Classification evaluation of construction sites with thick overburden based on machine learning
-
摘要:
针对因测量等误差对等效剪切波速计算的影响而造成的场地类别容易因单个因素稍有变化即发生的类别改变问题,从江苏省盐城地区收集了大量厚覆盖土层情况下的标准贯入值、深度、剪切波速等相关现场试验数据,利用机器学习方法进行训练建模,研究多特征值模型解决厚覆盖土层情况下场地分类问题的能力。结果表明:随机森林模型的分类精度在加入“等效变异系数”后可达97.7%,且其泛化能力以及对样本总体的判断能力均优于支持向量机模型,该模型为厚覆盖土层建筑场地类别的判断提供了一种新的方式。将二次判断结果与勘探报告结果对比,结果证明该随机森林模型可用于场地分类变化问题的二次判断,为避免工程现场在类似情况下出现过于保守的判断提供了可靠的依据。
Abstract:In response to the problem that the category of the site is easily changed due to slight changes in a single factor caused by measurement and other errors in the calculation of equivalent shear wave velocity, a large amount of relevant field test data such as standard penetration value, depth, and shear wave velocity were collected under thick overburdens of Yancheng area of Jiangsu Province. Machine learning methods were used for training and modeling, and the ability of multi eigenvalue models to solve site classification problems under thick overburdens was studied. The results showed that through feasibility analysis, the accuracies of the logistic regression model, the support vector machine model and the random forest model were 0.809, 0.939, 0.951, respectively. Considering the accuracy gap between each two models of the above three, the support vector machine algorithm and the random forest algorithm were selected as the optimal algorithms for building the model. In order to consider the integrity of the entire borehole as much as possible, this paper proposes a parameter called as “equivalent coefficient of variation”, which effectively improves the accuracy of the model. Subsequently, when establishing the support vector machine model, the classification performance of linear, polynomial, and Gaussian kernels was compared, and the Gaussian kernel function was ultimately selected for model building. The accuracy of the obtained support vector machine model was 0.951. When establishing a random forest model, the classification performance of the model was tested by setting different numbers of decision trees. Finally, 150 decision trees were selected to build the model, and the accuracy of the obtained random forest model was 0.977. From the results, the accuracy of the support vector machine model and the random forest model are 95.1% and 97.7%, respectively, with recall rates of 98.2% and 97.3%. The AUC (area under curve) values of both models are 0.98. Therefore, while the classification performance of the random forest model is not inferior to that of the support vector machine model, it has a higher adaptability to the sample data, and the recall and accuracy of the random forest model are similar, that is, the model’s judgment on the sample population is more balanced. In summary, the above random forest model is optimal to solve the problem studied in this paper, and can provide reliable basis for determining the category of sites with thick overburdens. Therefore the random forest model was used to determine the site category of 75 sets of data in the critical sample of this study. The results showed that 61 sets were consistent with the judgment results of the exploration report, while 14 sets were different from the judgment results of the exploration report. Moreover, the model’s judgment on class Ⅲ sites was completely consistent with the exploration report. All above proves that the model not only has excellent judgment ability in non-critical situations, but also maintains good judgment ability when used to solve problems in critical situations. Therefore, this model can make secondary judgments for similar engineering problems and provide effective reference basis. Based on the random forest model, the judgment results are output in sequence, and are organized and verified according to the original drilling information. It is found that in the judgment on the critical sample, the model correctly judged eight drilling holes, and only two drilling holes had different site classification judgments from the exploration report, all of which were classified as class Ⅳ drilling sites in the report and were classified as class Ⅲ drilling sites in the model. In practical engineering, judgments made on site for safety reasons are often conservative, and such judgments are magnified as two different site classification results near the boundary. This can explain the significant divergence between the model and exploration report’s judgments on class Ⅳ sites.
-
引言
在隧道施工和矿山开采过程中,我们可以由地震波的速度及其衰减分析推断地下冷热水的运移和储存情况,从而进行地下水资源的评价和地下工程突水、 涌泥等地质灾害预报. 地震波振幅的衰减随岩石物理性质的变化较地震波速度随岩石物理性质的变化更为灵敏,故推测振幅衰减可能携带了比速度更多的岩石物理性质方面的信息. 此外,振幅衰减还与岩石的应力状态密切相关(Best et al,1994; Shatilo et al,1998; 梁锴,2009).
国外研究人员对黏弹性各向异性介质中地震波的传播特征及VTI(transverse isotropy media with vertical symmetry axis)介质中地震波的衰减特征进行了深入研究. Samec和Blangy(1992)及Blangy(1994)对各向异性介质中地震波的黏弹性、 衰减、 吸收、 AVO等现象进行了探讨; Carcione(1995,2001)以及Carcione和Cavallini(1997)研究了黏弹各向异性介质的本构方程(即应力-应变关系),发展并完善了黏弹各向异性介质的基本理论; Červeny和Pšeník(2005a,b)深入研究了黏弹性单斜各向异性介质中SH波相速度、 偏振方向等随非均匀角变化的规律; Zhu和Tsvankin(2006,2007)分析了黏弹VTI介质和正交各向异介质中平面波相衰减和群衰减的特征,并推导了弱各向异性近似表达式; Vavryčuk(2007)给出了黏弹性VTI介质中非均匀波的群衰减系数随群角的变化规律; Vavryčuk(2008)利用摄动法推导了黏弹性VTI介质中地震波的速度、 衰减系数和品质因子的表达式; Behura(2006)研究了VTI介质和正交各向异性介质中相衰减系数和群衰减系数的变化规律,并利用谱比法进行衰减估计; Vavryčuk(2009)采用高阶摄动法推导了弱各向异性衰减参数即品质因子的表达式.
国内许多研究人员也对黏弹性各向异性介质中地震波的衰减特性及其应用前景进行了深入探讨. 张中杰等(1999)通过考察介质中的应力-应变关系,建立了非弹性EDA介质中具有非弹性效应的地震波动方程组; 杨顶辉等(2000)通过固体与液体的相互作用探讨了双相各向异性研究存在的问题与应用前景; 郝奇等(2010)利用改进的摄动理论对弱各向异性黏弹性介质中的非均匀平面波的传播特征进行深入探讨,并给出了误差分析,得到一些有益的结论; 郭智奇等(2010)研究了各向异性介质的衰减特性; 聂建新等(2010)对黏弹性各向异性介质中的波频散与衰减特性进行了研究; 韩颜颜(2011)采用数值模拟法对双相黏弹EDA介质中地震波的波场特征进行了详细分析.
上述研究主要是针对极端各向异性和VTI各向异性介质中地震波衰减及衰减估计问题,对HTI和EDA介质的研究则较少. 本文拟利用特殊分量法(Červeny,Pšeník, 2005a,b; 何现启,2010; 何现启等,2014),由Christoffel方程推导出黏弹性HTI和EDA介质中均匀、 非均匀P波、 SV波和SH波的精确相速度,旨在研究SH波相速度随非均匀角变化的规律; 然后从Christoffel方程出发推导出HTI和EDA介质中均匀、 非均匀地震波的精确相衰减系数和群衰减系数.
1. 黏弹性EDA介质中均匀地震波的衰减特性
波数k除了由Christoffel方程直接求解外,还可由慢度和相速度间接得到,具体表达式为(Červeny,Pšeník, 2005a,b; Taner,Koehler,1969; Tsvankin,1997)
式中,k为波数,v为相速度,ω为角频率,σ为复数,n和m为相互垂直的实单位向量,D为不均匀参数,是实数标量. 下面主要利用相速度v与波数k的关系来求解波数k和衰减系数.
1.1 黏弹性EDA介质中均匀地震波的相速度
黏弹性各向异性介质中地震波的相速度可由Christoffel特征方程求解,且只有行列式为零才有非零解,即
其中,Γikp(n)=aijklpjpl. 式中,p为地震波的慢度; δij为克罗内克符号; aijkl=cijkl/ρ为密度归一化的复黏弹性系数,其取值与频率有关; ρ为密度.
将均匀波的慢度向量p=σn代入上式,可导出黏弹性EDA介质中复参数的表达式为(梁锴,2009; 何现启,2010)
其中,
式中: cij为介质的弹性系数矩阵元素; θ和φ分别为波传播方向的极角和方位角; φ0是EDA介质对称轴相对HTI介质对称轴的转角,称为对称轴方位角.
由v=1/|ReσP|(Červeny,Pšeník, 2005a,b),可得复相速度为
对上述结果进行退化验证得到的相速度表达式与HTI介质中的相速度表达式相同.
1.2 黏弹性EDA介质中均匀地震波的衰减系数
由式(1)和(5)可得波数为
1.2.1 SH波相衰减系数
式(6)中SH波的波数写成复数形式为
式中cijR和cijI分别为弹性系数的实部和虚部. E和F与式(5)中相同. 令a=c55RF+c44RE2,b=c55IF+c44IE2,将k分别取实部和虚部可得
由相衰减系数的定义A=kI/kR(Zhu,Tsvankin, 2006,2007)可得SH波相衰减系数ASH为
在xoy平面内,将θ=0代入式(4),可得E=sin(φ-φ0),F=cos2(φ-φ0),将其代入式(7),则有
据相衰减系数定义有
可以看出,式(11)的形式与式(9)相同,但式(9)中a=c55Rcos2(φ-φ0)+c44Rsin2(φ-φ0),b=c55Icos2(φ-φ0)+c44Isin2(φ-φ0).
对于均匀波,非均匀系数ξ=0(波数的实分量与虚分量的夹角),均匀SH波群衰减系数(Ag=kIg/kRg)与相衰减系数相等(Červeny,Pšeník, 2005a,b; Zhu,Tsvankin, 2006,2007).
1.2.2 P波和SV波衰减系数
由式(4),将复弹性系数的实部与虚部分开可得
令D=c+id,即将D的实部与虚部分开,由上式可得其实部c与虚部d分别为
由式(6),并令kP=x+iy,将kP分解成实部与虚部可得
同理可得
其中,
极端各向异性介质是指介质中任一点处沿任意方向的弹性性质均不同,其具有21个独立弹性参数,其群衰减系数Ag=(kI/kR)cosξ(1+tanξtanψcosφ)(ξ为非均匀角,ψ为群角,φ为方位角)(何现启,2010),故可知均匀P波和SV波的群衰减系数与相衰减系数相等.
2. 黏弹性EDA介质中非均匀地震波的衰减特性
2.1 SH波的相速度和慢度
将非均匀波的慢度向量p=σn+iDm(m为实单位向量,垂直于n), 代入det[Γikp(n)-δik]=0,可求出黏弹性EDA介质中复参数的表达式为(Červeny,Pšeník, 2005a,b; 何现启,2010)
其中,
由式(21),可得SH波的相速度为
SH波的慢度为
2.2 SH波的相衰减系数
由式(2)和式(23)可得SH波的波数为
令Γ33=a+ib,代入式(22),并将实部与虚部分开可得
令E33=c+id,代入式(22),并将实部与虚部分开可得
令F33=x+iy,代入式(22),并将实部与虚部分开可得
令
将式(30)代入式(29)可得
SH波的波数为
SH波的衰减系数为
2.3 SH波的群衰减系数
由极端各向异性介质中群衰减系数Ag=(kI/kR)cosξ(1+tanξtanψcosφ)(ξ为非均匀角,ψ为群角,φ为方位角)(Zhu,Tsvankin, 2006,2007)和式(33)可得
此即为SH波的群衰减系数.
3. 数值计算
本节主要通过数值计算研究EDA介质中均匀、 非均匀SH波的相衰减和群衰减特性. 首先给出HTI介质的弹性系数矩阵,然后根据弹性EDA介质弹性系数矩阵与HTI介质弹性系数的关系,通过旋转对称轴得到EDA介质的弹性系数矩阵,再将其代入相应的计算公式即可得到EDA介质中地震波的衰减系数.
3.1 EDA介质中SH波的相衰减系数
黏弹性HTI介质的弹性系数矩阵为(Červeny,Pšeník,2005b)
将该弹性系数矩阵通过欧拉变换逆时针旋转60°,则可得到黏弹性EDA介质的弹性系数矩阵,以此矩阵表示的介质模型标记为模型1,即通过旋转HTI对称轴得到的具有水平对称轴的EDA介质. 将上述矩阵代入式(11)可计算均匀SH波的相衰减系数,并用Matlab成图,结果显示于图 1. 可以看出: 相速度随方位角的变化近似成椭圆,椭圆的长轴指示裂隙的方位,短轴指示EDA介质对称轴的方位; 相衰减系数随方位角的变化呈以裂隙方位角为对称轴的对称花瓣状,沿介质对称轴方向(即垂直裂隙方向)衰减系数较大,平行裂隙方向衰减系数较小. 这些均表明,均匀SH波的相速度和相衰减系数均可指示裂隙的走向,且相衰减系数相对于方位角的变化更敏感,更能反映地下介质的精细构造.
图 1 EDA介质中均匀SH相速度(a)和相衰减系数(b)与方位角的关系(模型1) 极坐标角度表示方位角,虚线圆圈表示相速度(单位为km/s)(a)和相衰减系数(b)的大小Figure 1. Relationship between phase velocity(a) and phase attenuation coefficients(b) and azimuth angle for homogeneous and inhomogeneous SH wave in EDA media(model 1) The polar coordinate represents azimuth angle. Dashed circle indicates the phase velocity(km/s)(a) and the phase attenuation coefficient(b)为研究相衰减系数随非均匀角的变化情况,下面通过模型2的数值计算来研究分析. 模型2(EDA)也是具有水平对称轴的各向异性介质,与模型1不同的是模型2由EDA弹性系数矩阵直接表示,而不是由HTI弹性系数矩阵表示,该模型的主要特性以弹性为主. 模型2(EDA)的弹性系数矩阵为
将上式代入式(33)计算得到非均匀SH波相衰减系数,用Matlab成图,结果如图 2所示. 可以看出,在对称轴方向(垂直裂隙方向),非均匀SH波相衰减系数随非均匀角的增大而增大,且其对称轴与介质对称轴的夹角也相应增加. 因此,利用相衰减与相角的相互关系来反演裂隙的走向时首先还要明确地震波的非均匀角大小,对于非均匀角较小的情况可将相衰减的对称轴方向近似为裂隙的走向,这是均匀波与非均匀波的不同之处. 上述对应关系可通过退化成HTI介质来验证,退化结果与 Červeny和Pšeník(2005a,b)及Tsvankin(1997)相同.
3.2 EDA介质中非均匀波的群衰减系数
非均匀SH波群衰减系数由式(34)计算而得,用Matlab成图,结果如图 3所示. 可以看出,群衰减系数相对于非均匀角的变化规律与相衰减系数相似,即在对称轴方向(垂直裂隙方向)非均匀SH波的群衰减系数随非均匀角的增大而增大,且其对称轴与介质对称轴的夹角也相应增加. 图 3b给出了非均匀角为60°时,非均匀SH波群衰减系数与群角的变化关系. 可见,群角只影响群衰减系数的大小,对其对称关系并无任何影响,且随群角的增大群衰减系数也相应增大.
4. 讨论与结论
本文基于前人的研究成果,从Christoffel方程出发,推导出非均匀、 均匀黏弹性EDA介质中地震波的三维相速度、 相衰减系数、 群衰减系数的计算公式,并将推导结果进行退化验证,结果表明其与HTI介质中的计算结果较吻合. 利用Matlab进行数值计算,研究了相速度、 相衰减系数、 群衰减系数与裂隙方向的关系. 依据数值计算结果,本文结论如下:
1)在均匀介质中SH波的相速度和相衰减系数均可指示裂隙的走向,且相衰减系数对方位角的变化更敏感,更能反映地下介质的精细构造.
2)非均匀介质中SH波相衰减系数随非均匀角的增大而增大,且其对称轴与介质对称轴的夹角也相应增加. 在利用相衰减与相角的相互关系来反演裂隙走向时,首先要明确地震波非均匀角的大小. 在非均匀角较小的情况下,将相衰减的对称轴方向近似为裂隙的走向. 群衰减系数随非均匀角的变化规律与相衰减系数相似,群角只影响群衰减系数的大小,对其对称关系并无任何影响,且随着群角的增大,群衰减系数也相应增加.
3)地震波振幅的衰减随岩石物理性质的变化比地震波速度随岩石物理性质的变化更为灵敏,因此衰减特性比速度特性携带了更多的岩石物理性质信息.
-
表 1 不同核函数的模型精度
Table 1 Accuracy of the models with different kernel functions
核函数 精度 线性核 83.6% 多项式核 (d=2) 91.2% 多项式核 (d=3) 93.7% 高斯核 95.1% 表 2 随机森林模型输出结果与现场结果对比
Table 2 Comparison between the output results of random forest model and on-site results
钻孔序号 现场判断结果 模型判断结果 1 Ⅳ类 Ⅲ类 2 Ⅳ类 Ⅲ类 3 Ⅳ类 Ⅳ类 4 Ⅲ类 Ⅲ类 5 Ⅲ类 Ⅲ类 6 Ⅲ类 Ⅲ类 7 Ⅲ类 Ⅲ类 8 Ⅲ类 Ⅲ类 9 Ⅲ类 Ⅲ类 10 Ⅲ类 Ⅲ类 -
陈国兴,丁杰发,方怡,彭艳菊,李小军. 2020. 场地类别分类方案研究[J]. 岩土力学,41(11):3509–3522. Chen G X,Ding J F,Fang Y,Peng Y J,Li X J. 2020. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics,41(11):3509–3522 (in Chinese).
陈卓识,袁晓铭,孙锐,王克. 2019. 土层剪切波速不确定性对场地刚性判断的影响[J]. 岩土力学,40(7):2748–2754. Chen Z S,Yuan X M,Sun R,Wang K. 2019. Impact of uncertainty in in-situ shear-wave velocity on the judgement of site stiffness[J]. Rock and Soil Mechanics,40(7):2748–2754 (in Chinese).
迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议[J]. 地震学报,43(6):787–803. Chi M J,Li X J,Chen X L,Ma S J. 2021. Problems and suggestions on site classification[J]. Acta Seismologica Sinica,43(6):787–803 (in Chinese).
黄鑫怀,李增华,邓腾,刘志锋,陈冠群,曾皓轩,郭世超. 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价[J]. 地球科学,48(12):4427–4440. Huang X H,Li Z H,Deng T,Liu Z F,Chen G Q,Zeng H X,Guo S C. 2023. Uranium potential evaluation of Zhuguangshan granitic pluton in South China based on machine learning[J]. Earth Science,48(12):4427–4440 (in Chinese).
黄衍,查伟雄. 2012. 随机森林与支持向量机分类性能比较[J]. 软件,33(6):107–110. Huang Y,Zha W X. 2012. Comparison on classification performance between random forests and support vector machine[J]. Software,33(6):107–110 (in Chinese).
姬建,王乐沛,廖文旺,张卫杰,朱德胜,高玉峰. 2021. 基于WUS概率密度权重法的边坡稳定系统可靠度分析[J]. 岩土工程学报,43(8):1492–1501. Ji J,Wang L P,Liao W W,Zhang W J,Zhu D S,Gao Y F. 2021. System reliability analysis of slopes based on weighted uniform simulation method[J]. Chinese Journal of Geotechnical Engineering,43(8):1492–1501 (in Chinese).
赖成光,陈晓宏,赵仕威,王兆礼,吴旭树. 2015. 基于随机森林的洪灾风险评价模型及其应用[J]. 水利学报,46(1):58–66. Lai C G,Chen X H,Zhao S W,Wang Z L,Wu X S. 2015. A flood risk assessment model based on random forest and its application[J]. Journal of Hydraulic Engineering,46(1):58–66 (in Chinese).
林凤仙,段继平,许峻,李正光,许昭永. 2020. 判定场地土类别的等效剪切波速度的最佳计算深度[J]. 工程地球物理学报,17(2):166–176. Lin F X,Duan J P,Xu J,Li Z G,Xu Z Y. 2020. The optimum calculation depth for determination of the site soil classification by equivalent shear wave velocity[J]. Chinese Journal of Engineering Geophysics,17(2):166–176 (in Chinese).
刘方园,王水花,张煜东. 2018. 支持向量机模型与应用综述[J]. 计算机系统应用,27(4):1–9. Liu F Y,Wang S H,Zhang Y D. 2018. Overview on models and applications of support vector machine[J]. Computer Systems &Applications,27(4):1–9 (in Chinese).
刘益平,邓维祥,周康. 2022. 基于标贯试验的岩土剪切波速多因素公式分析[J]. 中国勘察设计,(增刊):30–33. Liu Y P,Deng W X,Zhou K. 2022. Analysis of multi factor formula for shear wave velocity of rock and soil based on standard penetration test[J]. China Engineering Consulting,(S2):30−33 (in Chinese).
罗路广,裴向军,崔圣华,黄润秋,朱凌,何智浩. 2021. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,40(11):2306–2319. Luo L G,Pei X J,Cui S H,Huang R Q,Zhu L,He Z H. 2021. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering,40(11):2306–2319 (in Chinese).
王昊,严加永,付光明,王栩. 2020. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展,35(2):642–655. doi: 10.6038/pg2020CC0476 Wang H,Yan J Y,Fu G M,Wang X. 2020. Current status and application prospect of deep learning in geophysics[J]. Progress in Geophysics,35(2):642–655 (in Chinese).
许冲,徐锡伟. 2012. 逻辑回归模型在玉树地震滑坡危险性评价中的应用与检验[J]. 工程地质学报,20(3):326–333. Xu C,Xu X W. 2012. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake[J]. Journal of Engineering Geology,20(3):326–333 (in Chinese).
战吉艳,陈国兴,刘建达. 2012. 苏州城区场地等效剪切波速计算深度取值探讨[J]. 地震工程与工程振动,32(5):166–171. Zhan J Y,Chen G X,Liu J D. 2012. Discussion on calculation depth selection of equivalent shear wave velocity for site classification in urban area of Suzhou[J]. Earthquake Engineering and Engineering Vibration,32(5):166–171 (in Chinese).
张学工. 2000. 关于统计学习理论与支持向量机[J]. 自动化学报,26(1):32–42. Zhang X G. 2000. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica,26(1):32–42 (in Chinese).
中华人民共和国住房和城乡建设部.2010. 建筑抗震设计规范(GB50011—2010) [M]. 北京:中国建筑工业出版社:13. Ministry of Housing and Urban Rural Development of the People’s Republic of China. 2010. Code for Seismic Design of Buildings (GB50011−2010)[M]. Beijing:China Construction Industry Press:13 (in Chinese).
Altmann A,Toloşi L,Sander O,Lengauer T. 2010. Permutation importance:A corrected feature importance measure[J]. Bioinformatics,26(10):1340–1347. doi: 10.1093/bioinformatics/btq134
Bajaj K,Anbazhagan P. 2019. Seismic site classification and correlation between VS and SPT-N for deep soil sites in Indo-Gangetic basin[J]. J Appl Geophys,163:55–72. doi: 10.1016/j.jappgeo.2019.02.011
Bhavsar H,Panchal M H. 2012. A review on support vector machine for data classification[J]. Int J Adv Res Comput Eng Technol,1(10):185–189.
Breiman L. 2001. Random Forests[J]. Machine Learning, 45 :5−32.
Calderón‐Macías C,Sen M K,Stoffa P L. 2000. Artificial neural networks for parameter estimation in geophysics[J]. Geophys Prospect,48(1):21–47. doi: 10.1046/j.1365-2478.2000.00171.x
Chelgani S C,Matin S S,Hower J C. 2016. Explaining relationships between coke quality index and coal properties by Random Forest method[J]. Fuel,182:754–760. doi: 10.1016/j.fuel.2016.06.034
Ching J. 2020. Value of geotechnical big data and its application in site-specific soil property estimation[J]. J GeoEng,15(4):173–182.
Liu H J,Wang Y N,Lu X F. 2005. A method to choose kernel function and its parameters for support vector machines[C]//Proceedings of 2005 International Conference on Machine Learning and Cybernetics Vol. 7. Guangzhou:IEEE:4277−4280.
Martens D,De Backer M,Haesen R,Vanthienen J,Snoeck M,Baesens B. 2007. Classification with ant colony optimization[J]. IEEE Trans Evol Computat,11(5):651–665. doi: 10.1109/TEVC.2006.890229
Phoon K K,Zhang W G. 2023. Future of machine learning in geotechnics[J]. Georisk:Assess Manage Risk Eng Syst Geohazards,17(1):7–22.
Tesfamariam S,Liu Z. 2010. Earthquake induced damage classification for reinforced concrete buildings[J]. Struct Saf,32(2):154–164. doi: 10.1016/j.strusafe.2009.10.002
Xiao S H,Zhang J,Ye J M,Zheng J G. 2021. Establishing region-specific N-VS relationships through hierarchical Bayesian modeling[J]. Eng Geol,287:106105. doi: 10.1016/j.enggeo.2021.106105
Zhang J,Wang T P,Xiao S H,Gao L. 2021a. Chinese code methods for liquefaction potential assessment based on standard penetration test:An extension[J]. Soil Dyn Earthq Eng,144:106697. doi: 10.1016/j.soildyn.2021.106697
Zhang R H,Li Y Q,Goh A T C,Zhang W G,Chen Z X. 2021b. Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models[J]. J Rock Mech Geotech Eng,13(6):1478–1484. doi: 10.1016/j.jrmge.2021.08.001
Zhang W G,Phoon K K. 2022. Editorial for advances and applications of deep learning and soft computing in geotechnical underground engineering[J]. J Rock Mech Geotech Eng,14(3):671–673. doi: 10.1016/j.jrmge.2022.01.001