全球火山活动时空分布特征及其对强震活动趋势的指示

石富强, 王芃, 杨晨艺, 王光明, 刘洁, 邵志刚, 王庆林, 贾若

石富强,王芃,杨晨艺,王光明,刘洁,邵志刚,王庆林,贾若. 2024. 全球火山活动时空分布特征及其对强震活动趋势的指示. 地震学报,46(2):273−291. DOI: 10.11939/jass.20230120
引用本文: 石富强,王芃,杨晨艺,王光明,刘洁,邵志刚,王庆林,贾若. 2024. 全球火山活动时空分布特征及其对强震活动趋势的指示. 地震学报,46(2):273−291. DOI: 10.11939/jass.20230120
Shi F Q,Wang P,Yang C Y,Wang G M,Liu J,Shao Z G,Wang Q L,Jia R. 2024. Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends. Acta Seismologica Sinica46(2):273−291. DOI: 10.11939/jass.20230120
Citation: Shi F Q,Wang P,Yang C Y,Wang G M,Liu J,Shao Z G,Wang Q L,Jia R. 2024. Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends. Acta Seismologica Sinica46(2):273−291. DOI: 10.11939/jass.20230120

全球火山活动时空分布特征及其对强震活动趋势的指示

基金项目: 中国地震局地震预测开放基金(XH23068D)、陕西省自然科学基础研究计划(2024JC-YBMS-210,2022JQ-254)、国家自然科学基金(42304004)和中国地震局地震大形势跟踪任务共同资助
详细信息
    作者简介:

    石富强,在读博士研究生,高级工程师,主要从事断层应力模拟和地震综合预测研究,e-mail: shifuqiang121@163.com

    通讯作者:

    邵志刚,博士,研究员,主要从事地球动力学与地震活动性方面的研究,e-mail: shaozg0911@126.com

  • 中图分类号: P315.5,P317.5

Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends

  • 摘要:

    基于史密森学会火山目录分析了全球火山活动的时空特征,并结合中国地震台网目录讨论了火山活动对全球和中国大陆强震活动趋势的指示意义。结果显示:① 全球火山活动表现出较为显著的百年周期特征,且百年周期内火山活动和M≥8.0大震之间存在着频次准同步和能量互补现象;② 中国大陆1955年前后强震活动状态的变化可能与同期全球火山活动状态变化密切相关,且二者可能受控于百年周期内地球内部能量积累与释放的状态变化;③ 2022年汤加火山的剧烈喷发意味着地球内部能量仍在持续释放。结合全球M8地震和中国大陆M7浅源地震的活动特征,认为当前及未来一段时间全球及中国大陆的大震活动状态可能与二十世纪上半叶相似。

    Abstract:

    Identical with earthquakes, volcanic eruptions also play a role of energy release from the Earth’s interior. And the volcanic eruption intensity can be measured by volcanic explosivity index (VEI for short), which is determined by the volume of the eruption material and the height of the volcanic ash column. On January 15, 2022, a volcano erupted violently in Tonga in the South Pacific Ocean with the eruption intensity as high as VEI=5. And the energy release possibly exceed 58 Mt TNT, almost six times as much as the energy released by the great Wenchuan earthquake in 2008. The extremely energy release has attracted widespread attention from international scientists and has a significant impact on the global atmospheric environment and climate change.

    However, as a way of energy releasing of the Earth’s interior, whether the violent eruption of the Tonga volcano was related to the state change of strong earthquake trend worldwide or in a specific tectonic region? In other words, can the extreme eruption of the Tonga volcano provide some clues or indications for the analyses of strong earthquake trend worldwide or in a specific tectonic region?

    To answer this question, here, we firstly summarized the spatio-temporal features of global volcanic eruptions based on the the volcano catalogue from Smithsonian Institution and reviewed the characteristics of strong earthquake activities in the whole world and Chinese mainland on the basis of earthquake catalogue from China Earthquake Network. And then, we analyzed the possible indications of volcanic activity to the trends of global and Chinese mainland strong earthquakes in the viewpoint of the seismicity analysis. What is more, the possible change in strong earthquake trends of the whole world and Chinese mainland after the Tonga volcanic eruption is also discussed. The results are as following.

    Firstly, global volcanic and seismic activities have similar characteristics on the plate scale, and they share the same main active tectonic area, called the Pacific Ring of Fire. However, there may be some certain differences in their tectonic environment. Both the volcanic eruption and strong earthquakes are more likely to occur at the boundary of the youngest (0−50 million years) plates, such as Mexico, Chile-Peru and Vanuatu, or the boundary of the oldest (more than 90 million years) plates, such as Japan and New Zealand. But, instead, the volcanic eruption and strong earthquake activity displayed opposite state in some specific tectonic regions with middle-aged (50−90 million years) plate, such as the western section of Alaska subduction and the northern section of Sumatra subduction, where large earthquakes are active but volcanism is weak.

    Secondly, similar to the Gutenberg-Richter law in seismic activity, the volcanic eruption magnitude and accumulated frequency also satisfied power-law distribution. Moreover, the volcanic eruption also displayed periodic activity characteristics in time and intensity. The global volcanic activity can be divided into two visible characteristics of centennial period since 1800. In the latest centennial cycle, the strong earthquake records are complete, the energy release and cumulated frequency of volcano eruption and strong earthquakes with M≥8.0 displayed complementarity and quasi-synchronization in temporal evolution, respectively.

    Thirdly, the time series of shallow earthquakes with M≥7.0 in Chinese mainland since 1900 shows that the year 1955 is a significant time-point of strong earthquake activity in Chinese mainland. Before 1955, the strong shallow earthquake activity with M≥7.0 in Chinese mainland displayed relatively random distribution in time, and the average magnitude is also relatively high; while after 1955, it showed temporal rhythmic features with obviously alternating between calm and active periods, and the average magnitude is lower than that before 1955. Similarly, global volcanism around 1955 also showed clearly segmented characteristics, which are mainly reflected in three aspects: volcanic activity intensity, frequency and energy release. Our analyses suggest that the reverse of strong earthquake activity state before and after 1955 should be related to the contemporaneous increasing of the global volcanic activity. Both of them could be attributed to the change in energy release state of the earth interior in its centennial activity period.

    Finally, based on the analysis of global strong earthquake activity, we deduce that the violent eruption of the Tonga volcano may indicate that the energy release of the Earth’s interior is still ongoing. In combination with the seismicity of global earthquakes with M≥8.0 and shallow earthquakes with M≥7.0 in Chinese mainland, we deduced that the current seismicity with M≥7.0 in Chinese mainland may be similar to that in the first half of the 20th century.

    Our works in this paper could provide a reference for understanding the seismological geodynamics and analyzing the related earthquake trend.

  • 我国大陆地区自1976年唐山MS7.8地震发生后,经历了12年无MS≥7.0地震的平静期。从1988年起进入了MS≥7.0地震的活跃期,到2017年底已发生14次MS≥7.0地震。这些大地震均发生在青藏高原地区地壳构造块体的边界断层上,表明现阶段青藏高原地壳构造块体系统中,在块体边界断层的多个部位上,应变已积累到或接近地下岩石的破裂强度水平。特别是,从1996年至今,我国大陆地区所有MS≥7.0地震,包括2次MS≥8.0地震(2001年昆仑山口西MS8.1地震、2008年汶川MS8.0地震)和7次MS≥7.0地震(1996年喀喇昆仑山MS7.1地震、1997年玛尼MS7.9地震、2008年于田MS7.0地震、2010年玉树MS7.3地震、2013年芦山 MS7.0地震、2014年于田MS7.0地震、2017年九寨沟MS7.0地震),均发生在巴颜喀拉块体的边界断层上。

    图1是我国大陆地区构造块体及1988年以来MS≥6.9地震震中分布图,其中,块体的划分引自张培震等(2003),震中分布图引自本研究团队于2009年发表的论文(陈祖安等, 2009),但增补了自2009年以来发生的MS≥7.0地震。由图1可见,青藏高原地区各构造块体的边界断层上大震活动从未有过的活跃,显示了该地区的大震活动与构造块体运动、变形的密切关联。

    图  1  我国大陆地区构造块体及1988年以来MS≥6.9地震震中分布图
    Figure  1.  Distribution of tectonic blocks and MS≥6.9 earthquakes since 1988

    2008年汶川MS8.0地震发生前,在巴颜喀拉地块的西、南、北边界断层上,分别发生了多次MS≥7.0地震,唯独在其东边界断层龙门山断裂带上未发生MS≥7.0地震(陈祖安等,2009)。2001年发生在巴颜喀拉地块北边界断层东昆仑断裂带上的昆仑山口西MS8.1地震,其震源机制是左旋走滑错动,破裂过程成像显示该地震的破裂总体上自西向东扩展(许力生,陈运泰,2004)。近东—西走向的昆仑山口西地震发震断层南侧向东的错动,必然会推动巴颜喀拉地块进一步东移,从而加速龙门山断裂带的应变积累。从大震活动与构造块体运动变形相互影响的角度分析,青藏高原构造块体边界断层的某些地段,特别是龙门山断裂带,的中长期大震活动危险性应予以特别关注。自汶川大地震前两年起,作者以国家自然科学基金项目“玛尼、昆仑山大震发生对青藏高原构造块体稳定性影响的数值模拟研究”为题,开始对青藏高原构造块体系统的稳定性、各构造块体边界断层上失稳危险度的分布,以及1997年玛尼地震和2001年昆仑山口西地震的发生对构造块体系统稳定性的影响等方面的问题进行了研究,获得了一些有意义的结果(陈祖安等,2008)。

    2008年汶川大地震发生近5年之后,2013年4月20日在龙门山断裂带西南段上汶川发震断层的西南端外侧发生了芦山地震。由地震波资料反演结果可知,这两次大震均为全球内陆地区罕见的低倾角逆冲型大地震(陈运泰等,2013)。有关这两次大震的孕震机理及震前中长期地震危险性,是值得深入研究的问题。近年来,本文第一作者及其研究团队成员运用三维流变非连续变形法(描述地壳块体边界)与有限元法(描述地壳块体内部)相结合的数值模拟方法,研究了青藏高原及其邻区(东侧四川盆地和鄂尔多斯地块)内共12个构造块体的运动、变形、相互作用及其与近几十年发生于该区的大地震之间的关系(陈祖安等,200820092011Chen et al,2011 林邦慧等,201220142016)。本文将在系统总结上述研究工作的基础上,进一步研究汶川地震和芦山地震的孕震机理以及大震前的中长期地震危险性。

    印度板块向北挤压造成青藏高原的隆起并产生厚约70 km的地壳。由于地壳内温度上升,下地壳层速度低且高导层发育,介质呈较强黏塑性。在印度板块向北的推挤下,下地壳的黏塑性流动驱动着上地壳脆性层运动与变形,形成了该地区复杂的孕震环境。考虑到上述因素,宜采用描述块体边界相互作用十分有效的非连续变形法(discontinuous deformation analysis,简写为DDA)与描述块体内相互作用的有限元法(finite element method,简写为FEM)相结合的方法研究这一问题。非连续变形分析法是一个分析块体系统中块体相互作用的有效工具(石根华,1997),可以用来计算块体系统在动力及静力作用下块体的滑移和不连续变形。对于各块体,允许有滑移、压性或剪切变形;对于整个块体系统,允许块体边界断层有滑动。迄今,已有一些研究人员使用该方法进行了多项研究,并取得重要成果(Cai et al,2000 白武明等,2003),这些结果证明了该方法适合用于模拟大震的破裂过程和大震活动与构造块体相互作用的关系。

    陈祖安等(2011)石根华(1997)非连续变形法和二维情形程序的基础上,编制了三维流变DDA方法与FEM方法相结合的程序“三维DDA+FEM程序”。该程序的关键之处在于将块体之间的相互作用转变为它们之间的接触问题(Perić,Owen,1992);同时假设位移很小,块体之间的接触点已知,详细情况请参见陈祖安等(2011),这里从略。本文将这个程序用于汶川、芦山地震孕震机理等研究。

    研究区包括青藏高原及其东侧的四川盆地和鄂尔多斯地区(图2a)。参考张培震等(2003)对我国大陆地区构造块体的划分结果,将研究区划分为塔里木、柴达木、阿拉善、祁连、昆仑、羌塘、拉萨、川滇、滇西南、鄂尔多斯、四川盆地及华南等12个地块。地块边界断层包括阿尔金、祁连山、西秦岭、东昆仑、西昆仑、六盘山、贺兰山、玛尼—玉树、喀喇昆仑、喜马拉雅、龙门山、鲜水河、三江、红河、安宁河—小江、澜沧江、秦岭大别山、汾渭和阴山等断裂带。

    将上述区域垂直深度达120 km的空间划分为5层,在青藏高原东缘以西地区划分上地壳20 km,中地壳20 km,下地壳30 km及上地幔。受资料限制,为简化起见,除龙门山断裂带以外,其它边界断层均为直立。在青藏高原东缘及以东地区,考虑了龙门山断裂带东西两侧地势、地壳厚度和分层的明显变化(滕吉文等,2008):地势从四川盆地海拔500 m向西到龙门山地区陡升至4 000 m;地壳厚度在四川盆地为45 km,向西逐渐增厚,在龙门山断裂带东侧地区为60 km,并逐渐向西增厚,其西侧的青藏高原地区地壳厚度为70 km。

    我们参考了陈运泰研究团队有关汶川地震破裂过程的反演结果(陈运泰等,20082013张勇等,2008),对本研究团队2009年论文中所使用的汶川地震的发震断层模型(陈祖安等,2009)进行了改进。考虑到龙门山断裂带上汶川大震的发震断层由3个相连接的子事件组成,倾角由西南向东北扩展且逐渐增大,南段倾角在中地壳为40°,在上地壳中为60°,北段的倾角接近直立。参考万永革等(2009)一文中的龙门山断裂带三维模型,改进并构制了龙门山断裂带上汶川发震断层的三维分布模型(图2b)。

    图  2  研究区构造块体模型图(a)和龙门山断裂带上汶川MS8.0地震发震断层的三维示意图(b)(引自陈祖安等,2011
    Figure  2.  Tectonic block system model used in this study (a) and 3D schematic diagram of the seismogenic faults of the 2008 Wenchuan MS8.0 earthquake on the Longmenshan fault zone (b) (after Chen et al,2011

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $G = \frac{\tau }{{{\sigma _{\rm{n}}}{\rm{tan}}\phi }}, $

    (1)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    我们模拟计算了研究区现今构造块体边界断层上的失稳危险度分布(林邦慧等,20122014)。计算结果表明,上、中地壳构造块体边界断层上的失稳危险度高的地段多数与近30年来发生MS≥7.0地震的区域基本一致,包括1990年共和MS6.9地震、1997年玛尼MS7.9地震、2001年昆仑山口西MS8.1地震、2008年汶川MS8.0地震、2013年芦山MS7.0地震、2014年于田MS7.3地震和2017年九寨沟MS7.0地震的发震断层。此外,龙门山断裂带(包括汶川地震和芦山地震的发震断层)除北西端外均为失稳危险度最高值(图4)。本文参考陈运泰等(20082013)和张勇等(2008)关于汶川地震破裂过程的反演结果提出的汶川发震断层的三维模型的模拟结果表明,边界断层特别是龙门山断裂带的失稳危险度分布明显地比2009年用较简单的汶川发震断层模型(陈祖安等,2009)结果更符合近30年MS≥7.0地震的地震活动性。

    图  3  由数值模拟计算得到的研究区地表速度场(a)和上地壳层震源机制(b)分布图(引自陈祖安等,2009)
    Figure  3.  Distributions of the ground surface velocity calculated (a) and the focal mechanism of upper crust (b) in the study area (after Chen et al,2009)
    图  4  研究区上地壳(a)和中地壳(b)构造块体边界断层上的失稳危险度分布
    1. 1990年共和MS6.9地震;2. 1997年玛尼MS7.9地震;3. 2001年昆仑山口西MS8.1地震;4. 2008年汶川MS8.0地震;5. 2013年芦山MS7.0地震;6. 2014年于田MS7.3地震;7. 2017年九寨沟MS7.0地震
    Figure  4.  Distribution of instability risk factor of boundary faults between tectonic blocks of upper crust (a) and lower crust (b) in the studied area
    1. MS6.9 Gonghe earthquake in 1990;2. MS7.9 Mani earthquake in 1997;3. MS8.1 western Kunlun Mountain Pass earthquake in 2001;4. MS8.0 Wenchuan earthquake in 2008;5. MS7.0 Lushan earthquake in 2013;6. MS7.3 Yutian earthquake in 2014;7. MS7.0 Jiuzhaigou earthquake in 2017

    为了进一步研究汶川大震的孕震机理,我们还计算了研究区上、中地壳的应变率强度分布,结果如图5所示。计算结果表明,青藏高原绝大部分地区均为高剪切应变率地区,其东缘基本上为应变率强度的急剧变化带,特别是龙门山断裂带东西两侧应变率强度的变化最为急剧,其西侧的应变率强度约是东侧的4倍。我们还计算了研究区应变能密度分布(陈祖安等,2009),结果如图6所示,可以看出:龙门山断裂带及邻近地区为宽度与龙门山断裂带宽度基本相同、走向一致的高应变能密度带,其东西两侧则是应变能密度较低的地区,且断裂带东侧应变能密度较西侧衰减得快。

    图  5  研究区上地壳(上)和中地壳(下)应变率强度分布图(左)及其等值线图(右)(引自陈祖安等,2009)
    Figure  5.  Distribution of strain-rate intensity (left) and contours of strain-rate (right) of the upper crust layer (upper) and the middle crust layer (lower) in the studied area (after Chen et al,2009)
    图  6  研究区上地壳(上)、中地壳(下)应变能密度分布图(左)及其等值线图(右)(引自陈祖安等,2009
    Figure  6.  Distribution of strain energy-density (left) and contours of strain energy-density (right) of the upper crust layer (upper) and the middle crust layer (lower) in the studied area (afterChen et al,2009

    为了探讨2001年昆仑山口西MS8.1地震对2008年汶川MS8.0地震产生的影响,我们通过数值计算模拟了昆仑山口西地震的破裂过程,研究了该地震对研究区各块体边界断层库仑破裂应力分布的影响(陈祖安等,2011)。图7给出了昆仑山口西地震引起的研究区各边界断层上库仑破裂应力变化的分布,可见,该地震的发生除了引起其发震断层两端部库仑破裂应力增加外,对阿尔金断裂带、玛尼—玉树断裂带中段和西南地段,以及从龙门山断裂带的北端到南端,包括汶川地震和芦山地震的发震断层,库仑破裂应力均有较大的增加,增幅约为0.016 MPa。汶川地震和芦山地震的发震断层是同时具有高失稳危险度(林邦慧等,2012)且大震引起库仑破裂应力增加这两个特点的地带。计算得出,这两条断层上约0.016 MPa的库仑破裂应力增加相当于龙门山断裂带约两年的应力积累,也就是说,昆仑山口西地震的发生使汶川、芦山地震的发震断层失稳破裂提前了大约两年。

    图  7  昆仑山口西MS8.1地震对青藏高原及邻近地区上地壳(a)和中地壳(b)各块体边界断层上库仑破裂应力的影响(引自陈祖安等,2011)
    Figure  7.  The influence of the 2001 western Kunlun Mountain Pass MS8.1 earthquake on the Coulomb failure stress of the boundary faults of the tectonic blocks of upper crust (a) and middle crust (b) in the Qinghai-Tibet Plateau and its vicinity (after Chen et al,2011)

    汶川地震的发生对青藏高原及邻近地区各边界断层地震危险性影响是本文特别予以关注的问题。汶川地震发生后,我们根据上述汶川大震破裂过程由3个倾角不同的子事件组成的研究结果,提出了汶川地震的发震断层模型(图2b),数值模拟了汶川地震的破裂过程,研究了大震引起各边界断层应力状态变化的特征(陈祖安等,2011),并在其文中的图6加上2013年MS7.0芦山地震和2017年MS7.0九寨沟地震的位置,如图8所示。结果显示,在上地壳,汶川发震断层南端外侧到龙门山断裂带南端、汶川发震断层北端外侧、鲜水河断裂带南段、东昆仑断裂带东南段等地段的库仑破裂应力增加幅度最大,达到约0.2 MPa,而2013年芦山地震的发震断层正处于汶川发震断层南端外侧,即龙门山断裂带西南段的中间部位,龙门山断裂带西南段是满足失稳危险度大(林邦慧等,2012)且经历昆仑山口大震和汶川大震两次库仑破裂应力增幅较大这两个条件的地区,是大震发生的危险区,林邦慧等(2012)据此对这次地震成功地进行了中长期地震预测。

    图  8  汶川地震的发生对青藏高原及邻近地区上地壳(a)和中地壳(b)各块体边界断层库仑破裂应力的影响(修改自陈祖安等,2011
    Figure  8.  The influence of the 2008 Wenchuan MS8.0 earthquake on the Coulomb failure stress of the boundary faults of the tectonic blocks of upper crust (a) and middle crust (b) in the Qinghai-Tibet Plateau and its vicinity (modified from Chen et al,2011

    本文概要叙述了作者运用三维流变非连续变形分析法与有限元法相结合的方法研究青藏高原及其东侧邻区构造块体的运动、变形、相互作用及其与近30年来发生于该区的大地震活动关系以及汶川、芦山大震的孕震机理,得出:

    1) 失稳危险度高的地段与近30年来发生的MS≥7.0地震所在区域基本一致,其中龙门山断裂带是力学上失稳危险度最高的地段,也是应变率强度的急剧变化带,西侧应变率强度约是东侧应变率强度的4倍,而且断裂带东侧的应变率强度等值线衰减得比西侧快。

    2) 龙门山断裂带在上、中地壳中均位于与龙门山断裂带宽度相同、走向一致的高应变能密度带中,在上地壳的这个带的东西两侧则是应变能密度较低的地区,而在中地壳其强度在断裂带东侧逐渐向东衰减;西侧应变能密度高,而东侧应变能密度较低。这表明,汶川、芦山大震前,其发震断层已积累了大量的应变能,失稳危险度高,处于力学上的不稳定状态。

    3) 2001年昆仑山口西MS8.1地震的发生使得低倾角的汶川发震断层和包含芦山发震断层在内的龙门山断裂带西南段的库仑破裂应力增大约0.016 MPa,相当于龙门山断裂带约两年的应力积累,也就是说,昆仑山口西MS8.1地震的发生使汶川、芦山地震发震断层的失稳破裂大约提前了两年。

    4) 2008年汶川MS8.0地震的发生也使芦山大震的发震断层和龙门山断裂带西南段的库仑破裂应力在昆仑山口西大震时增大,之后再次增大,应变能积累增强,对已处于失稳危险度较高状态的芦山大震发震断层的提前失稳起到了促进作用,据此成功地作了中长期地震预测(陈祖安等,2011林邦慧等,2012)。陈运泰等(2013)的研究结果表明,龙门山断裂带西南段上,位于芦山大震发震断层南端至龙门山断裂带南端之间,以及芦山发震断层北端至汶川发震断层南端之间存在两个有发生大震危险的地震矩释放“亏空区”,长度分别约为70 km和30 km。在上述研究结果中,这两个区正好是满足失稳危险度大和库仑破裂应力多次增大这两个条件的地区。从青藏高原地区大震活动与构造块体运动变形的相互影响角度来看,汶川、芦山大震后龙门山断裂带上这些相关地段仍存在明显的中长期地震危险性。

    5) 2008年汶川地震的发生引起东昆仑断裂带东南段库仑破裂应力的增幅也最大,表明汶川地震对于2017年九寨沟大震发震断层的提前失稳起到了促进作用(陈祖安等,2011林邦慧等, 20122016)。

    作者自2001年昆仑山口西MS8.1地震发生以来,便开始关注巴颜喀拉块体边界断层上发生的大震活动。2006年启动的国家自然科学基金项目“玛尼、昆仑山大震发生对青藏高原构造块体稳定性影响的数值模拟研究”,使得我们对各构造块体边界断层上失稳危险度分布以及玛尼、昆仑山口西地震的发生对构造块体系统稳定性的影响等问题获得了一些新的认识。从2008年汶川地震至今近十年来,我们对发生在巴颜喀拉块体边界断层上的一系列地震(包括1990年共和MS6.9地震、1997年玛尼MS7.9地震、2001年昆仑山口西MS8.1地震、2008年汶川MS8.0地震、2013年芦山MS7.0地震、2014年于田MS7.3地震以及2017年九寨沟MS7.0地震)的研究结果表明了这些大地震的发生与高失稳危险度、高应变能密度分布以及高应变率强度分布的急剧变化密切关联,这些新的认识对于中长期地震危险性的研究和地震预测预报研究是有益的参考。

    作者对陈运泰院士以及两位匿名审稿专家对本文的修改建议表示衷心的感谢。

  • 图  1   史密森学会(Smithsonian Institution)记录的全球火山活动(VEI≥2)

    图中红点为1900年以来VEI≥5的火山活动

    Figure  1.   Global volcanic activity (VEI≥2) recorded by the Smithsonian Institution

    The red dots are volcanic eruptions with VEI≥5 since 1900

    图  2   全球火山和M≥7.0地震活动随经(上)、纬(下)度变化统计图

    Figure  2.   Statistical chart of frequency of global volcano eruptions and M≥7.0 earthquakes with longitude (upper) and latitude (lower)

    图  3   1800年以来环太平洋VEI≥4火山活动区的地震b值与板块年龄、板块汇聚速率、上伏板块相对海沟速率以及海沟深度的统计关系

    蓝色方块为Nishikawa和Ide (2014)给出的关于全球大震的结果

    Figure  3.   Statistical relationships between seismic b value and plate age,plate convergence rate,motion rate of the overlying plate relative to trench,and trench depth in the Circum-Pacificregion with VEI≥4 volcano eruption since 1800

    The blue squares are the results of global large earthquakes given by Nishikawa and Ide (2014)

    图  4   1600年以来全球VEI≥4火山喷发时序图(a)及能量释放曲线(b)

    Figure  4.   Volcanic eruption sequence (a) and energy release curves (b) for global volcanos with VEI≥4 since 1600

    图  5   1813—1912年(a)和1900年以来(b)全球火山的阶段加速活动

    Figure  5.   Acceleration activities of global volcanic activity from 1812 to 1912 (a) and from 1900 to now (b)

    图  6   1900年以来全球M≥7.0地震M-t时序图(a)和M≥8.0地震(小圆圈标记)应变释放曲线(b)

    Figure  6.   M-t plot of global M≥7.0 earthquakes since 1900 (a) and the strain release curve of global M≥8.0 earthquakes denoted by small circles (b)

    图  7   1900年以来中国大陆地区M≥7.0浅源地震M-t图(小圆圈标记为M≥8.0地震)

    Figure  7.   M-t plot of shallow earthquakes with M≥7.0 in Chinese mainland since 1900 (M≥8.0 earthquakes are denoted by small circles)

    图  8   1913年以来全球火山和强震活动的应变累积释放速率对比

    Figure  8.   Comparison of strain accumulation and release rate of volcano eruption with that of strong seismicity

    图  9   1909年以来全球M≥8.0地震(a)和VEI≥4火山喷发(b)的累积频次变化

    Figure  9.   Variation of cumulative frequency of global earthquakes with M≥8.0 (a) and the contemporaneous VEI≥4 volcano eruptions (b) since 1909

    图  10   全球火山活动和中国大陆M≥7.0地震活动对比

    (a) 全球VEI≥4火山活动,图中蓝色矩形为5年窗长1年步长频次,红色直线为VEI≥5火山事件;(b) 中国大陆M7浅源地震,红线直线为M≥8.0地震

    Figure  10.   Comparison of global volcanic activities with M≥7.0 earthquakes in Chinese mainland

    (a) Global volcanic eruptions with VEI≥4,where the blue rectangle is the five-year window length and one-year step length frequency,and the red lines are the volcano eruptions with VEI≥5;(b) Shallow earthquakes with M7 in Chinese mainland,where the red lines are M≥8.0 earthquakes

    表  1   1900年以来强火山喷发与全球强震活动统计对比

    Table  1   Comparison between strong volcanic eruptions and global strong earthquake activities since 1900

    火山喷发 全球强震活动
    起始时间 VEI 地点 后续三年
    M7频次
    后续三年最大地震 后续十年
    M8频次
    后续十年最大地震
    年-月-日 地点 MS 年-月-日 地点 MS
    1 902-10-24 6 危地马拉圣玛利亚 32 1 903-06-02
    1 903-08-11
    阿拉斯加
    希腊
    8.3
    8.3
    22 1 903-06-02
    1 903-08-11
    1 906-08-17
    1 911-01-03
    阿拉斯加
    希腊
    智利
    哈萨克斯坦
    8.3
    8.3
    8.3
    8.3
    1 907-03-28 5 俄罗斯堪察加半岛 45 1 907-04-15 墨西哥 8.1 9 1 911-01-03
    1 917-06-26
    哈萨克斯坦
    萨摩亚
    8.3
    8.3
    1 912-06-06 6 阿拉斯加 58 1 914-11-24 马里亚纳 8.1 11 1 920-12-16 宁夏海原 8.5
    1 916-01-01 5 秘鲁赛罗阿苏尔 55 1 917-06-26 萨摩亚 8.3 13 1 920-12-16 宁夏海原 8.5
    1 933-01-08 5 墨西哥科利马 54 1 933-03-02 日本本州 8.5 12 1 933-03-02 日本本州 8.5
    1 955-10-22 5 俄罗斯别济米安纳 59 1 957-12-04 蒙古 8.3 8 1 960-05-22
    1 964-03-28
    智利
    阿拉斯加
    8.5
    8.5
    1 963-02-18 5 菲律宾阿贡 49 1 964-03-28 阿拉斯加 8.5 7 1 964-03-28 阿拉斯加 8.5
    1 980-03-27 5 美国西部圣海伦斯 49 1 981-01-02 琉球群岛 8.0 6 1 985-09-19 墨西哥 8.3
    1 982-03-28 5 墨西哥埃尔奇琼 48 1 983-10-05 智利 7.9 6 1 985-09-19 墨西哥 8.3
    1 991-04-02 6 菲律宾吕宋 54 1 991-04-23 哥斯达黎加 8.0 3 2 001-11-14 昆仑山口西 8.1
    1 991-08-08 5 智利哈德森 54 1 992-06-28 美国加州 7.9 2 2 001-11-14 昆仑山口西 8.1
    2 011-06-04 5 智利南部普耶韦 67 2 012-04-11 苏门答腊 8.7 12 2 012-04-11 苏门答腊 8.6
    2 021-12-20 5 汤加 24? 2 023-02-06 土耳其 7.8
    下载: 导出CSV

    表  2   全球VEI≥5火山活动与后续三年中国大陆M7浅源地震对应情况

    Table  2   Corresponding of global volcanic activity with VEI≥5 to shallow earthquakes with M7 in Chinese mainland in the following three years

    火山喷发当年中国大陆
    M7浅源地震
    后续三年中国大陆M7浅源地震
    起始时间VEI地点第一年第二年第三年
    1 902-10-246危地马拉圣玛利亚1 902-08-22
    新疆阿图什MS8.1
    1 904-08-30
    四川炉霍MS7.0
    1 907-03-285俄罗斯堪察加半岛1 908-08-20
    西藏班戈MS7.0
    1 912-06-066阿拉斯加1 913-12-21
    云南峨山MS7.0
    1 914-08-04
    新疆哈密MS7.5
    1 915-12-03
    西藏曲松MS7.0
    1 916-01-015秘鲁赛罗阿苏尔1 917-07-30
    云南大关MS7.0
    1 918-02-13
    南海MS7.3
    1 933-01-085墨西哥科利马1 933-08-25
    四川茂县MS7.5
    1 934-12-15
    西藏申扎MS7.0
    1 955-10-225俄罗斯别济米安纳1 955-04-14
    四川康定MS7.5
    1 963-02-185菲律宾阿贡1 963-04-19
    青海都兰MS7.0
    1 966-03-22
    河北邢台MS7.1
    1 980-03-275美国西部圣海伦斯
    1 982-03-285墨西哥埃尔奇琼1 985-08-23
    新疆乌恰MS7.4
    1 991-04-026菲律宾吕宋1 994-09-16
    台湾海峡MS7.3
    1 991-08-085智利哈德森1 994-09-16
    台湾海峡MS7.3
    2 011-06-045智利南部普耶韦2 013-04-20
    四川芦山MS7.0
    2 014-02-12
    新疆于田MS7.3
    2 021-12-205汤加2 021-05-22
    青海玛多MS7.4
    2 024-01-23
    新疆乌什MS7.1
    下载: 导出CSV
  • 安利. 2020. 火山爆发强度的八个等级[J]. 百科知识,(14):28–29.

    An L. 2020. Eight levels of the volcanic eruption intensity[J]. Encyclopedic Knowledge,(14):28–29 (in Chinese).

    安艺敬一. 2009. 预测地震和火山喷发的地震学[M]. 尹祥础,张永仙,王裕仓,周龙泉,张浪平,张晖辉等译. 北京:科学出版社:1−331.

    Aki K. 2009. Seismology of Earthquake and Volcano Prediction[M]. Yin X C,Zhang Y X,Wang Y C,Zhou L Q,Zhang L P,Zhang H H,et al trans. Beijing:Science Press:1−331 (in Chinese).

    陈学忠,吕晓健,王慧敏. 2001. 中国大陆地震活跃期和平静期的b值与地震趋势研究[J]. 地震,21(1):59–62.

    Chen X Z,Lü X J,Wang H M. 2001. b value of the seismically active and quiescent periods and research of seismicity tendency in China’s continent[J]. Earthquake,21(1):59–62 (in Chinese).

    邓起东,程绍平,马冀,杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报,57(7):2025–2042.

    Deng Q D,Cheng S P,Ma J,Du P. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics,57(7):2025–2042 (in Chinese).

    董金龙,胡修举,邹常伟. 2015. 全球地震及火山的分布特征及其变化关系[J]. 首都师范大学学报(自然科学版),36(5):87–90.

    Dong J L,Hu X J,Zou C W. 2015. Distribution characteristics of global earthquakes,volcanoes and their changes in relationship[J]. Journal of Capital Normal University (Natural Sciences Edition),36(5):87–90 (in Chinese).

    郭正府,刘嘉麒. 2002. 火山活动与气候变化研究进展[J]. 地球科学进展,17(4):595–604.

    Guo Z F,Liu J Q. 2002. Research advance in effect of volcanism on climate changes[J]. Advance in Earth Sciences,17(4):595–604 (in Chinese).

    洪汉净,于泳,郑秀珍,刘培洵,陶玮. 2003. 全球火山活动分布特征[J]. 地学前缘,10(增刊):11–16.

    Hong H J,Yu Y,Zheng X Z,Liu P X,Tao W. 2003. Global volcano distribution:Pattern and variation[J]. Earth Science Frontiers,10(S1):11–16 (in Chinese).

    洪汉净,陈会仙,赵谊,胡久常. 2009. 全球地震、火山分布及其变化特征[J]. 地震地质,31(4):573–583. doi: 10.3969/j.issn.0253-4967.2009.04.001

    Hong H J,Chen H X,Zhao Y,Hu J C. 2009. Global earthquakes and volcanoes:Distribution and variations[J]. Seismology and Geology,31(4):573–583 (in Chinese).

    洪汉净. 2011. 近年来全球地震与火山活动分析[J]. 自然杂志,33(5):266–270.

    Hong H J. 2011. Analysis on global earthquake and volcano activity in recent years[J]. Chinese Journal of Nature,33(5):266–270 (in Chinese).

    刘国明,张恒荣,孔庆军. 2006. 长白山天池火山区的地震活动特征分析[J]. 地震地质,28(3):503–508.

    Liu G M,Zhang H R,Kong Q J. 2006. Analysis of the seismic activity at the Changbaishan Tianchi volcano[J]. Seismology and Geology,28(3):503–508 (in Chinese).

    刘国明,杨景奎,王丽娟,孙纪财. 2011. 长白山火山活动状态分析[J]. 矿物岩石地球化学通报,30(4):393–399.

    Liu G M,Yang J K,Wang L J,Sun J C. 2011. Active level analysis of the Tianchi volcano in Changbaishan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 30 (4):393−399 (in Chinese).

    刘嘉麒,郭正府. 1998. 火山活动与构造气候旋回[J]. 第四纪研究,18(3):222–228.

    Liu J Q,Guo Z F. 1998. Volcanic activities and tectonic-climatic cycles[J]. Quaternary Sciences,18(3):222–228 (in Chinese).

    吕政,杨清福,张恒荣,刘国明,高金哲. 2007. 长白山天池火山地震活动与西北太平洋俯冲带内中深源地震关系的研究[J]. 地震地质,29(3):470–479.

    Lü Z,Yang Q F,Zhang H R,Liu G M,Gao J Z. 2007. Study of the relationship between Changbaishan Tianchi volcanic seismic activity and deep earthquakes in the Northwest Pacific subduction zone[J]. Seismology and Geology,29(3):470–479 (in Chinese).

    马宏生,邵志刚,周龙泉,蒋长胜. 2009. 汶川8.0级地震后中国大陆强震活动状态研究[J]. 地震,29(4):63–71.

    Ma H S,Shao Z G,Zhou L Q,Jiang C S. 2009. On the state of strong earthquake activity in mainland China after the Wenchuan 8.0 earthquake[J]. Earthquake,29(4):63–71 (in Chinese).

    曲维政,黄菲,杜凌,赵进平,秦婷,曹勇. 2011. 火山活动的周期性及其在若干气候要素中的反映[J]. 地球物理学报,54(3):643–655.

    Qu W Z,Huang F,Du L,Zhao J P,Qin T,Cao Y. 2011. The periodicity of volcano activity and its reflection in some climate factors[J]. Chinese Journal of Geophysics,54(3):643–655 (in Chinese).

    邵志刚,马宏生,李志雄,张国民. 2009. 中国大陆强震活动时空特征分析[J]. 地震,29(4):98–106.

    Shao Z G,Ma H S,Li Z X,Zhang G M. 2009. Temporal and spatial characteristics of strong earthquake activities in Mainland China[J]. Earthquake,29(4):98–106 (in Chinese).

    宋治平,张国民,刘杰,尹继尧,薛艳,宋先月. 2011. 全球地震目录[M]. 北京:地震出版社:113−448.

    Song Z P,Zhang G M,Liu J,Yin J Y,Xue Y,Song X Y. 2011. Global Earthquake Catalog[M]. Beijing:Seismological Press:113−448 (in Chinese).

    宋治平,尹继尧,薛艳,张国民,刘杰,朱元清,张永仙. 2013. 全球及各地震区带强震活动周期特征[J]. 地球物理学报,56(6):1868–1876.

    Song Z P,Yin J Y,Xue Y,Zhang G M,Liu J,Zhu Y Q,Zhang Y X. 2013. The global and sub-zone period characteristics for large earthquakes[J]. Chinese Journal of Geophysics,56(6):1868–1876 (in Chinese).

    孙加林,章瑞. 2007. 中国大陆20世纪以来第五地震活跃期的复杂性及其本质问题[J]. 地震,27(2):30–40.

    Sun J L,Zhang R. 2007. Complexity of the 5th seismic active period in Mainland China since the 20th Century and its true nature[J]. Earthquake,27(2):30–40 (in Chinese).

    王凡,沈正康,王阎昭,王敏. 2011. 2011年3月11日日本宫城MW9.0级地震对其周边地区火山活动的影响[J]. 科学通报,56(14):1080–1083.

    Wang F,Shen Z K,Wang Y Z,Wang M. 2011. Influence of the March 11,2011 MW9.0 Tohoku-Oki earthquake on regional volcanic activities[J]. Chinese Science Bulletin,56(20):2077–2081. doi: 10.1007/s11434-011-4523-y

    吴建平,明跃红,张恒荣,刘国明,房立华,苏伟,王未来. 2007. 长白山天池火山区的震群活动研究[J]. 地球物理学报,50(4):1089–1096.

    Wu J P,Ming Y H,Zhang H R,Liu G M,Fang L H,Su W,Wang W L. 2007. Earthquake swarm activity in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics,50(4):1089–1096 (in Chinese). doi: 10.1002/cjg2.1126

    薛艳,刘杰,姜祥华. 2021. 全球及主要构造带大震活动状态研究[J]. 地球物理学报,64(12):4425–4436.

    Xue Y,Liu J,Jiang X H. 2021. Process and trend of great earthquakes in the globe and main zones[J]. Chinese Journal of Geophysics,64(12):4425–4436 (in Chinese).

    张国民,马宏生. 2006. 我国陆区7级地震形势分析[G]//中国大陆强震趋势预测研究(2007年度). 北京:地震出版社:59−64.

    Zhang G M,Ma H S. 2006. Analysis of magnitude 7 earthquake trend in Chinese mainland[G]//Forecasting Research of the Strong Earthquake Trend of Chinese Mainland in 2007. Beijing:Seismological Press:59−64 (in Chinese).

    中国地震台网. 2023. 历史地震[EB/OL]. [2023-08-31]. https://www.ceic.ac.cn/history/.

    China Earthquake Network. 2023. Historical earthquake[EB/OL]. [2023-08-31]. https://www.ceic.ac.cn/history/ (in Chinese).

    Adam D. 2022. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere[J]. Nature,601(7894):497. doi: 10.1038/d41586-022-00127-1

    Bao Y,Song Y J,Shu Q,He Y,Qiao F L. 2023. Tonga volcanic eruption triggered anomalous Arctic warming in early 2022[J]. Ocean Model,186:102258. doi: 10.1016/j.ocemod.2023.102258

    Bell A F,Hernandez S,McCloskey J,Ruiz M,LaFemina P C,Bean C J,Möllhoff M. 2021. Dynamic earthquake triggering response tracks evolving unrest at Sierra Negra volcano,Galápagos Islands[J]. Sci Adv,7(39):eabh0894. doi: 10.1126/sciadv.abh0894

    Bonadonna C,Folch A,Loughlin S,Puempel H. 2012. Future developments in modelling and monitoring of volcanic ash clouds:Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation[J]. Bull Volcanol,74(1):1–10. doi: 10.1007/s00445-011-0508-6

    Burgos V,Jenkins S F,Bebbington M,Newhall C,Taisne B. 2022. A new perspective on eruption data completeness:Insights from the First Recorded EruptionS in the Holocene (FRESH) database[J]. J Volcanol Geotherm Res,431:107648. doi: 10.1016/j.jvolgeores.2022.107648

    Carvajal M,Sepúlveda I,Gubler A,Garreaud R. 2022. Worldwide signature of the 2022 Tonga volcanic tsunami[J]. Geophys Res Lett,49(6):e2022GL098153. doi: 10.1029/2022GL098153

    Chen Y,Hu J P,Peng F. 2018. Seismological challenges in earthquake hazard reductions:Reflections on the 2008 Wenchuan earthquake[J]. Sci Bull,63(17):1159–1166. doi: 10.1016/j.scib.2018.06.015

    Cottrell E. 2015. Global distribution of active volcanoes[G]//Volcanic Hazards,Risks and Disasters. Heidelberg:Elsevier:1−16.

    Crampin S,Gao Y,Bukits J. 2015. A review of retrospective stress-forecasts of earthquakes and eruptions[J]. Phys Earth Planet Inter,245:76–87. doi: 10.1016/j.pepi.2015.05.008

    Deligne N I,Coles S G,Sparks R S J. 2010. Recurrence rates of large explosive volcanic eruptions[J]. J Geophys Res:Solid Earth,115(B6):B06203.

    Dieterich J,Cayol V,Okubo P. 2000. The use of earthquake rate changes as a stress meter at Kilauea volcano[J]. Nature,408(6811):457–460. doi: 10.1038/35044054

    Eggert S,Walter T R. 2009. Volcanic activity before and after large tectonic earthquakes:Observations and statistical significance[J]. Tectonophysics,471(1/2):14–26.

    Farrell J,Husen S,Smith R B. 2009. Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system[J]. J Volcanol Geotherm Res,188(1/2/3):260–276.

    Global Volcanism Program,National Museum of Natural History,Smithsonian Institution. 2023. Volcanoes of the world[DB/OL]. [2023-08-31]. https://volcano.si.edu/search_eruption.cfm/.

    González G,Fujita E,Shibazaki B,Hayashida T,Chiodini G,Lucchi F,Yokoyama I,Németh K,Mora-Amador R,Moya A,Chigna G,Martí J,Rouwet D. 2021. Increment in the volcanic unrest and number of eruptions after the 2012 large earthquakes sequence in Central America[J]. Sci Rep,11(1):22417. doi: 10.1038/s41598-021-01725-1

    Green D N,Neuberg J. 2006. Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrière Hills Volcano,Montserrat[J]. J Volcanol Geotherm Res,153(1/2):51–63.

    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185

    Jenkins S,Smith C,Allen M,Grainger R. 2023. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C[J]. Nat Clim Chang,13(2):127–129. doi: 10.1038/s41558-022-01568-2

    Kasahara J. 2002. Tides,earthquakes,and volcanoes[J]. Science,297(5580):348–349. doi: 10.1126/science.1074601

    Kulichkov S N,Chunchuzov I P,Popov O E,Gorchakov G I,Mishenin A A,Perepelkin V G,Bush G A,Skorokhod A I,Vinogradov Y A,Semutnikova E G,Šepic J,Medvedev I P,Gushchin R A,Kopeikin V M,Belikov I B,Gubanova D P,Karpov A V,Tikhonov A V. 2022. Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano,its energy release and impact on aerosol concentrations and tsunami[J]. Pure Appl Geophys,179(5):1533–1548. doi: 10.1007/s00024-022-03046-4

    Lay T. 2015. The surge of great earthquakes from 2004 to 2014[J]. Earth Planet Sc Lett,409:133–146. doi: 10.1016/j.jpgl.2014.10.047

    Lemarchand N,Grasso J R. 2007. Interactions between earthquakes and volcano activity[J]. Geophys Res Lett,34(24):L24303.

    Loughlin S C,Sparks S,Brown S K,Jenkins S F,Vye-Brown C. 2015. Global Volcanic Hazards and Risk[M]. Cambridge:Cambridge University Press:1−79.

    Marzocchi W,Zaccarelli L. 2006. A quantitative model for the time-size distribution of eruptions[J]. J Geophys Res:Solid Earth,111(B4):B04204.

    Mastin L G,Guffanti M,Servranckx R,Webley P,Barsotti S,Dean K,Durant A,Ewert J W,Neri A,Rose W I,Schneider D,Siebert L,Stunder B,Swanson G,Tupper A,Volentik A,Waythomas C F. 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[J]. J Volcanol Geotherm Res,186(1/2):10–21.

    Mcnutt S R,Beavan R J. 1981. Volcanic earthquakes at Pavlof Volcano correlated with the solid earth tide[J]. Nature,294(5842):615–618. doi: 10.1038/294615a0

    Mellors R,Kilb D,Aliyev A,Yetirmishli G. 2007. Correlations between earthquakes and large mud volcano eruptions[J]. J Geophys Res:Solid Earth,112(B4):B04304.

    Nettles M,Ekström G. 1998. Faulting mechanism of anomalous earthquakes near Bárdarbunga Volcano,Iceland[J]. J Geophys Res:Solid Earth,103(B8):17973–17983. doi: 10.1029/98JB01392

    Newhall C G,Self S. 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism[J]. J Geophys Res:Oceans,87(C2):1231–1238. doi: 10.1029/JC087iC02p01231

    Nishikawa T,Ide S. 2014. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nat Geosci,7(12):904–908. doi: 10.1038/ngeo2279

    Nishimura T. 2017. Triggering of volcanic eruptions by large earthquakes[J]. Geophys Res Lett,44(15):7750–7756. doi: 10.1002/2017GL074579

    Omira R,Ramalho R S,Kim J,González P J,Kadri U,Miranda J M,Carrilho F,Baptista M A. 2022. Global Tonga tsunami explained by a fast-moving atmospheric source[J]. Nature,609(7928):734–740. doi: 10.1038/s41586-022-04926-4

    Papale P. 2018. Global time-size distribution of volcanic eruptions on Earth[J]. Sci Rep,8(1):6838. doi: 10.1038/s41598-018-25286-y

    Proud S R,Prata A T,Schmauß S. 2022. The January 2022 eruption of Hunga Tonga-Hunga Ha’apai volcano reached the mesosphere[J]. Science,378(6619):554–557. doi: 10.1126/science.abo4076

    Pyle D M. 2015. Sizes of volcanic eruptions[G]//The Encyclopedia of Volcanoes. 2nd ed. Amsterdam:Academic Press:257−264.

    Rougier J,Sparks S R,Cashman K V. 2016. Global recording rates for large eruptions[J]. J Appl Volcanol,5:11. doi: 10.1186/s13617-016-0051-4

    Schmincke H U. 2004. Volcanism[M]. Berlin:Springer-Verlag:324.

    Siebert L,Simkin T,Kimberly P. 2011. Volcanoes of the World[M]. 3rd ed. Berkeley:Berkeley University of California Press:1−32.

    Siebert L,Cottrell E,Venzke E,Andrews B. 2015. Earth’s volcanoes and their eruptions:An overview[G]//The Encyclopedia of Volcanoes. 2nd ed. Amsterdam:Academic Press:239−255.

    Simkin T. 1993. Terrestrial volcanism in space and time[J]. Annu Rev Earth Planet Sci,21(1):427–452. doi: 10.1146/annurev.ea.21.050193.002235

    Vömel H,Evan S,Tully M. 2022. Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai[J]. Science,377(6613):1444–1447. doi: 10.1126/science.abq2299

    Wright C J,Hindley N P,Alexander M J,Barlow M,Hoffmann L,Mitchell C N,Prata F,Bouillon M,Carstens J,Clerbaux C,Osprey S M,Powell N,Randall C E,Yue J. 2022. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption[J]. Nature,609(7928):741–746. doi: 10.1038/s41586-022-05012-5

    Zhang H,Wang F,Li J,Duan Y H,Zhu C W,He J Y. 2022. Potential impact of Tonga volcano eruption on global mean surface air temperature[J]. J Meteorol Res,36(1):1–5. doi: 10.1007/s13351-022-2013-6

  • 期刊类型引用(1)

    1. 侯争,郭增长,王小旗,杜久升. 川滇地壳形变信息的GNSS时空探测及分析. 测绘科学. 2022(06): 30-37+64 . 百度学术

    其他类型引用(4)

图(10)  /  表(2)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  91
  • PDF下载量:  89
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2024-01-09
  • 网络出版日期:  2024-03-10
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回