traveltime tomography study by teleseismic S wave data in the Northeast China area[J]. Chinese Journal of Geophysics,57(1):88–101 (in Chinese).
张广成,吴庆举,潘佳铁,张风雪,余大新. 2013a. 利用H-κ叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报,56(12):4084–4094. doi: 10.6038/cjg20131213 Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013a. Study of crustal structure and Poisson ratio of NE China by H-κ stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).
张广成,吴庆举,李永华,潘佳铁,张风雪,管见. 2013b. 利用莫霍面Ps震相研究中国东北地区地壳各向异性[J]. 地震学报,35(4):485–497. doi: 10.3969/j.issn.0253-3782.2013.04.004 Zhang G C,Wu Q J,Li Y H,Pan J T,Zhang F X,Guan J. 2013b. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase[J]. Acta Seismologica Sinica,35(4):485–497 (in Chinese).
章倩倩. 2012. 三江盆地演化与沉积充填特征[D]. 荆州: 长江大学: 5–20. Zhang Q Q. 2012. The Structural Characteristics and Depositional Filling in the Sanjiang Basin[D]. Jingzhou: Yangtze University: 5–20 (in Chinese).
张云鹏,任建业,王珊,赵学钦. 2016. 东北大三江盆地群早白垩世存在统一湖盆的沉积学证据[J]. 中国地质,43(4):1280–1290. Zhang Y P,Ren J Y,Wang S,Zhao X Q. 2016. The sedimentary evidence for the existence of unified basin in Early Cretaceous in Dasanjiang basin group,Northeast China[J]. Geology in China,43(4):1280–1290 (in Chinese).
张兴洲,郭冶,曾振,付秋林,蒲建彬. 2015. 东北地区中—新生代盆地群形成演化的动力学背景[J]. 地学前缘,22(3):88–98. Zhang X Z,Guo Y,Zeng Z,Fu Q L,Pu J B. 2015. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China[J]. Earth Science Frontiers,22(3):88–98 (in Chinese).
张毅. 2019. 应用接收函数方法研究中国东部壳幔间断面结构[D]. 北京: 中国地质大学(北京): 18–28. Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 18–28 (in Chinese).
郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
周建波,张兴洲,马志红,刘立,金魏,张梅生,王成文,迟效果. 2009. 中国东北地区的构造格局与盆地演化[J]. 石油与天然气地质,30(5):530–538. doi: 10.3321/j.issn:0253-9985.2009.05.002 Zhou J B,Zhang X Z,Ma Z H,Liu L,Jin W,Zhang M S,Wang C W,Chi X G. 2009. Tectonic framework and basin evolution in Northeast China[J]. Oil &Gas Geology,30(5):530–538 (in Chinese).
周荔青. 2005. 深大断裂与中国东部新生代盆地油气资源分布[D]. 西安: 西北大学: 5–9. Zhou L Q. 2005. Oil And Gas Distribution in Deep Fault Rupture And Cenozoic Basin in Eastern Part of China[D]. Xi’an: Northwest University: 5–9 (in Chinese).
朱洪翔,田有,刘财,冯晅,杨宝俊,刘才华,刘廷,马锦程. 2017. 中国东北地区高分辨率地壳结构:远震接收函数[J]. 地球物理学报,60(5):1676–1689. doi: 10.6038/cjg20170506 Zhu H X,Tian Y,Liu C,Feng X,Yang B J,Liu C H,Liu T,Ma J C. 2017. High-resolution crustal structure of Northeast China revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,60(5):1676–1689 (in Chinese).
朱洪翔. 2020. 接收函数与噪声频散联合反演东北典型构造区S波速度结构[D]. 吉林: 吉林大学: 16–40. Zhu H X. 2020. Shear Wave Structure of Typical Regions in NE China From Joint Inversion of Receiver Function and Ambient Noise Dispersion[D]. Jilin: Jilin University: 16–40 (in Chinese).
Barmin M P,Ritzwoller M H,Levshin A L. 2001. A fast and reliable method for surface wave tomography[J]. Pure Appl Geophys,158(8):1351–1375. doi: 10.1007/PL00001225
Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
Chen L,Wen L X,Zheng T Y. 2005. A wave equation migration method for receiver function imaging:1. Theory[J]. J Geophys Res,110(B11):B11309. doi: 10.1029/2005JB0003665
Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044
Herrmann R B, Ammon C J. 2004. Surface waves, receiver functions and crustal structure, computer programs in seismology, version 3.30[CP/OL]. [2021-09-20]. http://www.eas.slu.edu/People/RBHerrmann/CPS330.html.
He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199:1910–1918. doi: 10.1093/gji/ggu365
Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res,111(B9):B09305. doi: 10.1029/2005JB004066
Kang D,Shen W S,Ning J Y,Ritzwoller M H. 2016. Seismic evidence for lithospheric modification associated with intracontinental volcanism in northeastern China[J]. Geophys J Int,204(1):215–235. doi: 10.1093/gji/ggv441
Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400. doi: 10.1785/BSSA0890051395
Schimmel M,Stutzmann E,Gallart J. 2011. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale[J]. Geophys J Int,184(1):494–506. doi: 10.1111/j.1365-246X.2010.04861.x
Stockwell R G,Mansinha L,Lowe R P. 1996. Localization of the complex spectrum:The S transform[J]. IEEE Trans Signal Process,44(4):998–1001. doi: 10.1109/78.492555
Tang Y C,Obayashi M,Niu F L,Grand S P,Chen Y J,Kawakatsu H,Tanaka S,Ning J Y,Ni J F. 2014. Changbaishan volcanism in Northeast China linked to subduction-induced mantle upwelling[J]. Nat Geosci,7(6):470–475. doi: 10.1038/ngeo2166
Tao K,Niu F L,Ning J Y,Chen Y J,Steve G,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2014. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth Planet Sci Lett,398:48–57. doi: 10.1016/j.jpgl.2014.04.043
Zhang Y,Huang J L. 2019. Structure of the sediment and crust in the Northeast North China Craton from improved sequential H-κ stacking method[J]. Open Geosci,11:682–696.
Zheng Y,Shen W S,Zhou L Q,Yang Y J,Xie Z J,Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the Sea of Japan from ambient noise tomography[J]. J Geophys Res,116(B12):B12312. doi: 10.1029/2011JB008637
Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res,105(B2):2969–2980.
-
期刊类型引用(8)
1. 李山有,王振皓,卢建旗,李伟,马强,谢志南,陶冬旺. 考虑地震动空间相关性及大震震源效应的烈度场插值方法. 哈尔滨工业大学学报. 2024(10): 79-89 . 百度学术
2. 罗肖,程谦恭,王玉峰,李天话. 粒径对岩崩-碎屑流滑震特征的影响. 地球科学与环境学报. 2023(01): 118-130 . 百度学术
3. 李环宇,陈涛,杨福平,陈奇,徐晓桐,张明,戴陈兵,周怀斌. 基于Newmark方法的四川芦山6.1级地震公路滑坡快速评估. 华北地震科学. 2023(02): 16-21 . 百度学术
4. 丁佳伟,吕大刚,曹正罡. 考虑随机效应的Clough-Penzien功率谱参数预测模型及地震动合成. 振动与冲击. 2023(14): 260-269 . 百度学术
5. 崔玉龙,刘爱娟. 区域边坡地震危险性评价理论研究进展. 地震工程学报. 2022(03): 518-526 . 百度学术
6. 刘平,徐政伟,罗奇峰. 我国大陆地区地震动衰减关系研究进展. 地震学报. 2022(05): 797-809 . 本站查看
7. 肖亮,俞言祥. 我国大陆地区常用浅壳地震的地震动参数衰减关系. 地震学报. 2022(05): 752-764 . 本站查看
8. 王运生,刘江伟,赵波,罗永红,明伟庭,罗越,金刚,周宇航. 四川珙县M_s 5.4级地震斜坡地震动响应特征. 地球科学与环境学报. 2019(05): 613-622 . 百度学术
其他类型引用(5)