Borehole strain data based seismicity prediction analysis using a neural network
-
摘要:
首先利用四分量钻孔应变数据独有的自洽特性,构建震前应变特征数据集;之后基于一维卷积神经网络框架,设计地震震级与方位的预测模型;然后通过混淆矩阵计算准确率、召回率以及F1分数,对模型预测结果进行评价与修正;最后对我国西南地区的永胜、昭通、姑咱及腾冲四个台站的钻孔应变特征分别进行训练与验证,并讨论了不同特征窗长对预测效果的影响。训练完成后的模型效果在测试集上均表现优异,四个台站对震级和方位预测的平均准确率分别可达85%和80%左右,说明四分量钻孔应变数据特征与地震的发生有着很强的相关性,通过卷积神经网络对地震前兆特征进行挖掘具有很大研究潜力,本文提出的预测策略也为未来短临地震的精确预测研究打下基础。
Abstract:With the development of seismological observational techniques, a number of case studies indicate that the seismogenic process of major earthquakes is often accompanied by deformation anomalies. Strain data serve as an indicator of crustal deformation, which reflects changes in subsurface stress and holds significant importance for seismology research. However, the research on the extraction of pre-earthquake anomalies from borehole strain data is currently limited to the stages of case analysis and small-sample statistical analysis. Thus, it is very meaningful to use a new technique of data mining to analyze the association between strain anomalies and earthquakes.
In order to dig out more strain information and correlation information between multiple strains, according to the scholars’ many analyses of the correlation between areal strains, shear strains and the self-consistent coefficients of the four-component strains, it is found that the borehole strain may reflect the preparatory process of earthquake nucleation. Therefore, this study calculates the Pearson correlation coefficients and self-consistent coefficients between these strains to finally constitute a 24-dimensional feature dataset. Subsequently, we divide earthquake events based on magnitude into three classes: no earthquake, earthquakes with 3.0≤MS<5.0, and earthquakes with MS≥5.0. Simultaneously, these earthquakes are also classified into five groups based on their orientation relative to the borehole strainmeter, forming an earthquake orientation dataset. Thereby, the labels for earthquake samples are generated according to these two classification criteria.
Next, the study employs a one-dimensional convolutional neural network (1D-CNN) framework to develop a short-term prediction model for the magnitude and location of earthquakes. The CNN can leverage the advantages of its convolutional layers’ parameter-sharing mechanism to effectively capture local features in the data. This 1D-CNN model consists of three parts: the input layer, hidden layers, and output layer. Strain feature samples from the dataset are used as inputs to the model, which outputs predicted values for earthquake magnitude and location labels. The hidden layer of the model is divided into two parts: the convolutional region and the fully connected region. We apply the cross-entropy loss function and the Adam optimizer for model compilation, and a learning rate decay strategy is used to dynamically adjust the learning rate. Parameter optimization is conducted using a random search algorithm. To evaluate this prediction model, we use a confusion matrix to calculate accuracy, recall, and F1 scores for examining the efficiencies for each class. Furthermore, the study adjusts the model’s prediction window size for earthquakes above magnitude 5.0 to balance the distribution of samples across different magnitude classes.
Finally, the borehole strain data from stations Guzan, Yongsheng, Zhaotong, and Tengchong in southwest China are respectively utilized for training and testing in this study. The results indicate that the pre-earthquake strain features from stations Yongsheng, Guzan, Zhaotong, and Tengchong exhibited a high level of accuracy up to 80% in predicting both magnitude and direction. Furthermore, the predictive results are independently validated for five typical major earthquakes in China. The findings demonstrate that the predicted magnitude and direction labels for these five earthquakes corresponded to the actual events, suggesting that the model successfully captures valuable pre-earthquake strain information and possesses predictive capabilities. Finally, we analyze the impact of the time window and prediction window sizes of input data on the model’s prediction accuracy across different magnitude classes. The results reveal that for all three magnitude classes, a longer time window leads to higher predictive accuracy of the model. Moreover, the results of major earthquakes are overall higher and more random than that of moderate earthquakes. It may reflect that the borehole strain has the short-term predictive capability for major earthquakes, and there are differences in pre-earthquake features among different major earthquakes.
The 1D-CNN models built in this study could effectively predict earthquake magnitude and approximate location using data from the respective stations. This demonstrates that the convolutional neural network architecture has the capability to extract meaningful pre-earthquake anomaly features from borehole strain data. This provides new insights and methods for research in earthquake precursory observations, laying a foundation for accurate earthquake predictions in the future. However, considering practical applicability, there are limitations to the methodology of this study. Future research will devise more robust networks to address sample imbalances by combining labels and achieve simultaneous predictions for the three seismic elements. Alternatively, a combination of multiple strain stations could be utilized, incorporating additional earthquake location information (such as epicentral distance and angles) to enhance directional prediction accuracy through partitioning high-resolution spatial grids. Moreover, experimental validations will be conducted on strain observation stations in seismically weak areas or other multi-seismic regions to establish a robust short-term earthquake prediction model suitable for strong seismic events.
-
引言
钻孔体应变仪自1968年被成功研制以来(Sacks et al,1971;Evertson,1977),由于其高灵敏度(优于10−9)和甚宽频带(零到数十Hz)等突出优点,便为探赜地震前兆、震源过程、断层滑动、构造运动和火山喷发等动力学机制提供了新视角(Sacks et al,1978;Linde et al,1996;Roeloffs,2006;张凌空,牛安福,2008;邱泽华等,2012;Takanami et al,2013;Bonaccorso et al,2016;邱泽华,2017;Barbour,Crowell,2017)。在近半个世纪的观测与探索过程中,其重要的理论价值和巨大的应用潜力已渐露峥嵘。
但不足之处是钻孔体应变仪的观测深度普遍较浅(300 m以内),气象和水文等非构造因素会在更宽频率范围内对观测值产生较显著的干扰(Asai et al,2009),这不仅不利于孕震、断层活动和构造运动等弱信号的合理提取,还增加了非构造信号识别与改正的复杂度。相比内陆,沿海地区的钻孔体应变测点更易受到台风的强干扰(Mouyen et al,2017)。强度高且尺度大的台风通过低气压和暴雨即可造成地壳体应变的显著变化。从日本南关东地区的观测实例来看,台风天气系统下的气压影响系数高达20.4×10−9/hPa (檜皮久義等,1983);加之,此类体应变的信号特征与慢地震非常相似,所以极易被误判(Liu et al,2009;Hsu et al,2015;Mouyen et al,2017)。因此,系统地诊断台风对钻孔体应变观测的干扰特征及影响量,对科学推定近地表的弹性结构、台风负荷所产生的地壳应力场以及探讨能否由此触发慢地震等极为关键。而这些科学问题,也日益成为地震预测和地壳动力学研究中的热点和难点。
近年来,许多研究人员已采用回归分析、数字信号处理和理论模型等方法,对上述问题展开了深入研究。檜皮久義等(1983)通过线性回归分析了台风过境日本东海和南关东地区期间的气压梯度与31个钻孔体应变测点响应量的关系,由此实测出长周期(近3天)气压波的影响系数。袁媛等(2017)则利用小波分解方法分析了台风 “浣熊” 和 “海葵” 对佘山台分量钻孔应变的扰动特征,结果显示2—16分钟频段内的应变幅值均呈上升—下降的规律,且与台风中心到台站之间距离的相关性较好,并进一步揭示出其动力可能源自台风所激发的近岸长重力波。对于台风期间气压波动所产生的理论体应变场,可由地表气压的弹性负荷模型进行解算,但该方法需要精确测得台风常数r0和气压场的分布特征(陈孔沫,1981;上垣内修,1987)。而对于长周期气压波(周期 T≥12 h),其气压影响系数仅与围岩的弹性模量和泊松比相关(Hsu et al,2015;张凌空,牛安福,2019),所以,Hsu等(2015)将台风的气压负荷更进一步简化为单轴应力或应变问题,由此可有效推定测点处体应变的理论响应量。对于台风暴雨的影响,则可通过布辛尼斯克(Boussinesq)公式、状态-空间模型(state-space model)和水箱模型(tank model)定量地计算(Peng et al,2014;木村一洋等,2015),尽管这些模型给出的结果略有差异,但总体来看,降水量与钻孔体应变的压性响应量大致呈线性关系(Hsu et al,2015)。
在全球变暖的背景下,西北太平洋成为了世界上热带气旋最活跃的海域,平均每年生成的热带气旋有20多个,约占全球的1/3 (Matsuura et al,2003)。我国濒临西北太平洋,加之东南沿海区域地表温度偏高,平均每年约有8个台风登陆,所以我国是世界上少数遭受台风影响最严重的国家之一(Wu et al,2005;袁金南等,2008;Peduzzi et al,2012;Xu et al,2013)。这样的极端灾害性天气,也成为我国东南沿海地区钻孔体应变观测的一大气象干扰源。但台风所产生的长周期气压波动及强降水,对我国近岸钻孔体应变的影响特征及机制究竟如何?截至目前,相关研究还尚少。2019年发生的1909号超强台风 “利奇马” ,是1949年以来登陆中国的第五大强台风,而且其陆上强度维持在热带风暴及以上级别的时长高达44小时,陆上滞留时长位列第六。如此典型而罕见的超强台风,其研究价值颇高;加之,我国东南沿海地区的5个响应较显著的钻孔体应变台站,距 “利奇马” 中心路径的最小间距均小于90 km,这也有利于捕捉高信噪比的台风扰动信号。为此,本文拟将这些台站作为个例加以研究,旨在深刻揭示我国东南沿海地区钻孔体应变对台风演变过程响应的特征及其物理机制,以期为我国沿海甚至内陆地区台风干扰的有效识别和合理量化等提供参考依据。
1. 台风和台站概况
1.1 “利奇马” 演变实况
超强台风 “利奇马” 的最佳路径、中心最低气压和强度等级等信息均源自中央气象台台风网(2019),时间分辨率分别为1 h (2019年8月10日02时至11日08时,北京时)和3 h (2019年8月4日14时至10日02时,2019年8月11日08时至13日11时,北京时)。2019年8月4日14时,1909号超强台风 “利奇马” 于菲律宾吕宋岛以东的西北太平洋洋面生成,继而沿西北偏北方向移动发展;在7日23时升格为超强台风,此时其中心最低气压为930 hPa,移动速度达到20 km/h;10日01时45分左右以超强台风等级在浙江省温岭市登陆,登陆时中心最低气压为930 hPa,移动速度为18 km/h;登陆后强度逐渐减弱,11时台风中心逼近至东阳台35 km处,此时台风已减弱为强热带风暴,中心最低气压为975 hPa,移动速度为15 km/h,并于22时移出浙江;之后,北翘行进,途经江苏和山东,于12日05时移入渤海,最终于13日11时衰减为热带低压并停止编号。 “利奇马” 的生命史共9天,其具体的移动路径和强度演变过程详见图1。总体而言,该台风具有登陆强度大、陆上衰减慢、路径复杂和生命史长等四大特点。
图 1 超强台风 “利奇马” 的最佳路径和强度演变及东南沿海地区钻孔体应变台和气象站位置Figure 1. The best track and intensity (colored circles) of super typhoon Lekima (from 14:00 BJT on 4 August 2019 to 11:00 BJT on 13 August 2019,equally spaced at 1 h or 3 h,respectively) marked with time as well as locations of borehole dilatometer stations (black triangles)and meteorological stations (green triangles) in southeastern coastal area of China1.2 钻孔体应变台站概况
“利奇马” 过境我国东南沿海地区期间,响应较显著的钻孔体应变台站主要有东阳、溧阳、常熟、南通和青岛等5个测站。以上台站所安装的钻孔体应变仪皆为TJ-2型,该型仪器是由我国自主研制并达到了世界先进水平的体积式应变仪,其采样率为1次/min,分辨率优于10−9 (苏恺之等,2002)。另外,考虑到各台站钻孔水位仪和雨量计运行较不稳定,观测数据不太准确,本文选用了距各台站较近的杭州、上海和青岛等3个国际气象交换站的降水数据(NOAA,2019),其中,杭州气象站与台风路径的最小间距仅约3 km,因此能较客观地反映台风强盛时段其内螺旋雨带的暴雨强度(图1)。各台站及其相邻地面气象站的详细信息参见表1,从中可以看出,南通台的钻孔深度最深,为94 m,其它各台均在60 m左右。
表 1 5个钻孔体应变台站及其周邻地面气象站的概况Table 1. General information for the five borehole dilatometer sites and three neighboring meteorological stations台站 钻孔深度/m 钻孔围岩岩性 距海岸线距离/km 邻近的气象站 距气象站距离/km 东阳 67 泥质粉砂岩 120 杭州 110 溧阳 60 安山岩 240 杭州 140 常熟 62 石英砂岩 110 上海 80 南通 94 石英砂岩 50 上海 85 青岛 56 花岗岩 0.2 青岛 6 2. “利奇马” 的干扰特征及影响因子分析
2.1 东南沿海地区钻孔体应变响应的时空特征
在 “利奇马” 演变期间,表1所列的5个钻孔体应变台站都较好地记录到此次超强台风的扰动过程(图1,2)。从已有的研究(周龙寿,邱泽华,2008;邱泽华,2017)来看,钻孔体应变对气压具有频响特性,且低频(周期T>2 000 s)气压对其影响更为显著。所以,为了客观地呈现台风期间低频(T>24 h)体应变的变化特征,本文首先对体应变的原始观测数据进行预处理,主要目的是去线性趋势和去均值。之后,采用适于非平稳非线性信号的经验模态分解方法(empirical mode decompo-sition,缩写为EMD)(Huang et al,1998),以滤除预处理数据中周期T≤24 h的信号,主要包括大气潮、体潮和海潮等日波和半日波成分。图2中的红色曲线即为各台站滤波后的结果。
图 2 5个钻孔体应变台记录的 “利奇马” 低频扰动曲线Figure 2. The low-frequency signatures of super typhoon Lekima recorded by the borehole dilatometers at five stations during 1−17 August 2019Time series after linear curves are removed from the original one-minute-sampled volumetric strain data (black lines),and red lines show the trends of long-period changes in volumetric strain. The vertical left and right dashed lines mark the timing of Lekima's initiation and first landfall,respectively. The blue circle indicates the time when the typhoon was the nearest to the borehole dilatometer station.结合图1和图2,可以清楚地看出各台站在低频段对 “利奇马” 的响应全貌。就变化形态而言,各台站张性变形的强度均随 “利奇马” 中心位置呈急剧降升的对称漏斗状变化特征。当其中心位置距各台站最近时,体应变达到谷值,这说明随着 “利奇马” 的不断逼近或远离,各台站体应变张性变化的幅度相应地线性增大或减小。此外,各台站体应变谷值出现的时间次序,也与 “利奇马” 过境各台站的时刻相一致。在变化强度上,溧阳台的应变谷值最小,常熟台则最大,分别约为−37×10−9和−112×10−9。虽然 “利奇马” 在过境常熟台时,强度已降格为热带风暴,但该台站的响应幅度却明显大于其它台站,这可能是由于该台站钻孔深度较浅,且钻孔围岩为强度较低的石英砂岩等因素所致(彭剑文等,2017)。在下一节中,本文将深入分析各台站对 “利奇马” 响应的动力机制。
总体而言,各台站钻孔体应变的响应特征与台风中心的位置密切相关,这也揭示出 “利奇马” 能导致其过境区域近地表出现显著且即时的线弹性变形。
2.2 钻孔体应变台站对 “利奇马” 的响应特征
为了更好地与台风中心的最低气压进行对比,本文仅去除气压观测数据的线性趋势,并保留其均值;之后,对体应变和气压趋势进行一阶求导,以获取二者的动态变化率,其主要作用在于准确地确定台风影响的开始和结束时刻。需要说明的是,本文的主要目的是探讨台风引起的低频钻孔体应变(周期T>24 h),所以暂不对相对高频的扰动信号予以分析。
图3—5分别为2019年8月8—14日期间各台站钻孔体应变仪、气压计和雨量计观测到的超强台风过程。经过前述的信号处理之后,可以清楚地看到各台站体应变响应的全过程,即随着 “利奇马” 不断逼近和远离,钻孔体应变和气压均呈现对称的漏斗状形态,二者形态高度相似,且长周期变化特征非常显著。以东阳台为例(图3a),随着 “利奇马” 不断逼近,气压和钻孔体应变均在8月8日17时左右开始快速下降;在台风登陆时刻,二者变化量分别达−16.8 hPa和−43.5×10−9,并于10日11时达到谷值,数值分别为971.1 hPa和−60.7×10−9,相应最大变化量分别为−20.1 hPa和−52.8×10−9,此时该台站距台风中心仅35 km;此后,随着台风逐渐远离,二者在12日10时恢复至正常变化,整个响应过程持时约89 h。期间,气压和体应变变化率的范围分别为−0.016—0.014 hPa/min和−0.040×10−9—0.038×10−9/min(图3a)。而在空间上,可以看到该台站对 “利奇马” 开始、登陆、临近和结束响应的距离依次为770,150,35和900 km (图1)。
图 3 东阳台(a)、溧阳台(b)和杭州气象站在 “利奇马” 过境期间的观测数据图中第一行为钻孔体应变和气压记录及趋势,第二行为钻孔体应变和气压的变化率,第三行为日降水量Figure 3. Records of the volumetric strain and barometric pressure at the stations Dongyang (a) and Liyang (b) as well as daily rainfall data at Hangzhou meteorological station under the passage of super typhoon Lekima during August 1−17,2019The upper panels show the traces of the volumetric strain (black) and barometric pressure (gray),where red and green lines show the trends,respectively;the middle panels represent the variation rates of the volumetric strain (red) and barometric pressure (green);the lower panels represent the daily rainfall图 5 青岛台和青岛气象站在 “利奇马” 过境期间的观测数据(a) 钻孔体应变和气压记录及趋势;(b) 钻孔体应变和气压的变化率;(c) 日降水量Figure 5. Records of the volumetric strain and barometric pressure at Qingdao station and daily rainfall data at Qingdao meteorological station under the passage of super typhoon Lekima during August 1−17,2019(a) Traces of the volumetric strain (black) and barometric pressure (gray),red and green lines show the trends;(b) The variation rates of the volumetric strain (red) and barometric pressure (green);(c) The daily rainfall2.3 钻孔体应变台站对 “利奇马” 响应的动力诊断
尽管各台站体应变与气压的变化形态高度相关,但二者是否具有物理关联仍需对台风扰动期间降雨因子的干扰进行分析。由于台风过境东阳台时的降雨量最大,所以,仍以东阳台为例。从图3a最下面一行可以看出,在8月9—12日台风强干扰期间,杭州气象站的逐日累计降水量虽然高达167 mm,但并未引起东阳台出现显著的压性体应变,这定性说明强降水负荷对该台站的影响较小。为了进一步验证该推测的可靠性,本文对非台风时段强降水对该台站的影响实况进行了回溯对比。
图6为2019年7月8—14日杭州气象站记录到的一次非台风天气所产生的强降水过程,累计降水量高达231.9 mm。从图6a中气压和体应变的趋势变化可以看出,在强降水期间二者的最大变化量分别为8.3 hPa和18.8×10−9,与之对应的周期约为3.8天和3.4天;再结合图6b,不难看出气压与体应变的相关性很好。此外,还可以发现在气压波动幅度较小而降水量较大的情况下,体应变并未出现显著的压缩变化。因此,从以上定性分析的结果来看,降水对东阳台体应变观测的影响较小。更进一步,对于半无限空间弹性介质模型,降水所产生的理论体应变可通过布辛尼斯克公式求解,计算公式为
图 6 非台风情况下强降水事件对东阳台观测数据的影响(a) 钻孔体应变和气压记录及趋势;(b) 钻孔体应变和气压的变化速率;(c) 日降水量Figure 6. Records of the volumetric strain and barometric pressure at Dongyang station and daily rainfall data at Hangzhou meteorological station under the heavy rainfall induced by non-typhoon weather during July 1−20,2019(a) Traces of the volumetric strain (black) and barometric pressure (gray),red and green lines show the trends;(b) The variation rates of the volumetric strain (red)and barometric pressure (green);(c) The daily rainfall${\varepsilon _{\rm{v}} } {\text{=}} \frac{{2\!\!\!\!{\text{(}}1 {\text{+}} \nu {\text{)}}\!\!\!\!\!\!\!\!{\text{(}}1 {\text{-}} 2\nu{\text{)}}\!\!\!\!P}}{E}{\text{,}}$
(1) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
为何理论值与观测实况差异如此显著?究其原因,可能主要是由于东阳地区降水丰沛,多年平均降水量可达1 100—1 600 mm (梁溯安,2012),地表含水量相对较高。当出现短时强降水天气时,降水可能以径流的形式快速运移,其入渗量较为有限,所以台风暴雨在地表产生的负荷压力较小。
而溧阳、常熟、南通和青岛台,在台风扰动期间的日累计降水量依次为167,141,142和54 mm,其产生的理论体应变量可按照式(1)进行计算。依据表1所列各台站的台基岩性,E依次取40,10,15和50 GPa,泊松比ν均取典型值0.25,则降水负荷所产生的理论体应变量分别约为51.3×10−9,172.5×10−9,115.8×10−9和13.2×10−9。显然,青岛台的值较小,可大致忽略;其它台站相对较大,但这些台站并未观测到显著的压性变形(图3b,4),这说明上述量级的降水尚未超过其干扰的阈值。因此,可大致推定出台风扰动期间降水因子对各台站的干扰较小。
图 4 常熟台(a),南通台(b)和上海气象站在 “利奇马” 过境期间的观测数据图中第一行为钻孔体应变和气压记录及趋势,第二行为钻孔体应变和气压的变化率,第三行为日降水量Figure 4. Records of the volumetric strain and barometric pressure at the stations Changshu (a) and Nantong (b) as well as and daily rainfall data at Shanghai meteorological station under the passage of super typhoon Lekima during August 1−17,2019The upper panels show the traces of the volumetric strain (black) and barometric pressure (gray),where red and green lines show the trends,respectively;the middle panels represent the variation rates of the volumetric strain (red) and barometric pressure (green);the lower panels represent the daily rainfall综上所述, “利奇马” 演变过程中的低气压系统,是引起各台站体应变呈对称漏斗状形态的物理成因。
此外,本文全面统计了各台站对 “利奇马” 响应的具体过程和各参数幅值,相关结果详见表2,可以看出,在低频段(周期T>24 h), “利奇马” 对各台站的扰动距离、历时和幅值及气压影响系数等特征可归纳如下:① “利奇马” 在远离青岛台980 km时,便已影响青岛台的体应变观测,溧阳台、南通台和东阳台的扰动距离次之,常熟台则最小,为760 km;② 台风扰动的历时在89—120 h之间,其中,东阳台的扰动历时最小,但随着台风持续北上,其能量逐渐衰减,台风移速也相应降低,所以对偏北方向台站的扰动历时也相应增加。需要指出的是,南通台的响应历时之所以长达120 h,主要是由于 “利奇马” 在过境该台站时路径较复杂、耗时较长所致;③ “利奇马” 在过境各台站时,气压变化率大致处于−0.017—0.014 hPa/min的范围内而各台站体应变的响应速率差异较大,其中常熟台的变化率最大,溧阳台则最小。这两个台站的孔深相近,但响应速率差异显著,可能主要是由于常熟台的钻孔围岩为强度较低的石英砂岩而溧阳台的钻孔围岩为强度较高的安山岩所致。④ 台风产生的漏斗状气压及其在各台站所导致的体应变变幅分别为−17.2—−22.8 hPa和−36.8×10−9—−112.1×10−9;气压影响系数差异较大,其中常熟台最大,为6.2×10−9/hPa,溧阳台则最小,仅为2.1×10−9/hPa,导致其显著差异的原因,可能主要源于各台站钻孔围岩强度不同。
表 2 5个钻孔体应变台站对 “利奇马” 响应的特征参数Table 2. The response patterns and magnitudes to Lekima for the five borehole dilatometer stations台站 响应距离/km 台风
临近时
的强度历
时
/h气压
最大变幅
/hPa体应变
最大变幅
/10−9气压
变化率
/(hPa·min−1)体应变
变化率
/(10−9 min−1)累计
降水量
/mm气压影响
系数
/(10−9 hPa−1)开始响应 台风登陆 台风临近 结束响应 东阳 770 150 35 900 强热带风暴 89 −20.1 −52.8 −0.016—0.014 −0.040—0.038 167 2.6 溧阳 830 390 88 650 热带风暴 96 −17.2 −36.8 −0.012—0.009 −0.028—0.027 167 2.1 常熟 760 380 30 640 热带风暴 103 −18.2 −112.1 −0.012—0.011 −0.069—0.076 141 6.2 南通 780 410 27 - 热带风暴 120 −20.7 −76.7 −0.011—0.010 −0.037—0.034 142 3.7 青岛 980 870 26 - 热带风暴 107 −22.8 −72.1 −0.017—0.009 −0.030—0.041 54 3.2 注:“-”表示此时刻台风已停止编号,无法获取该时刻台风的具体位置。 总体来看,各台钻孔体应变对 “利奇马” 的时空响应具有以下四点特征:① “利奇马” 的气压场在水平向分布较对称;② 台风过程所导致的气压长周期波动,是各台站体应变变化的主因,而台风暴雨对体应变的影响较小;③ 体应变可即时响应台风低气压系统所产生的弹性负荷,且二者具有较好的线性关系;对于周期处于89—120 h范围的气压波动,其气压影响系数约为2.1×10−9—6.2×10−9/hPa;④ 超强台风中心在距台站980 km处便能影响该台站的体应变观测,且随着台风的不断逼近或远离,其影响程度也相应增强或减弱;当其临近台站30 km时,在62 m深处所引起的最大体应变可达−112.1×10−9。
3. 台风导致近地表体应变显著变化的物理机制
如前文所述, “利奇马” 过境期间的气压突降是各台站主要的干扰因子。由于此次气压波动周期以低频为主,最大时长可达120 h。这种情况下,在理论求解体应变对长周期气压的响应量时,还需考虑钻孔体应变仪钢筒内壁面应变与空孔岩石面应变的比值,而该值又取决于钢筒和水泥的弹性模量、泊松比等观测系统参数(张凌空,牛安福,2019)。但各台站在钻孔体应变仪安装过程中,并未对以上关键参数进行实测,所以这些不足给理论计算带来了相当大的困难。
为进一步简化问题,本文假定钻孔所在介质为各向同性弹性体;同时,也不考虑筒壁和水泥的力学特性影响;再者,鉴于超强台风气压场均匀作用的区域较大,忽略水平向应力。依据胡克定律,在单轴应力作用时,理论体应变的解析解(Hsu et al,2015)为
${\varepsilon _{\rm{v}} } {\text{=}} \!\!\!\!{\text{(}}1 {\text{-}} 2\nu {\text{)}}\!\!\!\!{\varepsilon _{{\textit{zz}}}} {\text{,}}$
(2) ${\varepsilon _{{\textit{zz}}}} {\text{=}} \frac{P}{E}{\text{,}}$
(3) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 3 各台站的台基岩石力学参数和气压波动幅值及相应的理论体应变Table 3. The modeled volumetric strain induced by observed atmospheric loading based on corresponding rock mechanical parameters for the five borehole dilatometer stations台站 钻孔围岩力学参数 气压波动/hPa 实测体应变/10−9 理论体应变/10−9 弹性模量/GPa 泊松比 东阳 20 0.25 −20.1 −52.8 −50.3 溧阳 40 0.25 −17.2 −36.8 −21.5 常熟 10 0.25 −18.2 −112.1 −91.0 南通 15 0.25 −20.7 −76.7 −69.0 青岛 50 0.25 −22.8 −72.1 −22.8 从计算结果来看,各台站体应变的理论值均偏小于观测值,这可能是由于理论计算中所取的弹性模量较真实情况偏大。其中,东阳台和南通台的观测值与理论值吻合得较好,但青岛台的理论值仅约为观测值的三分之一,这可能是由于该台站钻孔围岩的裂隙较发育(冯志军等,2009),因而其力学强度偏低。总体而言,解析结果大致能解释实测值。
以上定量分析的结果,进一步表明了 “利奇马” 演变期间的长周期气压波动,是造成我国东南沿海地区钻孔体应变大幅张性突变的主要物理成因。
4. 讨论与结论
本文利用我国东南沿海地区钻孔体应变的观测实况,初步揭示了超强台风 “利奇马” 在时空演变过程中,对浅地表钻孔体应变观测影响的全貌,并在此基础上,定量计算了台风期间暴雨和长周期气压突变等负荷所引起的理论体应变,主要结论如下:
1) 强度上, “利奇马” 演变过程中漏斗状的长周期气压波动,是造成钻孔体应变大幅张性变形的主因,且体应变对台风低压系统具有即时的线弹性响应特征。此外,当气压波动周期为103 h时,−18.2 hPa的气压变化即可引起高达−112.1×10−9的体应变,该频点的气压系数为6.2×10−9/hPa。
2) 空间上,随着超强台风中心的不断逼近或远离,其对钻孔体应变的影响程度也相应地逐渐增强或减弱。其中,青岛台对 “利奇马” 响应最为敏感,其响应距离远达980 km。
3) 钻孔体应变对 “利奇马” 长周期气压波动的响应量,可通过单轴应力状态下的胡克定律进行求解。
综上可见,本文重点在低频段,初步揭示了超强台风对我国东南沿海地区钻孔体应变的影响特征和物理机制。虽然,该区地壳形变观测受台风干扰较为频繁,但仅从现有的分析结果来看,台风扰动的距离仍远达980 km。所以,如何厘清内陆地区地形变观测信号中的台风干扰,特别值得重视。这对减少内陆地区地震前兆观测信号中低频异常变化性质的误判,将具有重要的现实意义。
由于本文仅为特例研究,若要充分揭示我国东南沿海及内陆地区钻孔体应变对台风响应的动力学机制,尚需利用更多的台站来开展大量的个例研究。同时,台风演变过程与陆面间动力耦合所造成的地壳浅层体应变场的时空演变究竟如何,仍需对更多的体应变仪、GNSS或地震仪等观测的台风信号进行系统分析。另外,台基浅表精细的弹性结构对准确计算降水和气压负荷所引起的体应变量至关重要,但这方面的实测数据仍相当欠缺。所以,今后尚需对钻孔体应变观测场地的力学性质开展更深入细致的研究。
两位评审专家提出了诸多建设性意见,对本文质量的提升帮助很大,作者在此谨表诚挚感谢。
-
表 1 24维应变数据特征
Table 1 Features of 24-dimensional strain data
序号 特征名称 物理含义 1 corr01_02 S1与S2间的皮尔逊相关系数 2 corr01_03 S1与S3间的皮尔逊相关系数 3 corr01_04 S1与S4间的皮尔逊相关系数 4 corr02_03 S2与S3间的皮尔逊相关系数 5 corr02_04 S2与S4间的皮尔逊相关系数 6 corr03_04 S3与S4间的皮尔逊相关系数 7—10 corr01_13—corr04_13 S1−S4与剪应变S1−S3间的皮尔逊相关系数 11—15 corr01_24—corr04_24 S1−S4与剪应变S2−S4间的皮尔逊相关系数 16—19 corr01+13—corr04+13 S1−S4与面应变S1+S3间的皮尔逊相关系数 20—23 corr01+24—corr04+24 S1−S4与面应变S2+S4间的皮尔逊相关系数 24 corr13+24 自洽系数 注:S1,S2,S3和S4为钻孔应变四分量观测值。 表 2 混淆矩阵
Table 2 Confusion matrix
实际正例 实际负例 预测正例 真正例(TP) 假正例(FP) 预测负例 假反例(FN) 真反例(TN) 表 3 永胜、昭通、姑咱和腾冲四个台站筛选的地震基本情况
Table 3 Basic information about the earthquake samples from the stations Yongsheng,Zhaotong,Guzan and Tengchong
台站 MS3.0—5.0地震数量 MS≥5.0地震数量 最大震级MS 最小距离/km 最大距离/km 永胜 99 47 7.0 5.96 491.86 昭通 138 31 7.0 31.09 497.47 腾冲 172 52 7.6 6.44 498.75 姑咱 287 36 7.0 13.89 431.65 表 4 永胜、昭通、姑咱和腾冲台震级预测结果表
Table 4 Magnitude prediction results for the stations Yongsheng,Zhaotong,Guzan and Tengchong
标签 精确率 召回率 准确率 F1值 样本数 标签 精确率 召回率 准确率 F1值 样本数 永胜台 0 0.903 0.823 0.861 147 昭通台 0 0.813 0.875 0.843 144 1 0.829 0.907 0.866 107 1 0.836 0.825 0.830 154 2 0.720 0.766 0.742 47 2 0.810 0.567 0.677 30 0.844 301(总) 0.823 328(总) 腾冲台 0 0.837 0.860 0.848 143 姑咱台 0 0.788 0.748 0.768 139 1 0.888 0.864 0.876 184 1 0.868 0.909 0.888 318 2 0.880 0.772 0.822 57 2 0.840 0.636 0.724 33 0.852 384(总) 0.845 490(总) 表 5 永胜、昭通、姑咱和腾冲台震源方位预测结果表
Table 5 Orientation prediction results for the stations Yongsheng,Zhaotong,Guzan and Tengchong
标签 精确率 召回率 准确率 F1值 样本数 标签 精确率 召回率 准确率 F1值 样本数 永胜台 0 0.879 0.837 0.857 147 昭通台 0 0.801 0.868 0.833 144 1 0.857 0.686 0.762 35 1 0.879 0.886 0.883 140 2 0.754 0.897 0.819 58 2 1.000 0.467 0.636 15 3 0.781 0.862 0.820 58 3 0.882 0.682 0.769 22 4 0.000 0.000 0.000 3 4 0.571 0.571 0.571 7 0.827 301(总) 0.838 328(总) 腾冲台 0 0.810 0.867 0.838 143 姑咱台 0 0.728 0.770 0.748 139 1 0.750 0.632 0.686 19 1 0.840 0.750 0.792 28 2 0.743 0.728 0.735 103 2 0.593 0.574 0.583 61 3 0.824 0.792 0.808 106 3 0.775 0.811 0.793 106 4 0.833 0.769 0.800 13 4 0.818 0.776 0.796 156 0.794 384(总) 0.755 490(总) 表 6 五次典型强震的实际预测效果
Table 6 Prediction results of five typical strong earthquakes
序号 发震日期 发震地点 MS 预测震级标签 实际震级标签 预测方位标签 实际方位标签 1 2 010−04−14 青海玉树 7.3 2 2 1 1 2 2 013−07−22 甘肃岷县 6.7 2 2 2 2 3 2 014−08−03 云南鲁甸 6.6 2 2 3 3 4 2 016−10−17 青海杂多 6.3 2 2 1 1 5 2 017−08−08 四川九寨沟 7.0 2 2 2 2 -
陈运泰. 2007. 地震预测:进展、困难与前景[J]. 地震地磁观测与研究,28(2):1–24. Chen Y T. 2007. Earthquake prediction:Progress,difficulties and prospects[J]. Seismological and Geomagnetic Observation and Research,28(2):1–24 (in Chinese).
陈运泰. 2008. 地震预测要知难而进[J]. 求是,15:58–60. Chen Y T. 2008. Predicting earthquakes requires perseverance and determination[J]. Qiushi,15:58–60 (in Chinese).
池顺良,刘琦,池毅,邓涛,廖成旺,阳光,张贵萍,陈洁. 2013. 2013年芦山MS7.0地震的震前及临震应变异常[J]. 地震学报,35(3):296–303. Chi S L,Liu Q,Chi Y,Deng T,Liao C W,Yang G,Zhang G P,Chen J. 2013. Borehole strain anomalies before the 20 April 2013 Lushan MS7.0 earthquake[J]. Acta Seismologica Sinica,35(3):296–303 (in Chinese).
池顺良,张晶,池毅. 2014. 汶川、鲁甸、康定地震前应变数据由自洽到失洽的转变与地震成核[J]. 国际地震动态,(12):3–13. Chi S L,Zhang J,Chi Y. 2014. Failure of self-consistent strain data before Wenchuan,Ludian and Kangding earthquakes and its relation with earthquake nucleation[J]. Recent Development in World Seismology,(12):3–13 (in Chinese).
高曙德. 2016. 深井地电观测技术在地震监测中的应用探讨[J]. 地球物理学进展,31(5):2078–2088. Gao S D. 2016. Discussion on the deep well geoelectric observation technique applied in earthquake monitoring[J]. Progress in Geophysics,31(5):2078–2088 (in Chinese).
高曙德. 2020. 四川九寨沟7.0级地震前震情跟踪概述及震后总结[J]. 地球物理学进展,35(4):1250–1260. Gao S D. 2020. Overview of tracking of Sichuan Jiuzhaigou MS7.0 earthquake in 2017 and its post earthquake precursor anomaly summary[J]. Progress in Geophysics,35(4):1250–1260 (in Chinese).
顾国华,王武星. 2020. 2016年日本本州东岸近海MS7.2地震前后的地壳运动[J]. 地震学报,42(2):196–204. Gu G H,Wang W X. 2020. Crustal movements of the eastern Honshu offshore MS7.2 earthquake in Japan in 2016[J]. Acta Seismologica Sinica,42(2):196–204 (in Chinese).
江在森,方颖,武艳强,王敏,杜方,平建军. 2009. 汶川8.0级地震前区域地壳运动与变形动态过程[J]. 地球物理学报,52(2):505–518. Jiang Z S,Fang Y,Wu Y Q,Wang M,Du F,Ping J J. 2009. The dynamic process of regional crustal movement and deformation before Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,52(2):505–518 (in Chinese).
李进武,邱泽华. 2014. 钻孔应变仪观测的面应变潮汐因子初步分析[J]. 地球物理学进展,29(5):2013–2018. Li J W,Qiu Z H. 2014. Analysis on strain tidal factor observed borehole strainmeters[J]. Progress in Geophysics,29(5):2013–2018 (in Chinese).
廖晓峰,何康,张明东,何畅,魏强. 2018. 基于平滑伪魏格纳-维勒时频分析的地磁数据研究[J]. 地震,38(1):107–116. Liao X F,He K,Zhang M D,He C,Wei Q. 2018. Time-frequency analysis of geomagnetic data based on smooth pseudo-Wigner-Ville distribution[J]. Earthquake,38(1):107–116 (in Chinese).
刘琦,张晶,池顺良,闫伟. 2014. 2013年芦山MS7.0地震前后姑咱台四分量钻孔应变时频特征分析[J]. 地震学报,36(5):770–779. Liu Q,Zhang J,Chi S L,Yan W. 2014. Time-frequency characteristics of four-component borehole strain at Guzan station before and after 2013 Lushan MS7.0 earthquake[J]. Acta Seismologica Sinica,36(5):770–779 (in Chinese).
卢宏涛,张秦川. 2016. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,31(1):1–17. Lu H T,Zhang Q C. 2016. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing,31(1):1–17 (in Chinese).
牛安福,张凌空,章静,闫伟,赵静,岳冲,苑争一. 2021. 汶川地震前远场形变异常及其与地震相关性研究[J]. 中国地震,37(1):15–21. Niu A F,Zhang L K,Zhang J,Yan W,Zhao J,Yue C,Yuan Z Y. 2021. Far field deformation anomaly and its correlation with earthquake before Wenchuan earthquake[J]. Earthquake Research in China,37(1):15–21 (in Chinese).
邱泽华,唐磊,周龙寿,阚宝祥. 2009. 四分量钻孔应变台网汶川地震前的观测应变变化[J]. 大地测量与地球动力学,29(1):1–5. Qiu Z H,Tang L,Zhou L S,Kan B X. 2009. Observed strain changes from 4-component borehole strainmeter network before 2008 Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics,29(1):1–5 (in Chinese).
邱泽华,唐磊,张宝红,宋茉. 2012. 用小波-超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报,55(2):538–546. Qiu Z H,Tang L,Zhang B H,Song M. 2012. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of wavelet-overrun rate analysis[J]. Chinese Journal of Geophysics,55(2):538–546 (in Chinese).
邱泽华,杨光,唐磊,郭燕萍,张宝红. 2015. 芦山M7.0地震前姑咱台钻孔应变观测异常[J]. 大地测量与地球动力学,35(1):158–161. Qiu Z H,Yang G,Tang L,Guo Y P,Zhang B H. 2015. Abnormal strain changes prior to the M7.0 Lushan earthquake observed by a borehole strainmeter at Guzan[J]. Journal of Geodesy and Geodynamics,35(1):158–161 (in Chinese).
于紫凝. 2022. 钻孔应变观测数据的震前异常提取与评价方法研究[D]. 长春:吉林大学:16−17. Yu Z N. 2022. Pre-Earthquake Anomaly Extraction and Evaluation of Borehole Strain Observations[D]. Changchun:Jilin University:16−17 (in Chinese).
张敏,赵燕杰,文勇,孟鑫. 2014. 青海地区钻孔应变同震响应特征分析[J]. 高原地震,26(3):52–56. Zhang M,Zhao Y J,Wen Y,Meng X. 2014. Characteristics analysis on coseismic response of borehole strain in Qinghai area[J]. Plateau Earthquake Research,26(3):52–56 (in Chinese).
周飞燕,金林鹏,董军. 2017. 卷积神经网络研究综述[J]. 计算机学报,40(6):1229–1251. Zhou F Y,Jin L P,Dong J. 2017. Review of convolutional neural network[J]. Chinese Journal of Computers,40(6):1229–1251 (in Chinese).
张希,秦姗兰,贾鹏,李瑞莎. 2019. 2016年门源MS6.4地震孕育-发生的地形变异常特征[J]. 地震,39(4):27–38. Zhang X,Qin S L,Jia P,Li R S. 2019. Anomalies on characteristics of crustal deformation during the pregnant process of the Menyuan MS6.4 earthquake[J]. Earthquake,39(4):27–38 (in Chinese).
Chi C Q,Zhu K G,Yu Z N,Fan M X,Li K T,Sun H H. 2019. Detecting earthquake-related borehole strain data anomalies with variational mode decomposition and principal component analysis:A case study of the Wenchuan earthquake[J]. IEEE Access,7:157997–158006. doi: 10.1109/ACCESS.2019.2950011
De Santis A,Balasis G,Pavón-Carrasco F. J,Cianchini G,Mandea M. 2017. Potential earthquake precursory pattern from space:The 2015 Nepal event as seen by magnetic Swarm satellites[J]. Earth Planet Sci Lett,461:119–126. doi: 10.1016/j.jpgl.2016.12.037
Hirose H. 2011. Tilt records prior to the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth Planet Space,63(7):655–658.
Ouyang X Y,Zong Q G,Bortnik J,Wang Y F,Chi P J,Zhou X Z,Yue C,Hao Y Q. 2018. Nightside ULF waves observed in the topside ionosphere by the DEMETER satellite[J]. J Geophys Res:Space Phys,123(9):7726–7739. doi: 10.1029/2018JA025248
Parrot M. 2017. Events linked to the lithosphere-atmosphere-ionosphere coupling observed by DEMETER[J]. USRI Radio Sci Bull, 2017 (360):75−79.
Pulinets S,Ouzounov D,Karelin A,Davidenko D. 2018. Lithosphere-atmosphere-ionosphere-magnetosphere coupling:A concept for pre-earthquake signals generation[C]//Pre-Earthquake Processes:A Multi-Disciplinary Approach to Earthquake Prediction Studies. Washington D.C.:AGU and John Wiley & Sons Inc:79−98.
Yu Z N,Hattori K,Zhu K G,Chi C Q,Fan M X,He X D. 2020. Detecting earthquake-related anomalies of a borehole strain network based on multi-channel singular spectrum analysis[J]. Entropy, 22 (10):1086.
Yu Z N,Zhu K G,Hattori K,Chi C Q,Fan M X,He X D. 2021a. Borehole strain observations based on a state-space model and ApNe analysis associated with the 2013 Lushan earthquake[J]. IEEE Access,9:12167–12179. doi: 10.1109/ACCESS.2021.3051614
Yu Z N,Hattori K,Zhu K G,Fan M X,Marchetti D,He X D,Chi C Q. 2021b. Evaluation of pre-earthquake anomalies of borehole strain network by using receiver operating characteristic curve[J]. Remote Sens, 13 (3):515.
Zhu K G,Yu Z N,Chi C Q,Fan M X,Li K Y. 2019. Negentropy anomaly analysis of the borehole strain associated with the MS8.0 Wenchuan earthquake[J]. Nonlinear Process Geophys,26(4):371–380. doi: 10.5194/npg-26-371-2019