Estimation of average displacement of fault surface co-seismic dislocations
-
摘要: 根据管道性能设计的理念,现行管道抗震设计规范规定现行输油气管道重要区段和一般区段的设防断层位移分别为预测的最大位移值和平均位移值,目前的断层位移估计方法一般给出的只是断层未来一百年的最大位移值,而不能给出平均位移值。针对此问题,本文综合国内外发震断层在地表的同震位错分布调查结果,总结分析了断层同震位错沿断层地表破裂走向的分布形态特点,并通过对实际震例中不同计算方法得到的平均位移进行对比分析,得到了断层的平均同震位错量与断层最大同震位错量的比值关系。基于国内外地震断层位移的大量数据,考虑一定的安全系数,本文建议采用预测断层最大位移值的2/3作为一般区段输油气管道的设防断层位移。Abstract: According to the concept of pipeline performance design, the current seismic code for oil and gas pipelines stipulates that the displacement of fortified faults in important sections and general sections are the predicted maximum displacement and average displacement, respectively. However, at present, the fault displacement estimation method generally gives only the maximum displacement of the fault in the next 100 years, but not the average displacement. Therefore, based on the investigation results of co-seismic dislocation distribution of seismogenic faults on the surface at home and abroad, the distribution characteristics of co-seismic dislocations along the surface fracture trend of the fault are summarized and analyzed in this paper. And then the ratio of the average co-seismic dislocation of the fault to the maximum co-seismic dislocation of the fault is summarized by the statistical comparison and analysis of the average displacement obtained by different calculation methods in the actual earthquake cases. Anyway, based on a large number of data of seismic fault displacement at home and abroad, considering a certain safety factor, this paper suggests that 2/3 of the maximum displacement of the predicted fault should be used as the fortification displacement of the oil and gas pipeline in general sections.
-
-
图 3 德纳利地震的地表水平位移(Eberhart-Phillips et al,2003)
Figure 3. Surface horizontal displacement of Denali earthquake (Eberhart-Phillips et al,2003)
表 1 2001年昆仑山口西MS8.1地震各次级破裂段的平均位移
Table 1 Average displacement of each secondary fracture segment resulted from western Kunlun Mountain Pass MS8.1 earthquake in 2001
次级破裂段 最大位错量Dmax/m ${\dfrac{1}{2}D_{\rm{max} }/{\rm{m} } }$ 算术平均值${\overline{ { { {D} } } } }$/m 面积等效平均值DS /m DS /Dmax 布喀达坂峰地表破裂西段 5.5 2.75 2.40 2.33 0.42 布喀达坂峰地表破裂东段 4.5 2.25 1.83 2.00 0.45 库赛湖西破裂段 6.2 3.10 2.95 3.54 0.571 库赛湖东破裂段 6.5 3.25 3.30 3.67 0.56 昆仑山口地表破裂段 4.0 2.00 2.32 2.58 0.64 表 2 汶川地震竖向断层同震位错的平均位移计算结果
Table 2 Average displacement of vertical fault dislocation in Wenchuan earthquake
断层名称 最大位错量Dmax/m ${\dfrac{1}{2}D_{\rm{max} }/{\rm{m} }}$ 算术平均值${ \overline{ {D} }}$/m 面积等效平均值DS /m DS /Dmax 北川—映秀断裂 6.15 3.075 3.0283 3.09 0.50 灌县—江油断裂北段 2.8 1.4 1.19 0.983 9 0.35 灌县—江油断裂南段 3.5 1.75 1.07 1.13 0.32 表 3 汶川地震水平向断层同震位错的平均位移计算结果
Table 3 Average displacement of horizontal fault dislocation in Wenchuan earthquake
断层名称 最大位错量Dmax/m ${\dfrac{1}{2}D_{\rm{max} }/{\rm{m} }}$ 算术平均值${ \overline{ {D} } }$/m 面积等效平均值DS /m DS /Dmax 北川—映秀断裂 5.0 2.5 2.210 2.20 0.44 灌县—江油断裂北段 0.8 0.4 0.334 0.5 0.625 灌县—江油断裂南段 2.9 1.45 0.525 0.4 0.14 -
陈杰,陈宇坤,丁国瑜,王赞军,田勤俭,尹功明,单新建,王志才. 2004. 2001年昆仑山口西 MS8.1地表地表同震位移分布特征[J]. 地震地质,26(3):378–389. Chen J,Chen Y K,Ding G Y,Wang Z J,Tian Q J,Yin G M,Shan X J,Wang Z C. 2004. Surficial slip distribution and segmentation of the 426 km long surface rupture of the 14 November,2001,MS8.1 earthquake on the east Kunlun fault,northern Tibetan Plateau,China[J]. Seismology and Geology,26(3):378–389 (in Chinese).
陈立春,王虎,冉勇康,孙鑫喆,苏桂武,王继,谭锡斌,李智敏,张晓清. 2010. 玉树MS7.1级地震地表破裂与历史大地震[J]. 科学通报,55(13):1200–1205. Chen L C,Wang H,Ran Y K,Sun X Z,Su G W,Wang J,Tan X B,Li Z M,Zhang X Q. 2010. The MS7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu fault[J]. Chinese Science Bulletin,55(31):3504–3509. doi: 10.1007/s11434-010-4079-2
邓起东,陈立春,冉勇康. 2004. 活动构造定量研究与应用[J]. 地学前缘,11(4):383–392. doi: 10.3321/j.issn:1005-2321.2004.04.005 Deng Q D,Chen L C,Ran Y K. 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers,11(4):383–392 (in Chinese).
丁国瑜, 田勤俭, 孔凡臣. 1993. 活断层分段[M]. 北京: 地震出版社: 12. Ding G Y, Tian Q J, Kong F C. 1993. Active Fault Subsection[M]. Beijing: Seismological Press: 12 (in Chinese).
刘爱文. 2002. 基于壳模型的埋地管线抗震分析[D]. 北京: 中国地震局地球物理研究所: 1–7. Liu A W. 2002. Response Analysis of a Buried Pipeline Crossing the Fault Based on Shell-Model[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–7 (in Chinese).
王龙,刘爱文,贾晓辉,李祥秀,王晓辉. 2020. 穿越活动断层地段的现役输油气管道抗震韧性评价[J]. 地震研究,43(3):539–545. doi: 10.3969/j.issn.1000-0666.2020.03.016 Wang L,Liu A W,Jia X H,Li X X,Wang X H. 2020. Evaluation of seismic resilience of oil and gas pipelines in service crossing active faults[J]. Journal of Seismological Research,43(3):539–545 (in Chinese).
吴珍汉,张作辰. 2008. 四川汶川MS8.0级地震的地表变形与同震位移[J]. 地质通报,27(12):2067–2075. doi: 10.3969/j.issn.1671-2552.2008.12.012 Wu Z H,Zhang Z C. 2008. Seismic deformation and co-seismic displacement of the MS8.0 Wenchuan earthquake in Sichuan,China[J]. Geological Bulletin of China,27(12):2067–2075 (in Chinese).
徐锡伟,陈文彬,于贵华,马文涛,戴华光,张志坚,陈永明,何文贵,王赞军,党光明. 2002. 2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征[J]. 地震地质,24(1):1–13. doi: 10.3969/j.issn.0253-4967.2002.01.001 Xu X W,Chen W B,Yu G H,Ma W T,Dai H G,Zhang Z J,Chen Y M,He W G,Wang Z J,Dang G M. 2002. Characteristic features of the surface ruptures of the Hoh Sai Hu (Kunlunshan) earthquake (MS8.1),northern Tibetan Plateau,China[J]. Seismology and Geology,24(1):1–13 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2008. GB 50470—2008 油气输送管道线路工程抗震技术规范[S]. 北京: 中国计划出版社: 2. Ministry of Housing and Urban Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2008. GB 50470−2008 Seismic Technical Code for Oil and Gas Transmission Pipeline Engineering[S]. Beijing: China Planning Press: 2 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2017. GB/T 50470—2017 油气输送管道线路工程抗震技术规范[S]. 北京: 中国计划出版社: 12. Ministry of Housing and Urban Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2017. GB/T 50470−2017 Seismic Technical Code for Oil and Gas Transmission Pipeline Engineering[S]. Beijing: China Planning Press: 12 (in Chinese).
Bonilla M G,Mark R K,Lienkaemper J J. 1984. Statistical relations among earthquake magnitude,surface rupture length,and surface fault displacement[J]. Bull Seismol Soc Am,74(6):2379–2411.
Eberhart-Phillips D,Haeussler P J,Freymueller J T,Frankel A D,Rubin C M,Craw P,Ratchkovski N A,Anderson G,Carver G A,Crone A J,Dawson T E,Fletcher H,Hansen R,Harp E L,Harris R A,Hill D P,Hreinsdóttir S,Jibson R W,Jones L M,Kayen R,Keefer D K,Larsen C F,Moran S C,Personius S F,Plafker G,Sherrod B,Sieh K,Sitar N,Wallace W K. 2003. The 2002 Denali fault earthquake,Alaska:A large magnitude,slip-partitioned event[J]. Science,300(5622):1113–1118. doi: 10.1126/science.1082703
Hreinsdóttir S,Freymueller J T,Bürgmann R,Mitchell J. 2006. Coseismic deformation of the 2002 Denali fault earthquake:Insights from GPS measurements[J]. J Geophys Res,111(B3):B03308.
Kennedy R P,Williamson R A,Chow A M. 1977. Fault movement effects on buried oil pipeline[J]. Trans Eng J ASCE,103(5):617–633. doi: 10.1061/TPEJAN.0000659
Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacements[J]. Bull Seismol Soc Am,84(4):974–1002.