Strong earthquakes loading of the 2021 Madoi MW7.4 earthquake and its effects on stress disturbances in surrounding area
-
摘要:
2021年5月22日在青海玛多发生MW7.4地震,为了探究玛多地震的不同滑动模型对周围地区及断层应力的加卸载作用,本文首先以GNSS数据为约束,结合中国地震局地质研究所公布的玛多地震同震滑动模型(模型A)断层面几何结构反演获得同震滑动模型(模型C),再分别利用模型A、模型B(USGS)、模型C计算玛多地震对周围地区及断层的应力加卸载作用。结果显示:① 模型C矩震级为MW7.46,最大滑动量为3.39 m,主体破裂位于0—10 km深度范围,整体破裂东侧大于西侧,滑动分布相对于模型A也更加均匀平滑,反演效果较好;② 不同模型计算的应力分布基本相同,沿破裂段同震库仑应力加载区域面积随着深度的增加而增加,且在发震断裂带西端、东端分别各有两处明显的库仑应力加载区域,在昆仑山口—江错断裂东、西段、甘孜—玉树断裂、东昆仑断裂东段、玛多—甘德断裂、清水河断裂中、西段、达日断裂西段均产生了明显的应力加载,但模型B计算结果有所差异,昆仑山口—江错断裂中段处于应力卸载状态,震后10年断层应力状态变化不大,但清水河断裂东段在震后应力调整中卸载作用较为明显,地震危险性降低;③ 为了探究强震对玛多地震的影响,本文分别计算了2008年汶川地震以后巴颜喀拉地块M≥7.0强震同震及震后效应对玛多地震的应力加卸载,结果表明所有强震均对玛多地震有应力加载作用,但累积库仑应力并未超过触发阈值。
Abstract:On May 22, 2021, the MW7.4 earthquake occurred in Madoi, Qinghai. In order to explore the loading and unloading effects of different sliding models of Madoi earthquake on the surrounding areas and fault stresses, in this paper, the co-seismic sliding model (Model C) is obtained by taking GNSS data as a constraint combining the inversion of the geometric structure of the fault plane of Model A (Institute of Geology, China Earthquake Administration), and then the loading and unloading effects of Madoi earthquake on the surrounding areas and fault stresses are calculated by using Model A, Model B (USGS), and Model C respectively. The results show that: ① The moment magnitude of Model C is MW7.46, the maximum slip is 3.39 m, the main fracture is located in the depth range of 0−10 km, the east side of the overall fracture is larger than the west side, the slip distribution is more uniform and smoother than Model A, and the inversion effect is good. ② The stress distributions calculated by different models are basically the same. The area of co-seismic Coulomb stress loading along the fracture segment increases with the depth, and there are both two distinct Coulomb stress loading areas at the west and east ends of the seismogenic fault zone. Significant stress loading occurs in the east and west sections of Kunlunshankou-Jiangcuo fault, Garze-Yushu fault, east section of the East Kunlun fault, Madoi-Gander fault, middle and west sections of Qingshuihe fault and west section of Dari fault. However, the Model B calculations differ, with the middle section of the Kunlunshankou-Jiangcuo fault in a state of stress unloading at the location. The fault stress state did not change much in the 10 post-seismic years, but the eastern section of the Qingshuihe fault had more significant stress unloading in the post-seismic stress adjustment, and the seismic hazard was reduced. ③ In order to explore the impact of strong earthquakes on Madoi earthquake, this paper calculated the co-seismic and post-seismic effects of the M≥7.0 strong earthquakes in Bayan Hara block after the 2008 Wenchuan earthquake on the stress loading and unloading of Madoi earthquake respectively. The results show that the Madoi earthquake is subject to strong earthquake loading, but it does not exceed the trigger threshold.
-
引言
山东地区位于中国大陆东部,自中生代以来经历了复杂的地质构造运动,如中生代早期华北地块与扬子地块的碰撞、中生代中晚期的华北克拉通破坏以及新生代以来的拉张变形等。陆地区域内发育沂沭断裂带(郯庐断裂带山东段)和聊考断裂带两大断裂系统,北部海域发育张家口—蓬莱断裂带,导致地震活动频繁,并伴有大地震的发生,如1668年郯城M8.5地震,造成了重大的人员伤亡和经济损失。
2003年6月5日和2020年2月18日,山东省最大的两个城市青岛和济南分别发生了一次M4.1地震(图1),虽然未导致较大的人员伤亡和经济损失,但由于其发生于人口均近千万的两大城市,且有感范围较大,余震次数较多,而上述两个地区通常被认为属于“弱震”区,因此,这两次地震仍然引发了非常大的关注。前人综合余震重定位结果、震源机制解等数据,推测这两次地震可能属于相对完整岩体条件下的一次新破裂活动(潘元生等,2004)或区域构造应力作用下附近断裂或次级派生断裂活动的结果(张斌等,2020)。另外,自2000年以来,山东半岛地区相继发生了崂山震群、乳山震群和长岛震群,但目前上述发震区尚未有高精度的层析成像数据,速度结构与发震机理仍不清楚。因此,有必要查明上述地区的浅部及深部速度结构形态,探讨速度结构与地震发震机理之间的关系,为后期的防震减灾提供理论支持。
图 1 山东及周边地区构造分区图(修改自苏道磊等,2016)Figure 1. Tectonic settings in and around Shandong area (modified from Su et al,2016)1. 数据与方法
本文所用数据来源于山东及邻区96个台站(图2a)记录的区域内地震事件的P波和S波到时数据,主要分为两部分:第一部分为1975年1月至2014年1月发生的天然地震事件(苏道磊等,2016);第二部分为2016年1月至2019年12月发生的天然地震事件。原始数据共包含7 271个地震事件。
为保证反演结果的准确性,需要对地震事件进行严格挑选,设定标准如下:① 每个地震事件至少被4个台站接收;② 震相走时残差绝对值小于3.0 s;③ 重定位前后,发震时刻偏差小于2.0 s,水平向偏差小于6 km,震源深度偏差小于8 km。最终筛选出4 652个地震事件,包括3万6 482个P波震相到时和3万2 600个S波震相到时用于成像反演(图2b)。
本文采用TOMOG3D三维层析成像反演方法(Zhao et al,1992)。该方法采用三维网格节点表示空间的速度分布,空间内每一点的速度值由周围八个节点的速度值进行线性插值获得,允许三维空间内存在间断面,通过伪弯曲算法快速准确地计算射线路径和走时,并能够同时处理近远震及后续震相到时数据。
合适的一维初始速度模型对最终反演结果的准确性至关重要。苏道磊等(2016)分别测试了三个初始速度模型:① 鲁西地区地壳速度模型,同时考虑莫霍面起伏(嘉世旭,张先康,2005);② 山东地震台网定位用地壳速度模型;③ 华北地区地壳速度模型(陈立华,宋仲和,1990)。测试结果表明,鲁西地区地壳速度模型的走时残差均方根最小,也更符合真实地层情况,而华北地区地壳速度模型走时残差远大于其它两个速度模型。因此,本文仅对比前两个初始速度模型的走时残差,并同时考虑莫霍面起伏的影响。其中,莫霍面埋深数据来自于CRUST1.0模型(Laske et al,2013)和郑宏等(2021)利用接收函数反演得到的山东地区莫霍面埋深等(图3)。初始S波速度模型由P波速度除以1.732得到。
经过计算,上述两个初始速度模型的残差均方根分别为0.841 s和0.860 s,走时残差分布如图4所示。对比发现,鲁西地区速度模型要优于山东地震台网定位用地壳速度模型,与苏道磊等(2016)的结论相似。因此,后续的层析成像反演采用鲁西地区速度模型,并考虑莫霍面起伏的影响。
本研究中,初始模型三维网格节点横向间隔为0.2°×0.2°,纵向上分别在1,10,20和30 km深度处设置节点层。反演前,基于初始速度模型和原始到时数据对所有地震事件进行了重新定位。重定位前后的走时残差分布如图4所示,重定位后的总体走时残差均方根由0.841 s降低到0.649 s,其中P波走时残差均方根由0.792 s降低到0.620 s,S波走时残差均方根由0.893 s降低到0.680 s,说明地震定位精度有了较大幅度的提高。走时残差绝大多数位于±2 s以内,因此选择走时残差在±2 s以内的震相参与最终的成像反演。反演采用带阻尼和平滑因子的最小二乘(least squares QR-factorization,缩写为LSQR)方法(Paige,Saunders,1982)得到最终的三维速度结构。通过大量的测试,P波和S波速度反演采用的最优阻尼和平滑因子均为5.0和50.0 (图5)。
图 5 P波(a,b)和S波(c,d)成像中不同阻尼和平滑因子对应的三维速度模型标准差与走时残差均方根关系曲线Figure 5. Trade-off curves between the standard deviation of the 3-D velocity model and the root-mean-square of travel time residual according to the damping (a and c) and smoothing (b and d) parameters for P- (a,b) and S-wave (c,d) tomographies2. 分辨率测试
在分析成像结果之前,需要对成像结果的可靠性进行评估,一般采用检测板(checkerboard)方法(Zhao et al,1992)。在该方法中,首先将三维空间内相邻网格节点分别设置±3%的速度扰动,然后利用相同的地震和台站分布计算理论走时,并在计算理论走时过程中加入标准差为0.1 s的随机误差来检测计算稳定性。随后对得到的理论走时在初始一维速度模型的基础上进行反演,通过对比三维网格节点处扰动值的恢复情况对成像结果的可靠性进行评估。如果反演后扰动值与反演前扰动值的分布相似,则说明分辨率较好。
图6显示了横向间隔分别为0.33°×0.33°,0.4°×0.4°和0.5°×0.5°的分辨率测试结果。结果显示,对于P波和S波成像结果,研究区内大部分地区的分辨率能达到0.4°×0.4°,部分地区如鲁西南地区和山东半岛地区可达到0.33°×0.33°的分辨率。其中:网格间距为0.33°×0.33°时,P波和S波检测板扰动值恢复准确性分别达到74%和81%,振幅恢复达到70%的比例约为47%和59%,振幅恢复达到100%的比例约为32%和41%;网格间距为0.4°×0.4°时,P波和S波检测板扰动值恢复准确性分别达到76%和82%,振幅恢复达到70%的比例约为52%和62%,振幅恢复达到100%的比例约为36%和41%;网格间距为0.5°×0.5°时,P波和S波检测板扰动值恢复准确性分别达到77%和82%,振幅恢复达到70%的比例约为55%和64%,振幅恢复达到100%的比例约为37%和42%。
3. 结果与讨论
经过反演,P波和S波走时残差均方根由反演前的0.620 s和0.680 s分别降低到0.378 s和0.417 s,减少近40%。利用P波、S波反演结果计算得到了泊松比成像结果,如图7所示。苏道磊等(2016)的P波层析成像结果揭示出:在1—10 km深度切片上,沂沭断裂带沿构造走向表现出强烈的横向不均一性,高低速异常交替出现,胶东半岛北部海域、胶莱盆地和济阳坳陷主要表现为低速异常;20—30 km深度,鲁西地区存在较大范围的低速异常(苏道磊等,2016)。上述结果与本文的P波成像结果非常一致(图7a)。另外,本文的S波成像结果与Li等(2018)基本一致,如在10 km深度上,沂沭断裂带北部以低速异常为主(图7b),20—30 km山东半岛表现为大范围的低速异常(图7a)。但由于本文应用了更多的P波和S波到时数据,因此本文的成像结果具有更高的分辨率,如在1 km和10 km深度,沂沭断裂带南部西侧的两个低速异常区相互分离,断裂带东侧表现为高速异常(图7a),这在苏道磊等(2016)的研究中揭示得并不明显。同时,本文的检测板测试结果也要优于苏道磊等(2016),鲁西南和山东半岛地区分辨率能够达到0.33°×0.33°。山东半岛地区中下地壳存在大范围低速异常,说明该地区可能存在较强烈的地幔上涌(李志伟等,2006)。本文同时利用Liu和Zhao (2018)提出的方法计算了1—30 km的P波、S波和泊松比的平均值。平均泊松比异常与郑宏等(2021)利用接收函数反演得到的山东地区的泊松比分布基本一致,进一步说明了本文成像结果的可靠性。
泰山作为山东地区的最高点,自新生代以来经历了多期快速抬升(李理,钟大赉,2006)。接收函数研究结果显示,泰山地区具有较薄的地壳厚度(32 km左右)和较大的泊松比(0.27),且没有明显的方位各向异性(郑宏等,2021)。本文的成像结果显示,泰山地区下方存在明显的低速异常(图8左下四幅图),这说明该地区仍存在较强的地幔上涌,导致泰山新生代以来出现显著抬升,并且现在仍处于抬升阶段(郑宏等,2021)。另外,在浅部1—10 km深度(图8左上四幅图),泰山北部为高速异常,南部为低速异常,这与泰山的岩性和地质构造是一致的:以泰山山前断裂为界,断裂北侧为泰山主体,主要出露前寒武纪泰山变质杂岩,以隆升为主;山前断裂南侧以沉降为主,主要为泰安—莱芜盆地巨厚的第三系碎屑岩及第四系沉积物(李理,钟大赉,2006)。
2020年2月18日,济南长清发生了一次MS4.1地震,震源深度约为2.7 km,并引发近40次的余震活动(张斌等,2020)。本文的成像结果显示,该地震震中位于P波、S波高低速异常和高低泊松比异常过渡带,可能与该地震有关的长清断裂也位于P波、S波和泊松比高低异常过渡带(图8上半部和图9)。震中东部的高速异常与该地区的背景噪声成像结果一致,可能与济南侵入岩体有关(雷霆,2020)。震源机制解显示,该地震具有正断兼走滑性质,其余震多为走滑性质(张斌等,2020)。另外,余震重定位结果显示,主震两侧的破裂呈明显不对称分布,以西北侧破裂为主(张斌等,2020)。因此,济南长清MS4.1地震可能是区域构造应力下长清断裂发生左旋走滑运动的结果(张斌等,2020),这与本文的层析成像结果相一致。另外,主震的西北向不对称破裂的形成可能是由于震中东侧高速异常体的存在阻碍了地震的东向破裂。
2003年6月5日青岛崂山地区发生了ML4.1地震(图10a左侧),2004年11月1日附近地区又发生一次ML3.6地震,这两次地震都形成了震群序列。根据定位结果,这两次震群序列大致呈北西走向,与附近的主要断裂近似垂直、与次级断裂展布方向基本一致但并不重合,可能属于相对完整岩体条件下的一次新的破裂(潘元生等,2003,2005)。根据本文的成像结果,这两次地震及震群序列发生在P波高低速异常过渡带、S波低速异常区和高低泊松比过渡区且偏向于高泊松比区域(图10a—c 1km),同时深部存在明显的P波和S波低速异常(图10a,b 10—30 km),这与1995年日本神户地震(ML7.2)震源区的速度和泊松比结构非常相似(Zhao et al,1996)。另外,震中附近水资源丰富,同时为花岗岩侵入形成地区,且构造裂隙发育(赵广涛等,1996)。因此本文认为,可能是深部的流体填充相对完整岩体内的裂隙并引发破裂,从而导致地震的发生。需要注意的是,虽然这两次地震及震群序列与本地区北东走向的主断层没有直接关系,但本文的成像结果显示,该地区北东走向的主断层基本位于低速区内以及高低泊松比异常的过渡带(图10),因此仍需警惕该地区发生震级更大的中强地震的可能性。
乳山地区位于大别—苏鲁超高压变质带的东部,可能存在大量的中生代岩浆侵入体(郭敬辉等,2005)。自2013年10月开始,记录到的乳山震群地震数已超过1万余次,最大震级为M5.0,目前震群活动可能已结束。震群周边的断裂大多以NE-NNE向为主,而近期的重定位结果和震源机制解显示,乳山地震序列主要呈NW向展布,绝大多数地震发生于中上地壳,发震断层可能为倾角近直立的左旋走滑断层,与区域内的主要断裂并不一致(张斌等,2017)。本文的成像结果显示,乳山震群周边1 km深度以高速异常和高泊松比异常为主,10 km深度主要为高低速异常过渡区,20—30 km深度以低速异常和低泊松比异常为主(图10)。另外,震群附近地热资源较为丰富(田粟,2012)。因此,本文认为,乳山地区深部存在热地幔物质上涌,内部含有的流体注入浅部相对较完整的侵入体内或侵入体之间,在区域应力场的作用下导致侵入体的破裂或侵入体之间隐伏断裂的活动,从而引发乳山震群。这与前人对乳山震群进行的震源谱参数反演、震中空间分布、震中随时间的演化规律以及震源区应力状态的研究结果是一致的(郑建常等,2016;王鹏,2019)。
长岛震群的发生可能主要受控于NWW向的张家口—蓬莱断裂,这是一条深大断裂,可能已切穿莫霍面甚至岩石圈,成为地幔热物质或基性物质上涌的通道(张岭等,2007),断裂主要以正断兼走滑运动为主(索艳慧等,2013)。历史上,附近海域曾发生过M6.0和M7.0左右的大地震(王志才等,2006)。本文的成像结果显示(图10),张家口—蓬莱断裂带的地壳速度结构特征与沂沭断裂带具有非常大的相似性(苏道磊等,2016),地壳速度和泊松比结构在1—10 km深度处具有非常强烈的横向不均一性,断裂一侧高低速异常交替分布,断裂带整体位于高低速异常与高低泊松比异常的过渡带,20 km以下以低速和低泊松比异常为主,但部分地区仍有显著的高泊松比异常,可能反映了地幔热物质的上涌。速度和泊松比异常在10 km左右发生明显变化,这与前人得到的b值在8.5 km左右发生转折是一致的(申金超等,2019)。本文认为,深部地幔热物质沿断裂带上涌所产生的构造应力,和/或地幔热物质内部含有的流体沿断裂上涌或侵入裂隙导致了长岛震群、甚至周边地区的强震活动。
4. 结论
利用山东及邻区的地震台站记录的P波和S波到时数据反演获得了研究区内高精度的纵横波速度结构和泊松比异常分布形态。研究结果揭示了研究区内的地壳结构具有强烈的横向不均一性。2020年济南长清MS4.1地震可能是区域构造应力下长清断裂发生左旋走滑运动的结果,震中东侧的高速异常体可能阻碍了地震的东向破裂。2003年青岛崂山ML4.1地震可能是由深部的流体填充相对完整岩体内的裂隙并引发破裂所致。崂山震群、乳山震群和长岛震群可能与深部流体有非常强的相关性。
-
表 1 断层滑动模型参数
Table 1 Parameters of fault slip model
断层来源 长度/km 宽度/km 走向/° 倾角/° 滑动角/° 子断层个数 断层块/km 模型A 160 30.0 276 80 4 301 5.0×5.0 模型B 182 31.5 106 76 −9 468 3.5×3.5 表 2 地壳结构模型
Table 2 Crustal structure model
序号 深度/km vP/(km·s−1) vS/(km·s−1) ρ/(kg·m−3) ηk/(1018 Pa·s) ηm/(1019 Pa·s) 1 0 4.50 2.60 2 600.0 1000.0 1000.0 2 5 5.60 3.30 2 600.0 1000.0 1000.0 3 5 5.60 3.30 2 700.0 1000.0 1000.0 4 10 6.05 3.55 2 700.0 1000.0 1000.0 5 10 6.05 3.55 2 850.0 1000.0 1000.0 6 15 6.05 3.60 2 850.0 1000.0 1000.0 7 15 6.05 3.60 2 850.0 1000.0 1000.0 8 20 5.75 3.40 2 850.0 1000.0 1000.0 9 20 5.75 3.40 2 850.0 20.0 20.0 10 30 5.75 3.40 2 850.0 20.0 20.0 11 30 5.75 3.40 3 000.0 6.3 6.3 12 40 6.10 3.55 3 000.0 6.3 6.3 13 40 6.10 3.55 3 000.0 6.3 6.3 14 50 6.10 3.55 3 000.0 6.3 6.3 15 50 6.10 3.55 3 100.0 6.3 6.3 16 60 7.10 4.05 3 100.0 6.3 6.3 17 60 7.10 4.05 3 100.0 6.3 6.3 18 80 8.00 4.35 3 100.0 6.3 6.3 19 80 8.00 4.35 3 320.0 6.3 6.3 20 100 7.95 4.35 3 320.0 100.0 100.0 表 3 研究区域主要断层参数
Table 3 Main fault parameters in the studied area
断层序号 断层名称 起点 终点 走向/° 倾角/° 滑动角/° 东经/° 北纬/° 东经/° 北纬/° F1 东昆仑断裂西段 96.71 35.67 96.04 35.74 278 89 0 F2 东昆仑断裂中段A 98.10 35.46 96.71 35.67 281 89 0 F3 东昆仑断裂中段B 99.29 34.94 98.10 35.46 298 89 0 F4 东昆仑断裂中段C 99.68 34.65 99.29 34.94 312 89 0 F5 东昆仑断裂东段A 100.49 34.34 99.68 34.65 295 89 0 F6 东昆仑断裂东段B 100.98 34.27 100.49 34.34 280 89 0 F7 玛多—甘德断裂A 99.18 34.47 98.78 35.15 334 80 0 F8 玛多—甘德断裂B 100.61 33.12 99.18 34.47 319 80 0 F9 达日断裂A 98.89 33.96 98.03 34.30 199 80 −12 F10 达日断裂B 99.68 33.25 98.92 33.84 313 80 −12 F11 达日断裂C 100.71 32.55 99.73 33.24 310 80 −12 F12 清水河断裂A 97.11 34.05 96.82 34.45 329 89 0 F13 清水河断裂B 98.62 33.11 97.11 34.05 307 89 0 F14 清水河断裂C 99.30 32.52 98.62 33.11 316 89 0 F15 甘孜—玉树断裂A 97.29 32.75 96.24 33.34 304 88 23 F16 甘孜—玉树断裂B 97.86 32.52 97.29 32.75 290 88 23 F17 昆仑山口—江错断裂A 97.88 34.74 97.45 34.77 275 80 −9 F18 昆仑山口—江错断裂B 98.99 34.50 97.88 34.74 285 80 2 F19 昆仑山口—江错断裂C 99.95 34.54 98.99 34.50 267 80 18 表 4 强震震源机制解及数据来源
Table 4 Focal mechanism solutions and data source of the strong earthquakes
发震日期 地震名称 北纬
/°东经
/°走向
/°倾角
/°滑动角
/°深度/km MS 模型来源 年-月-日 2008-05-12 汶川地震 30.986 103.364 222.6 28.0 110.0 14.0 8.00 USGS (2008) 2010-04-14 玉树地震 33.160 96.530 298.0 88.0 4.0 13.0 7.10 孟国杰等(2016) 2013-04-20 芦山地震 30.308 102.888 218.0 39.0 103.0 11.0 7.00 Jiang等(2014) 2017-08-08 九寨沟地震 33.193 103.855 246.0 57.0 −173.0 9.0 7.00 单新建等(2017) 2021-05-22 玛多地震 34.590 98.340 101.0 87.0 −7.0 10.0 7.40 表 5 汶川地震后巴颜喀拉地块内强震同震及震后效应在玛多地震破裂中心产生的库仑应力加载
Table 5 Coulomb stress loading caused by strong earthquake coseismic and post-seismic effects of Bayan Hara block in Madoi earthquake rupture center after Wenchuan earthquake
库仑应力加载/Pa 汶川地震 玉树地震 芦山地震 九寨沟地震 同震 870.100 341.900 13.200 3.293 震后 360.900 523.900 3.980 0.505 同震+震后 1 231.000 865.800 17.180 3.798 -
程佳,刘杰,甘卫军,余怀忠. 2011. 1997年以来巴颜喀拉块体周缘强震之间的黏弹性触发研究[J]. 地球物理学报,54(8):1997–2010. doi: 10.3969/j.issn.0001-5733.2011.08.007 Cheng J,Liu J,Gan W J,Yu H Z. 2011. Coulomb stress interaction among strong earthquakes around the Bayan Har block since the Manyi earthquake in 1997[J]. Chinese Journal of Geophysics,54(8):1997–2010 (in Chinese).
程佳,徐锡伟. 2018. 巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析[J]. 地震地质,40(1):133–154. doi: 10.3969/j.issn.0253-4967.2018.01.011 Cheng J,Xu X W. 2018. Features of earthquake clustering from calculation of Coulomb stress around the Bayan Har block,Tibetan Plateau[J]. Seismology and Geology,40(1):133–154 (in Chinese).
防灾科技学院河北省地震动力学重点实验室Seismology小组. 2021. 2021年5月22日青海果洛州玛多县7.4级地震的震源机制中心解和在周围产生的位移场与应变场 [EB/OL]. [2021-05-25]. https://ses-kled.cidp.edu.cn/info/1084/1265.htm. Seismology Group, Hebei Key Laboratory of Earthquake Dynamics, Institute of Disaster Prevention. 2021. The central solution of the focal mechanism and the displacement field and strain field generated around the 7.4 earthquake in Maduo County, Guoluo Prefecture, Qinghai Province on May 22,2021[EB/OL]. [2021-05-25]. https://ses-kled.cidp.edu.cn/info/1084/1265.htm (in Chinese).
冯淦,万永革,许鑫,李枭. 2021. 2021年青海玛多MS7.4地震对周围地区的应力影响[J]. 地球物理学报,64(12):4562–4571. doi: 10.6038/cjg2021P0454 Feng G, Wan Y G, Xu X, Li X. 2021. Static stress influence of the 2021 MS7.4 Madoi, Qinghai earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571 (in Chinese).
冯雅杉,熊熊,单斌,刘成利. 2022. 2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化[J]. 中国科学:地球科学,52(6):1100–1112. Feng Y S,Xiong X,Shan B,Liu C L. 2022. Coulomb stress changes due to the 2021 MS7.4 Maduo earthquake and expected seismicity rate changes in the surroundings[J]. Science China Earth Sciences,65(4):675–686. doi: 10.1007/s11430-021-9882-8
华俊,赵德政,单新建,屈春燕,张迎峰,龚文瑜,王振杰,李成龙,李彦川,赵磊,陈晗,范晓冉,王绍俊. 2021. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质,43(3):677–691. doi: 10.3969/j.issn.0253-4967.2021.03.013 Hua J,Zhao D Z,Shan X J,Qu C Y,Zhang Y F,Gong W Y,Wang Z J,Li C L,Li Y C,Zhao L,Chen H,Fan X R,Wang S J. 2021. Coseismic deformation field,slip distribution and Coulomb stress disturbance of the 2021 MW7.3 Maduo earthquake using Sentinel-1 InSAR observations[J]. Seismology and Geology,43(3):677–691 (in Chinese).
李志才,丁开华,张鹏,温扬茂,赵利江,陈建峰. 2021. GNSS观测的2021年青海玛多地震(MW7.4)同震形变及其滑动分布[J]. 武汉大学学报·信息科学版,46(10):1489–1497. Li Z C,Ding K H,Zhang P,Wen Y M,Zhao L J,Chen J F. 2021. Coseismic deformation and slip distribution of 2021 MW7.4 Madoi earthquake from GNSS observation[J]. Geomatics and Information Science of Wuhan University,46(10):1489–1497 (in Chinese).
李智敏,李文巧,李涛,徐岳仁,苏鹏,郭鹏,孙浩越,哈广浩,陈桂华,袁兆德,李忠武,李鑫,杨理臣,马震,姚生海,熊仁伟,张彦博,盖海龙,殷翔,徐玮阳,董金元. 2021. 2021年5月22日青海玛多MS7.4地震的发震构造和地表破裂初步调查[J]. 地震地质,43(3):722–737. doi: 10.3969/j.issn.0253-4967.2021.03.016 Li Z M,Li W Q,Li T,Xu Y R,Su P,Guo P,Sun H Y,Ha G H,Chen G H,Yuan Z D,Li Z W,Li X,Yang L C,Ma Z,Yao S H,Xiong R W,Zhang Y B,Gai H L,Yin X,Xu W Y,Dong J Y. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai,China:A quick report[J]. Seismology and Geology,43(3):722–737 (in Chinese).
刘博研,解孟雨,史保平. 2022. 青海玛多MS7.4地震对周边活动断裂的库仑应力加载及发震概率增量的计算[J]. 地球物理学报,65(2):563–579. doi: 10.6038/cjg2022P0703 Liu B Y,Xie M Y,Shi B P. 2022. Effect of Qinghai Madoi MS7.4 earthquake on Coulomb stress and earthquake probability increment of adjacent faults[J]. Chinese Journal of Geophysics,65(2):563–579 (in Chinese).
孟国杰,苏小宁,徐婉桢,任金卫,杨永林,Shestakov N V. 2016. 基于GPS观测研究2010年青海玉树MS7.1地震震后地壳形变特征及其机制[J]. 地球物理学报,59(12):4570–4583. doi: 10.6038/cjg20161219 Meng G J,Su X N,Xu W Z,Ren J W,Yang Y L,Shestakov N V. 2016. Postseismic deformation associated with the 2010 Yushu,Qinghai MS7.1 earthquake by GPS observations[J]. Chinese Journal of Geophysics,59(12):4570–4583 (in Chinese).
潘家伟,白明坤,李超,刘富财,李海兵,刘栋梁,Chevalier M L,吴坤罡,王平,卢海建,陈鹏,李春锐. 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报,95(6):1655–1670. doi: 10.3969/j.issn.0001-5717.2021.06.001 Pan J W,Bai M K,Li C,Liu F C,Li H B,Liu D L,Chevalier M L,Wu K G,Wang P,Lu H J,Chen P,Li C R. 2021. Coseismic surface rupture and seismogenic structure of the 2021−05−22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica,95(6):1655–1670 (in Chinese).
单新建,屈春燕,龚文瑜,赵德政,张迎峰,张国宏,宋小刚,刘云华,张桂芳. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报,60(12):4527–4536. doi: 10.6038/cjg20171201 Shan X J,Qu C Y,Gong W Y,Zhao D Z,Zhang Y F,Zhang G H,Song X G,Liu Y H,Zhang G F. 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics,60(12):4527–4536 (in Chinese).
石耀霖,曹建玲. 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论[J]. 地学前缘,15(3):82–95. doi: 10.3321/j.issn:1005-2321.2008.03.006 Shi Y L,Cao J L. 2008. Lithosphere effective viscosity of continental China[J]. Earth Science Frontiers,15(3):82–95 (in Chinese). doi: 10.1016/S1872-5791(08)60064-0
王迪晋,王东振,赵斌,李瑜,赵利江,王阅兵,聂兆生,乔学军,王琪. 2022. 2021年青海玛多MW7.4地震GNSS同震形变场及其断层滑动分布[J]. 地球物理学报,65(2):537–551. doi: 10.6038/cjg2022P0568 Wang D J,Wang D Z,Zhao B,Li Y,Zhao L J,Wang Y B,Nie Z S,Qiao X J,Wang Q. 2022. 2021 Qinghai Madoi MW7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations[J]. Chinese Journal of Geophysics,65(2):537–551 (in Chinese).
王乐洋,赵雄. 2018. 地震同震滑动分布反演平滑因子的确定[J]. 测绘学报,47(12):1571–1580. doi: 10.11947/j.AGCS.2018.20170724 Wang L Y,Zhao X. 2018. Determination of smoothing factor for the co-seismic slip distribution inversion[J]. Acta Geodaetica et Cartographica Sinica,47(12):1571–1580 (in Chinese).
王未来,房立华,吴建平,屠泓为,陈立艺,来贵娟,张龙. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学:地球科学,51(7):1193–1202. Wang W L,Fang L H,Wu J P,Tu H W,Chen L Y,Lai G J,Zhang L. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake,Qinghai,China[J]. Science China Earth Sciences,64(8):1371–1380. doi: 10.1007/s11430-021-9803-3
王阅兵,李瑜,蔡毅,蒋连江,师宏波,江在森,甘卫军. 2022. GNSS观测的2021年5月22日玛多MS7.4地震同震位移及其约束反演的滑动破裂分布[J]. 地球物理学报,65(2):523–536. doi: 10.6038/cjg2022P0436 Wang Y B,Li Y,Cai Y,Jiang L J,Shi H B,Jiang Z S,Gan W J. 2022. Coseismic displacement and slip distribution of the 2021 May 22,MS7.4 Madoi earthquake derived from GNSS observations[J]. Chinese Journal of Geophysics,65(2):523–536 (in Chinese).
杨光远,李一帆,王斌,屈淼,罗松. 2021. 青海玛多7.4级地震静态库仑应力分析[J]. 四川地震,(3):1–4. doi: 10.13716/j.cnki.1001-8115.2021.03.001 Yang G Y,Li Y F,Wang B,Qu M,Luo S. 2021. The analysis of static Coulomb stress of the Qinghai Maduo MS7.4 earthquake[J]. Earthquake Research in Sichuan,(3):1–4 (in Chinese).
余鹏飞,熊维,陈威,乔学军,王迪晋,刘刚,赵斌,聂兆生,李瑜,赵利江,张怀. 2022. 基于GNSS和InSAR约束的2021年玛多MS7.4地震同震滑动分布及应用[J]. 地球物理学报,65(2):509–522. doi: 10.6038/cjg2022P0540 Yu P F,Xiong W,Chen W,Qiao X J,Wang D J,Liu G,Zhao B,Nie Z S,Li Y,Zhao L J,Zhang H. 2022. Slip model of the 2021 MS7.4 Madoi earthquake constrained by GNSS and InSAR coseismic deformation[J]. Chinese Journal of Geophysics,65(2):509–522 (in Chinese).
岳冲,屈春燕,牛安福,赵德政,赵静,余怀忠,王亚丽. 2021. 玛多MS7.4地震对周边断层的应力影响分析[J]. 地震地质,43(5):1041–1059. Yue C,Qu C Y,Niu A F,Zhao D Z,Zhao J,Yu H Z,Wang Y L. 2021. Analysis of stress influence of Qinghai Maduo MS7.4 earthquake on surrounding faults[J]. Seismology and Geology,43(5):1041–1059 (in Chinese).
周春景. 2014. 巴颜喀拉块体边界应力场变化及其对强震发生的影响[D]. 北京: 中国地质科学院: 1–131. Zhou C J. 2014. The Stress Field Changes Near the Boundary Fault Zones in the Bayan Har Block and Their Effect on the Large Earthquake[D]. Beijing: Chinese Academy of Geological Science: 1–131 (in Chinese).
Freed A M. 2005. Earthquake triggering by static,dynamic,and postseismic stress transfer[J]. Annu Rev Earth Planet Sci,33(1):335–367. doi: 10.1146/annurev.earth.33.092203.122505
Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
Harris R A. 2000. Earthquake stress triggers,stress shadows,and seismic hazard[J]. Current Science,79(9):1215–1225.
Hong S Y,Liu M,Liu T,Dong Y F,Chen L Z,Meng G J,Xu Y R. 2022. Fault source model and stress changes of the 2021 MW7.4 Maduo earthquake,China,constrained by InSAR and GPS measurements[J]. Bull Seismol Soc Am,112(3):1284–1296. doi: 10.1785/0120210250
Jiang Z S,Wang M,Wang Y Z,Wu Y Q,Che S,Shen Z K,Bürgmann R,Sun J B,Yang Y L,Liao H,Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 MW6.6 Lushan,China,earthquake and its tectonic implications[J]. Geophys Res Lett,41(2):407–413. doi: 10.1002/2013GL058812
King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
Li Y J,Huang L Y,Ding R,Yang S X,Liu L,Zhang S M,Liu H Q. 2021. Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards[J]. Nat Hazards Res,1(2):95–101. doi: 10.1016/j.nhres.2021.06.003
Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res:Solid Earth,109(B2):B02303.
Liu C,Zhang H,Chen J Q,Shi Y L. 2022a. Stress evolution before and after the 2021 MW7.3 Maduo earthquake in northeastern Tibet and its influence on seismic hazards[J]. Earth Space Sci,9(6):e2022EA002325. doi: 10.1029/2022EA002325
Liu J H,Hu J,Li Z W,Ma Z F,Wu L X,Jiang W P,Feng G C,Zhu J J. 2022b. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province,China from Sentinel-1 and ALOS-2 SAR images[J]. Science China Earth Sciences,65(4):687–697. doi: 10.1007/s11430-021-9868-9
USGS. 2008. M8.0: 58 km W of Tianpeng, China[EB/OL]. [2008-05-12]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/executive.
USGS. 2021. M7.3: Southern Qinghai, China[EB/OL]. [2021-05-21]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e54r/executive.
Wang M,Wang F,Jiang X,Tian J B,Li Y,Sun J B,Shen Z K. 2021. GPS determined coseismic slip of the 2021 MW7.4 Maduo,China,earthquake and its tectonic implication[J]. Geophys J Int,228(3):2048–2055. doi: 10.1093/gji/ggab460
Wang R, Diao F, Hoechner A. 2013. SDM: A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//EGU General Assembly Conference Abstracts. Vienna, Austria: EGU: 2411.
Wang R J,Lorenzo-Martín F,Roth F. 2006. PSGRN/PSCMP:A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci,32(4):527–541. doi: 10.1016/j.cageo.2005.08.006
Xiong X,Shan B,Zheng Y,Wang R J. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun fault,Tibet[J]. Tectonophysics,482(1/2/3/4):216–225.
Zhu Y G,Diao F Q,Fu Y C,Liu C L,Xiong X. 2021. Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations[J]. Science China Earth Science,64(8):1363–1370. doi: 10.1007/s11430-021-9808-0
-
期刊类型引用(4)
1. 冀国强,雷建设,赵大鹏. 利用多震相走时成像研究胶东地区三维地壳速度结构与震群孕震环境. 地球物理学报. 2025(01): 123-138 . 百度学术
2. 汪煜昆,赵丹,刘婷芝,淦文杰,王永强,张清秀,郭静姝. 致密砂岩压裂后的储层敏感性特征实验——以四川盆地JQ地区沙溪庙组8号砂体为例. 天然气勘探与开发. 2024(03): 85-93 . 百度学术
3. 孟秋,王子韬,张怀. 2023年8月6日山东德州平原M 5.5地震同震变形及地震活动性变化数值模拟. 地质学报. 2024(07): 2101-2109 . 百度学术
4. 韩光洁,刘奕君,席楠. 2023年山东平原M_S 5.5地震宽频带面波震级和近场地震动反应谱空间分布特征分析. 地震地磁观测与研究. 2023(06): 13-19 . 百度学术
其他类型引用(0)