分体式海底地震仪及其在北冰洋加克洋中脊的试验

虞嘉辉, 牛雄伟, 金子迪, 牛领辉, 阮爱国, 丁巍伟, 朱小毅, 刘张聚, 刘博文, 庄灿涛, 李家彪

虞嘉辉,牛雄伟,金子迪,牛领辉,阮爱国,丁巍伟,朱小毅,刘张聚,刘博文,庄灿涛,李家彪. 2025. 分体式海底地震仪及其在北冰洋加克洋中脊的试验. 地震学报,47(2):284−296. DOI: 10.11939/jass.20230152
引用本文: 虞嘉辉,牛雄伟,金子迪,牛领辉,阮爱国,丁巍伟,朱小毅,刘张聚,刘博文,庄灿涛,李家彪. 2025. 分体式海底地震仪及其在北冰洋加克洋中脊的试验. 地震学报,47(2):284−296. DOI: 10.11939/jass.20230152
Yu J H,Niu X W,Jin Z D,Niu L H,Ruan A G,Ding W W,Zhu X Y,Liu Z J,Liu B W,Zhuang C T,Li J B. 2025. The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean. Acta Seismologica Sinica47(2):284−296. DOI: 10.11939/jass.20230152
Citation: Yu J H,Niu X W,Jin Z D,Niu L H,Ruan A G,Ding W W,Zhu X Y,Liu Z J,Liu B W,Zhuang C T,Li J B. 2025. The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean. Acta Seismologica Sinica47(2):284−296. DOI: 10.11939/jass.20230152

分体式海底地震仪及其在北冰洋加克洋中脊的试验

基金项目: 中央级公益性科研院所基本科研业务费专项资金(JG2204)、浙江省自然科学基金(LZ23D060004)和国家自然科学基金(42276064)共同资助
详细信息
    作者简介:

    虞嘉辉,在读硕士研究生,主要从事海洋地球物理主动源地震探测方面的研究,e-mail:1030463178@qq.com

    通讯作者:

    牛雄伟,博士,研究员,主要从事海底地震与深部结构探测研究,e-mail:xwniu@sio.org.cn

  • 中图分类号: P315.62

The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean

  • 摘要:

    中国第十二次北极科学考察在密集浮冰覆盖的北冰洋加克洋中脊完成了国际首次大规模主动源海底地震仪探测,成功回收了43台海底地震仪中的42台,其中5台分体式海底地震仪均成功回收。本文介绍了针对该航次中面临的海底地震仪回收定位难题研发的一款新型分体式海底地震仪,其主要特点为:① 集成超短基线信标和声学应答系统,实现双重定位保障;② 使用分体式结构增强地震计与海底的耦合,有效提高信噪比;③ 选用国产地震计和浮力材料,实现核心部件国产化。分体式海底地震仪在北冰洋加克洋中脊的试验结果显示:地震背景噪声能量低,且记录的远震波形、两个近源微地震波形和三分量主动源地震记录均具有清晰可见的震相信息,表明该分体式海底地震仪能够满足冰下海底勘探需求。

    Abstract:

    The ocean bottom seismograph (OBS) is an indispensable instrument for investigating the deep crust-mantle structure. China’s 12th Arctic scientific expedition marked a significant milestone in marine seismic exploration by achieving the first large-scale active exploration along the challenging Gakkel Ridge in the Arctic Ocean, where ice coverage poses formidable obstacles. Impressively, the expedition successfully recovered 42 out of 43 deployed OBSs, with all five seismometer-detached OBSs retrieved intact. This paper introduces a seismometer-detached OBS specifically developed to overcome the unique challenges encountered during the expedition, particularly in terms of OBS recovery and positioning. Its main features include:

    1) The newly developed seismometer-detached OBS integrates cutting-edge technology to enhance its functionality and performance under harsh Arctic conditions. One of its key innovations is the combination of ultra-short baseline beacons and advanced acoustic response short baseline array positioning systems, which improves positioning accuracy through dual positioning technology. The positioning accuracy error of the short baseline array is within ±100 m, and the mature Sonardyne ultra-short baseline array loaded on the Xuelong-2 polar scientific research icebreaker can achieve a positioning accuracy up to one thousandth of the water depth. The use of such a dual positioning system can ensure accurate positioning of the instrument even in areas with dense ice layers. This ground-breaking design significantly improves the accuracy and efficiency of OBS recovery operations, enabling researchers to locate and recover instruments with unprecedented reliability and precision.

    2) Referencing the current status of seismometer-detached OBSs both domestically and internationally, a titanium alloy seismic instrument chamber with a buoyancy of 17 kg in water has been designed. This chamber is incorporated into the seismic instrument separation structure, independently installed inside the OBS hull via flexible cables. Upon reaching the seafloor, it is timed to release, optimizing the coupling between the seismic instrument and the seabed. This structure also serves to reduce the impact of bottom currents on the seismometer. By enhancing this coupling, the OBS effectively improves the signal-to-noise ratio for recording seismic data, thus minimizing ambient noise and interference. Consequently, researchers can obtain clearer and more accurate seismic records, thereby facilitating a deeper understanding of the Earth’s geological processes and tectonic activities.

    3) The OBS utilizes advanced domestic seismic instruments and buoyancy materials. On one hand, this provides new options for the materials used in OBS development, to some extent alleviating the problem of insufficient component production, which is advantageous for the large-scale production and industrialization. On the other hand, it enhances the flexibility of the OBS’s design, enabling the possibility of loading multi-functional modules onto the OBS. Additionally, using domestically produced seismometers makes it easier to optimize and develop hardware and software according to scientific research requirements. This signifies a significant step towards achieving self-sufficiency in marine instrument technology. This domestic production capacity not only enhances China’s scientific research capabilities, but also promotes innovation and technological advancement in the field of marine instruments, establishing independent intellectual property rights for key technologies of marine seismographs.

    China’s 12th Arctic scientific expedition has yielded promising results, with the seismometer-detached OBS demonstrating exceptional performance in recording seismic signals. It was capable of collecting seismic data in the low-level horizontal seismic ambient noise environment along the Gakkel Ridge of the Arctic Ocean. Notably, the OBSs have exhibited low horizontal seismic ambient noise levels, underscoring their suitability for seismic exploration in ice-covered marine environments. Additionally, these OBSs successfully collected the waveform records of a small teleseismic, two micro-earthquakes and three-component active seismic exploration. This validates to some extent the effectiveness of the seismometer-detached structure in improving the signal-to-noise ratio, indicating that this type of OBS can meet the requirements for submarine exploration under the ice.

    The successful development and application of the seismometer-detached OBS provide valuable experience for future submarine seismic exploration in extreme environments. Looking ahead, there are opportunities for further enhancement in various aspects such as real-time data transmission, longer battery life, and integration of more modularized sensors. The use of flexible buoyancy materials also liberates the submarine seismograph from the limitations imposed by traditional glass chambers. This enables the configuration of different types of modularized sensors, thus paving the way for the development of a versatile submarine observation platform with powerful functionality.

  • 利用海底地震仪(ocean bottom seismograph,缩写为OBS)开展主、被动源地震观测是探测地壳及深部结构的重要手段(阮爱国等,2004)。目前,使用海底地震仪在西南印度洋中脊、大西洋中脊、太平洋海隆等具有不同扩张速率的洋中脊开展的海底地震探测,系统地揭示出其海底扩张和洋壳形成的演化过程(Minshull et al,2006Seher et al,2010McGuire et al,2012Christeson et al,2019Niu et al,2023)。但对于扩张速率最慢的北冰洋加克洋中脊的洋壳结构认识不足,尚未开展大规模海底地震深部结构探测,其原因是该区域常年被浮冰覆盖,海底地震仪存在较高的丢失风险,国外学者普遍认为,就加克洋中脊而言,不宜将海底地震仪布设于海底开展探测(Jokat,Schmidt-Aursch,2007Schlindwein et al,2007Mosher et al,2013)。相关研究大多把海底地震仪放在浮冰上开展地震探测,这种探测方式可能存在台站位置不固定、记录噪声大、放炮作业不能与台站共线、无法记录S波获取更多深部信息等弊端(Jokat et al,2003Jokat,Schmidt-Aursch,2007Korger,Schlindwein,2014Koulakov et al,2022)。因此,为了实现密集冰区海底地震探测,首先需要解决的就是冰下海底地震仪的定位和回收问题。

    北冰洋加克洋中脊的另一个特殊性是存在大量厚度超过1 km的局部沉积中心(Rekant,Gusev,2016),这些沉积可能会使来自深部的地震能量大大衰减(Sutton,Duennebier,1987阮爱国等,2009)。另一方面,常见的便携式海底地震仪把地震计或检波器置于密封舱(例如:玻璃球)内部,地震计通过密封舱、塑料外壳、沉耦架等多个部件(不同介质材料)与海底面耦合,这样的设计方案会在一定程度上降低地震信号的信噪比(Stähler et al,2016)。因此,为了提高北冰洋加克洋中脊采集到的海底地震探测数据质量,有必要通过技术设计实现地震计与海底直接接触,以提高观测数据的信噪比。

    为解决冰下海底地震仪的定位和回收,以及耦合差导致的信号衰减这两个难题,自然资源部第二海洋研究所与北京港震科技股份有限公司联合研发了一款分体式宽频带海底地震仪。本文将介绍该海底地震仪的性能参数以及它在北冰洋加克洋中脊的试验结果,有望借助新设备为“透明地壳”计划的推进提供重要支撑。

    新型宽频带分体式海底地震仪长1.25 m,宽0.83 m,高1.2 m,空气中总质量为405 kg (包含沉耦架质量50 kg),使用固体玻璃微珠浮力材料提供浮力,水中整机质量为378 kg,下沉和上浮速率均为0.5 m/s (图1)。地震计的频带范围为60 s—50 Hz,数据采样间隔最小可达2 ms。数据采集动态范围大于135 dB,按照最长设计电池容量计算,仪器可在水下工作 6 个月至 1 年(表1)。

    图  1  新型宽频带分体式海底地震仪的结构模型
    (a) 外视图;(b) 内部透视图
    Figure  1.  The structural models of the broadband seismometer-detached ocean bottom seismograph
    (a) The external view;(b) The internal perspective view
    表  1  宽频带分体式海底地震仪组件及其技术参数
    Table  1.  Components and technical parameters of the broadband seismometer-detached OBS
    地震计频带范围 60 s—50 Hz 标定信号DAC 16位
    地震计满量程 10 mm/s (单峰值) 标定信号类型 脉冲,正弦波可选,参数可设置
    地震计灵敏度 2000 V/(m/s)(双端) 标定信号启动方式 定时、指令
    ADC 24位 数据记录 32 GB×3
    数据采样率 50 sps,100 sps,200 sps,500 sps,
    每个采集通道可单独设定采样率
    电子罗盘动态精度 ±1o
    数字滤波器 线性相位FIR,最小相位FIR 电子罗盘调平范围 45°
    数据采集动态范围 >135 dB 数据通信接口 LAN以太网
    授时 GPS,北斗 数据通信协议 TCP,IP
    守时 芯片级原子钟 最大工作水深 6 km
    水听器频带范围 10—2000 Hz 工作时间 6个月—1年
    方位角精度 俯仰范围±30°±0.1°,±(30°—45°)±0.2° 磁场测量精度 10 nT
    下载: 导出CSV 
    | 显示表格

    为了提高海底地震仪与海底的耦合性,我们采用了分体式结构,即将地震计压力舱独立外置于海底地震仪主体。国外常见的分体式海底地震仪是将地震计压力舱独立外置于海底地震仪主体外(Stähler et al,2016),虽然该类海底地震仪实现了更好的海底耦合,但底流摇摆噪声的影响仍不可避免,因此,我们参考国产分体式海底地震仪(刘丹等,2022),设计了水中质量为17 kg的钛合金地震仪舱,通过柔性线缆将其独立安装在海底地震仪舱体内。当海底地震仪到达海底并稳定后,此时地震仪舱距离海底约20 cm,通过定时触底装置使用电化学方法熔断释放地震计,使其与海底直接耦合。这样,既保证了地震计直接触底有较好的耦合,又在一定程度上降低了底流对地震计的影响。

    该分体式海底地震仪由地震仪舱、熔断控制舱、电池舱、超短基线定位信标、机械释放器等舱体及部件组成,并以此构成了数据采集、熔断控制、回收定位、能源供给等四大功能模块。地震仪舱承担数据采集这一核心功能,它是一个相对独立的金属耐压舱,可保护其中的地震计,同时为保证数据信息的准确性,还安装了电子罗盘和原子钟,其中原子钟用于海底地震仪精准守时,电子罗盘采集其xy方向的合成角度、俯仰方向及翻滚方向与水平面的夹角、xyz各轴方向的磁场强度等相关参数对方位角信息处理并保存;熔断控制舱内置水声通讯和熔断释放模块,可联通机械释放器,采用机械及化学双重释放法,以确保地震计舱按需触底、仪器与沉耦架分离释放;超短基线信标用于精确定位,机械释放器在控制海底地震仪回收释放的同时,也可以被短基线阵定位,便于在回收作业时快速精准地锁定仪器位置;设计相对独立、可整体更换的电池舱为仪器供能,该舱体为后续长期原位观测的能耗问题提供了解决方案;超短基线定位信标、机械释放器等均为自容式部件,也在一定程度上降低了能耗压力,延长了工作时间。各功能模块相互协作又彼此独立,共同构建起高效稳定的分体式海底地震仪的工作体系,充分彰显了功能模块化设计在提升设备性能、可靠性以及可维护性等多方面的显著优势。

    新型分体式海底地震仪装有超短基线信标和声学机械释放器,在利用超短基线信标定位的同时,还可基于声学应答信号使用自主研发的短基线阵进行定位,使用双定位系统(表2)保障海底地震仪在密集冰区的精准可靠回收。自然资源部第二海洋研究所与嘉兴中科声学科技有限公司联合研发的短基线定位系统(图2牛雄伟等,2022),通过被动监听海底地震仪单频声学通讯信号测量声波在海底地震仪与基阵接收器之间的传播时间来确定斜距,之后结合船舶姿态等信息,对海底地震仪下降和上升的路径进行实时定位,其定位精度误差在±100 m内。

    表  2  短基线阵和超短基线信标的技术参数
    Table  2.  The technical parameters of short baseline arrays and ultra-short baseline beacons
    深度级频段收发机波束角测距精度
    短基线阵4000 m12 kHz半指向性100 m
    超短基线信标7000 m19—34 kHz半指向性<15 mm
    下载: 导出CSV 
    | 显示表格
    图  2  短基线阵及其定位结果
    (a) 短基线阵定位系统在雪龙2号月池车间的安装情况;(b) 短基线阵试验定位三维结果
    Figure  2.  The short baseline array and its positioning results
    (a) The installation of the short baseline array positioning system in the moon pool workshop of the Xuelong-2;(b) The three-dimensional results of the short baseline array experimental positioning

    由于新型海底地震仪采用可自由配重的玻璃微珠浮力材料提供浮力,突破了玻璃球舱型海底地震仪浮力固定的限制。这使得在海底地震仪上安装超短基线信标成为可能,有效提升了定位精度。雪龙2号极地科考破冰船装载了Sonardyne超短基线阵,该基线阵是较为成熟的商业化产品,具有良好的精度和可靠性,详细参数信息列于表2。借助超短基线信标,实现了对海底地震仪在水中下沉、上浮移动路径的实时监测,其定位精度最高可达水深的千分之一(李守军等,2005张同伟等,2018图3)。双定位系统的应用显著提升了冰下海底地震仪的定位精度,确保了冰区海底地震仪的顺利回收。

    图  3  超短基线在北冰洋加克洋中脊分体式海底地震仪回收过程中的三维实时定位结果
    图(a)和(b)分别为分体式海底地震仪OBS9和OBS15的上浮轨迹
    Figure  3.  The three-dimensional real-time positioning results during the recovery process of the seismometer-detached OBS with ultra-short baseline in the Gakkel Ridge of Arctic Ocean
    Figs. (a) and (b) show the ascending tracks of the seismometer-detached OBS9 and OBS15

    作为布设在海底的地震仪,浮力装置和地震采集系统是其核心部件。由于现有深水海底地震仪使用的玻璃舱多为进口产品且国外产能有限,海底地震仪的研发和生产严重受制于国外,因此选用国产耐高压型浮力材料为海底地震仪提供浮力(郝天珧等,2022)。这样,一方面为海底地震仪的研制提供了新的选材方向,一定程度上缓解了部件产能问题,有利于今后的规模化与产业化推广;另一方面增强了海底地震仪外形的可塑性,为海底地震仪装载多功能模块提供了可能。该款分体式海底地震仪采用国产地震计,可以有效地降低成本,减少对进口设备的依赖;且国内生产无需考虑海外政策影响,可提高设备供应的稳定性;使用国产地震计在硬件和软件方面更容易根据科研需求进行优化和二次开发。总之,海底地震仪核心部件的国产化在满足国家战略需求的同时,对于开发海底地震仪关键技术的自主知识产权、更好地服务国内海洋科研事业均有非常重要的意义(游庆瑜等,2003李江等,2010阮爱国等,2010郝天珧,游庆瑜,2011)。

    2021年7月至9月,我国第十二次北极科学考察队克服重重困难,在北冰洋加克洋中脊实现了国际首次冰下大规模海底地震仪人工地震探测。此次探测共完成三条测线,期间投放了43台海底地震仪,其中包含5台分体式海底地震仪(图4),完成炸测5252炮,获得了总长400 km的广角折射/反射地震剖面的数据(Ding et al,2022)。

    图  4  分体式海底地震仪及其在加克洋中脊的试验
    (a) 2021年中国第十二次北极科学考察布设和回收的海底地震仪位置和炸测位置示意图;(b) 分体式海底地震仪的投放;(c) 分体式海底地震仪的回收
    Figure  4.  The seismometer-detached OBS and its experiments in the Gakkel Ridge
    (a) The locations of OBS deployment and recovery and air-gun shooting lines during the Chinese 12th Arctic scientific expedition in 2021;(b) Deployment of the seismometer-detached OBS;(c) Recovery of the seismometer-detached OBS

    本文首先使用ObsPy软件(Beyreuther et al,2010)中基于McNamara和Buland (2004)的功率谱密度(power spectral density,缩写为PSD)模块,计算分体式海底地震仪三分量的功率谱密度概率密度函数(图5),以检测仪器记录质量。由图5可见:受海底洋流和耦合性的影响,水平分量能量整体上高于垂直分量(Webb,1988Crawford,Webb,2000),能量差异在次重力波频段(>20 s)内最为显著;地脉动频段(0.5—20 s)内存在由海浪作用形成的双频地脉动(Longuet-Higgins,1950);短周期频段(<0.5 s)内的能量峰值与气枪激发有关。

    图  5  (a) 分体式OBS3垂直分量记录于2021年8月10—24日在北极加克洋中脊的功率谱密度分布;(b,c) 分体式OBS3两个水平分量的功率谱密度分布
    图中彩色细实线代表每小时记录对应的功率谱密度,不同颜色代表分布在不同能量区间的概率,黑色粗实线为平均值,灰色粗实线为Peterson (1993)提出的全球背景噪音模型参考线
    Figure  5.  (a) The vertical component records of the OBS3 in the Gakkel Ridge of the Arctic collected from August 10 to 24,2021 presented in terms of power spectral density probability density functions;(b,c) The power spectral density distribution of the two horizontal components of the OBS3
    In the figures color thin solid lines represent the power spectral density corresponding to each hourly record,with different colors indicating probability distribution in various energy ranges. The thick solid black line represents the average,and the thick solid gray lines serve as the reference lines for the global ambient noise models proposed by Peterson (1993

    所有海底地震仪在海底工作期间全球共发生M5.0以上地震192次。分体式海底地震仪的海底工作时间均超10天,其中OBS3工作了约22天。图6展示了OBS15记录到的海地MW5.8地震(发震时刻:2021-08-15 03:20:45;震中:18.4°N,74.1°W,震源深度:8.32 km,震中距:8 376 km,地震目录数据来源于USGS (2021))。通过0.04—0.2 Hz带通滤波处理后,参考IASP91模型计算理论到时(Kennett,Engdahl,1991),初步识别出P波,PcP,PKiKP,S,SKS和ScS等震相 (图6b)。由于分体式海底地震仪布放在洋中脊扩张轴上,因此同时还记录了大量全球地震目录中未记录到的微地震,如图7展示了OBS3和OBS17台站记录的微地震三分量波形,对该波形进行3—12 Hz带通滤波后,可以清晰地识别出P波和S波震相。这表明该新型分体式海底地震仪具备记录小震级远震和微地震的能力,在一定程度上验证了分体式结构有效地提高了信噪比。

    图  6  加克洋中脊分体式OBS15台站位置(a)及其记录的2021年海地MW5.8地震波形(b)
    波形图使用0.04—0.2 Hz带通滤波进行了处理。下行小图分别为可识别的初至P波和PcP,PKiKP,初至S波和SKS和ScS的放大图。使用IASP91模型对上述地震波到时进行了预测,见图中红色和蓝色实线
    Figure  6.  The location of the seismometer-detached OBS15 station in the Gakkel Ridge (a) and the waveforms (b) of the Haiti MW5.8 earthquake in 2021
    The waveforms were processed with bandpass filtering (0.04−0.2 Hz). The figures in the second row are enlarged views of identifiable P-wave and PcP,PKiKP,S-wave and SKS,ScS waveforms,respectively. The arrival times of these seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines in the figures
    图  7  加克洋中脊分体式OBS3 (a)和OBS17 (b)台站记录的微震信息
    图中波形已经带通滤波(3—12 Hz)处理,红色和蓝色实线标注了使用IASP91模型对上述地震波到时进行的预测
    Figure  7.  Microseismic information recorded by the seismometer-detached OBS3 (a) and OBS17 (b) along the Gakkel Ridge
    The waveforms have been bandpass filtered (3−12 Hz). The arrival times of the seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines

    图8图9分别展示了OBS3和OBS15台站的主动源三分量地震记录。对人工地震信息进行处理后,从地震记录剖面可识别出清晰的纵波和横波,主要有:直达水波(Pw)、地壳内折射震相(Pg)、纵波莫霍面反射震(PmP)和纵波上地幔顶部折射震相(Pn),其中从OBS15的地震记录剖面还可识别出纵波洋壳层2与洋壳层3分界面的反射震相(PcP)和转换横波地壳内部折射震相(PSSg)。以OBS15台站的三分量地震记录剖面为例,使用不同的折合速度展示了两个水平分量(图9ab,折合速度为3.8 km/s)和垂直分量(图9c,折合速度为6.0 km/s)的多种震相。由图9可见:Pg震相在台站左侧可以由偏移距6 km左右追踪至10 km左右,台站右侧的Pg震相可以由偏移距6 km左右追踪至16 km左右;PmP震相在台站左侧可由偏移距−9 km追踪到−13 km处,在台站右侧可由偏移距7 km追踪到10 km处;Pn震相在台站左侧可由−14 km处追踪到约−20 km处,台站右侧可由10 km处追踪到16 km处;台站左侧−6 km到−8 km处可追踪到少许PcP震相,右侧未发现PcP震相;台站右侧于12—16 km内识别出PSSg震相。清晰且丰富的震相,以及在直达水波包络线内部能看到的清晰Pg震相均表明该OBS在记录人工震源信号方面有较高的信噪比。

    图  8  布放在加克洋中脊的分体式OBS3台站主动源三分量地震记录的折合时间剖面(折合速度为6.0 km/s)
    (a) x分量;(b) y分量;(c) z分量
    Figure  8.  Active source three-component seismic record sections with reduced time of the OBS3deployed along the Gakkel Ridge of Arctic Ocean (The reduced velocity is 6.0 km/s)
    (a) x component;(b) y component;(c) z component
    图  9  布放在加克洋中脊的OBS15台站主动源三分量地震记录折合时间剖面
    (a) x分量;(b) y分量;(c) z分量
    Figure  9.  Active source three-component seismic record sections with reduced time of the OBS15 deployed along the Gakkel Ridge of Arctic Ocean
    (a) x component;(b) y component;(c) z component

    综上所述,分体式海底地震仪在北冰洋加克洋中脊的试验中,能够灵活地适应冰下探测的特殊要求,有效降低了布放和回收过程中的风险与难度;分体式结构大大提高了地震计与海底的耦合程度,有效提高了对微弱地震信号的敏感度,提高了数据信噪比,为北冰洋地质结构的精细研究提供了有力手段。

    本研究聚焦于北冰洋加克洋中脊探测的关键难题,创新性地研发并成功试验了分体式宽频带海底地震仪,与以往的研究相比,本研究成果具有显著的独特性。以往针对洋中脊的海底地震仪探测研究多受困于北冰洋加克洋中脊的特殊环境,如浮冰覆盖导致的高丢失风险以及常规地震计耦合效果不佳等问题。而本研究的分体式海底地震仪凭借其独特的结构设计,如分体式结构不仅增强了耦合性还降低了底流干扰,功能模块化使各部件协同工作且便于维护,双定位系统解决了冰下定位与回收难题,以及核心部件国产化提升了设备自主性和稳定性等创新点,有效地克服了这些困难,填补了在北冰洋加克洋中脊大规模海底地震深部结构探测领域的空白,极大地推动了该区域乃至全球洋中脊研究的进展。对分体式海底地震仪记录数据的深入分析揭示了一系列重要原理。例如,其三分量功率谱密度特性表明,水平与垂直分量能量差异受多种因素影响,这种规律反映出分体式结构在优化信号采集方面的独特优势。通过将地震计独立外置并采用触底耦合方式,减少了中间介质传递对信号的损耗,使不同频段的地震信号能够更真实地、完整地被记录,为全球深海地震探测技术的发展提供了可借鉴的范例。后续研究可加强多学科交叉,通过配置不同种类的模块化传感器,将其发展成为功能强大、适用于物理海洋、海洋环境等多学科、多用途的海底观测平台。

    参加2021年雪龙2号中国第十二次北极科学考察航次的科考队员和全体船员不辞辛劳,全力投入新型分体式海底地震仪的地震探测工作,为任务的顺利完成付出了不懈努力。自然资源部第二海洋研究所和北京港震科技股份有限公司为研发新型分体式海底地震仪和航次组织方面发挥了关键作用,作出了卓越贡献。自然资源部第二海洋研究所于志腾博士针对分体式海底地震仪数据的微地震识别工作给予悉心指导并提出宝贵建议,两位匿名审稿人为本文提出了建设性的意见和建议。在此,作者向所有给予帮助的各方表示衷心感谢。

  • 图  6   加克洋中脊分体式OBS15台站位置(a)及其记录的2021年海地MW5.8地震波形(b)

    波形图使用0.04—0.2 Hz带通滤波进行了处理。下行小图分别为可识别的初至P波和PcP,PKiKP,初至S波和SKS和ScS的放大图。使用IASP91模型对上述地震波到时进行了预测,见图中红色和蓝色实线

    Figure  6.   The location of the seismometer-detached OBS15 station in the Gakkel Ridge (a) and the waveforms (b) of the Haiti MW5.8 earthquake in 2021

    The waveforms were processed with bandpass filtering (0.04−0.2 Hz). The figures in the second row are enlarged views of identifiable P-wave and PcP,PKiKP,S-wave and SKS,ScS waveforms,respectively. The arrival times of these seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines in the figures

    图  1   新型宽频带分体式海底地震仪的结构模型

    (a) 外视图;(b) 内部透视图

    Figure  1.   The structural models of the broadband seismometer-detached ocean bottom seismograph

    (a) The external view;(b) The internal perspective view

    图  2   短基线阵及其定位结果

    (a) 短基线阵定位系统在雪龙2号月池车间的安装情况;(b) 短基线阵试验定位三维结果

    Figure  2.   The short baseline array and its positioning results

    (a) The installation of the short baseline array positioning system in the moon pool workshop of the Xuelong-2;(b) The three-dimensional results of the short baseline array experimental positioning

    图  3   超短基线在北冰洋加克洋中脊分体式海底地震仪回收过程中的三维实时定位结果

    图(a)和(b)分别为分体式海底地震仪OBS9和OBS15的上浮轨迹

    Figure  3.   The three-dimensional real-time positioning results during the recovery process of the seismometer-detached OBS with ultra-short baseline in the Gakkel Ridge of Arctic Ocean

    Figs. (a) and (b) show the ascending tracks of the seismometer-detached OBS9 and OBS15

    图  4   分体式海底地震仪及其在加克洋中脊的试验

    (a) 2021年中国第十二次北极科学考察布设和回收的海底地震仪位置和炸测位置示意图;(b) 分体式海底地震仪的投放;(c) 分体式海底地震仪的回收

    Figure  4.   The seismometer-detached OBS and its experiments in the Gakkel Ridge

    (a) The locations of OBS deployment and recovery and air-gun shooting lines during the Chinese 12th Arctic scientific expedition in 2021;(b) Deployment of the seismometer-detached OBS;(c) Recovery of the seismometer-detached OBS

    图  5   (a) 分体式OBS3垂直分量记录于2021年8月10—24日在北极加克洋中脊的功率谱密度分布;(b,c) 分体式OBS3两个水平分量的功率谱密度分布

    图中彩色细实线代表每小时记录对应的功率谱密度,不同颜色代表分布在不同能量区间的概率,黑色粗实线为平均值,灰色粗实线为Peterson (1993)提出的全球背景噪音模型参考线

    Figure  5.   (a) The vertical component records of the OBS3 in the Gakkel Ridge of the Arctic collected from August 10 to 24,2021 presented in terms of power spectral density probability density functions;(b,c) The power spectral density distribution of the two horizontal components of the OBS3

    In the figures color thin solid lines represent the power spectral density corresponding to each hourly record,with different colors indicating probability distribution in various energy ranges. The thick solid black line represents the average,and the thick solid gray lines serve as the reference lines for the global ambient noise models proposed by Peterson (1993

    图  7   加克洋中脊分体式OBS3 (a)和OBS17 (b)台站记录的微震信息

    图中波形已经带通滤波(3—12 Hz)处理,红色和蓝色实线标注了使用IASP91模型对上述地震波到时进行的预测

    Figure  7.   Microseismic information recorded by the seismometer-detached OBS3 (a) and OBS17 (b) along the Gakkel Ridge

    The waveforms have been bandpass filtered (3−12 Hz). The arrival times of the seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines

    图  8   布放在加克洋中脊的分体式OBS3台站主动源三分量地震记录的折合时间剖面(折合速度为6.0 km/s)

    (a) x分量;(b) y分量;(c) z分量

    Figure  8.   Active source three-component seismic record sections with reduced time of the OBS3deployed along the Gakkel Ridge of Arctic Ocean (The reduced velocity is 6.0 km/s)

    (a) x component;(b) y component;(c) z component

    图  9   布放在加克洋中脊的OBS15台站主动源三分量地震记录折合时间剖面

    (a) x分量;(b) y分量;(c) z分量

    Figure  9.   Active source three-component seismic record sections with reduced time of the OBS15 deployed along the Gakkel Ridge of Arctic Ocean

    (a) x component;(b) y component;(c) z component

    表  1   宽频带分体式海底地震仪组件及其技术参数

    Table  1   Components and technical parameters of the broadband seismometer-detached OBS

    地震计频带范围 60 s—50 Hz 标定信号DAC 16位
    地震计满量程 10 mm/s (单峰值) 标定信号类型 脉冲,正弦波可选,参数可设置
    地震计灵敏度 2000 V/(m/s)(双端) 标定信号启动方式 定时、指令
    ADC 24位 数据记录 32 GB×3
    数据采样率 50 sps,100 sps,200 sps,500 sps,
    每个采集通道可单独设定采样率
    电子罗盘动态精度 ±1o
    数字滤波器 线性相位FIR,最小相位FIR 电子罗盘调平范围 45°
    数据采集动态范围 >135 dB 数据通信接口 LAN以太网
    授时 GPS,北斗 数据通信协议 TCP,IP
    守时 芯片级原子钟 最大工作水深 6 km
    水听器频带范围 10—2000 Hz 工作时间 6个月—1年
    方位角精度 俯仰范围±30°±0.1°,±(30°—45°)±0.2° 磁场测量精度 10 nT
    下载: 导出CSV

    表  2   短基线阵和超短基线信标的技术参数

    Table  2   The technical parameters of short baseline arrays and ultra-short baseline beacons

    深度级频段收发机波束角测距精度
    短基线阵4000 m12 kHz半指向性100 m
    超短基线信标7000 m19—34 kHz半指向性<15 mm
    下载: 导出CSV
  • 郝天珧,游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,54(12):3352–3361.

    Hao T Y,You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics,54(12):3352–3361 (in Chinese).

    郝天珧,游庆瑜,王元,郭永刚,丘学林,黄松,徐亚,赵春蕾,张妍,徐锡强. 2022. 国产海底地震探测装备技术研发与应用[J]. 科学技术与工程,22(34):15020–15027.

    Hao T Y,You Q Y,Wang Y,Guo Y G,Qiu X L,Huang S,Xu Y,Zhao C L,Zhang Y,Xu X Q. 2022. Development technology and its application of Chinese ocean bottom seismometer[J]. Science Technology and Engineering,22(34):15020–15027 (in Chinese).

    李江,庄灿涛,薛兵,朱小毅,陈阳,朱杰,彭朝勇,叶鹏,梁鸿森,刘明辉,杨桂存,周银兴,林湛,李建飞. 2010. 宽频带海底地震仪的研制[J]. 地震学报,32(5):610–618.

    Li J,Zhuang C T,Xue B,Zhu X Y,Chen Y,Zhu J,Peng C Y,Ye P,Liang H S,Liu M H,Yang G C,Zhou Y X,Lin Z,Li J F. 2010. Development of broadband ocean bottom seismograph (OBS)[J]. Acta Seismologica Sinica,32(5):610–618 (in Chinese).

    李守军,包更生,吴水根. 2005. 水声定位技术的发展现状与展望[J]. 海洋技术,24(1):130–135.

    Li S J,Bao G S,Wu S G. 2005. A practical overview and prospect of acoustic positioning technology[J]. Journal of Ocean Technology,24(1):130–135 (in Chinese).

    刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572.

    Liu D,Yang T,Li B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).

    牛雄伟,王力,丁巍伟,黄松华,孔凡圣,冯海泓,谭平川,史淼奇,傅建华,陈尚国. 2022. 一种适用于冰区的短基线承载结构:中国,202111670786.4[P]. [2022−06−21]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.

    Niu X W,Wang L,Ding W W,Huang S H,Kong F S,Feng H H,Tan P C,Shi M Q,Fu J H,Chen S G. 2022. Short base line bearing structure suitable for ice region:CN,202111670786.4[P]. [2022−06−21] https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui (in Chinese).

    阮爱国,李家彪,冯占英,吴振利. 2004. 海底地震仪及其国内外发展现状[J]. 东海海洋,22(2):19–27.

    Ruan A G,Li J B,Feng Z Y,Wu Z L. 2004. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science,22(2):19–27 (in Chinese).

    阮爱国,牛雄伟,吴振利,吴招才,薛彬. 2009. 潮汕坳陷中生代沉积的折射波2D速度结构和密度[J]. 高校地质学报,15(4):522–528.

    Ruan A G,Niu X W,Wu Z L,Wu Z C,Xue B. 2009. The 2D velocity and density structure of the Mesozoic sediments in the Chaoshan depression[J]. Geological Journal of China Universities,15(4):522–528 (in Chinese).

    阮爱国,李家彪,陈永顺,丘学林,吴振利,赵明辉,牛雄伟,王春龙,王显光. 2010. 国产I-4C型OBS在西南印度洋中脊的试验[J]. 地球物理学报,53(4):1015–1018.

    Ruan A G,Li J B,Chen Y S,Qiu X L,Wu Z L,Zhao M H,Niu X W,Wang C L,Wang X G. 2010. The experiment of broad band I-4C type OBS in the Southwest India ridge[J]. Chinese Journal of Geophysics,53(4):1015–1018 (in Chinese).

    游庆瑜,刘福田,冉崇荣,王广福. 2003. 高频微功耗海底地震仪研制[J]. 地球物理学进展,18(1):173–176.

    You Q Y,Liu F T,Ran C R,Wang G F. 2003. High frequency micro-power ocean bottom seismograph[J]. Progress in Geophysics,18(1):173–176 (in Chinese).

    张同伟,王向鑫,唐嘉陵,秦升杰. 2018. 深海超短基线定位系统现状及展望[J]. 舰船电子工程,38(10):1–6. doi: 10.3969/j.issn.1672-9730.2018.10.001

    Zhang T W,Wang X X,Tang J L,Qin S J. 2018. Technical status and development trend of long range USBL[J]. Ship Electronic Engineering,38(10):1–6 (in Chinese).

    Beyreuther M,Barsch R,Krischer L,Megies T,Behr Y,Wassermann J. 2010. ObsPy:A Python toolbox for seismology[J]. Seismol Res Lett,81(3):530–533. doi: 10.1785/gssrl.81.3.530

    Christeson G L,Goff J A,Reece R S. 2019. Synthesis of oceanic crustal structure from two-dimensional seismic profiles[J]. Rev Geophys,57(2):504–529. doi: 10.1029/2019RG000641

    Crawford W C,Webb S C. 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data[J]. Bull Seismol Soc Am,90(4):952–963. doi: 10.1785/0119990121

    Ding W W,Niu X W,Zhang T,Chen S G,Liu S H,Tan P C,Kong F S,Jin Z D,Huang S H,Wei C H,Fang Y X,Sun Q C,Li J B. 2022. Submarine wide-angle seismic experiments in the high Arctic:The JASMInE expedition in the slowest spreading Gakkel Ridge[J]. Geosyst Geoenviron,1(3):100076. doi: 10.1016/j.geogeo.2022.100076

    Jokat W,Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge,Arctic Ocean[J]. Geophys J Int,168(3):983–998. doi: 10.1111/j.1365-246X.2006.03278.x

    Jokat W,Ritzmann O,Schmidt-Aursch M C,Drachev S,Gauger S,Snow J. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge[J]. Nature,423(6943):962–965. doi: 10.1038/nature01706

    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x

    Korger E I M,Schlindwein V. 2014. Seismicity and structure of the 85°E volcanic complex at the ultraslow spreading Gakkel Ridge from local earthquake tomography[J]. Geophys J Int,196(1):539–551. doi: 10.1093/gji/ggt390

    Koulakov I,Schlindwein V,Liu M Q,Gerya T,Jakovlev A,Ivanov A. 2022. Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge[J]. Nat Commun,13(1):3122. doi: 10.1038/s41467-022-30797-4

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35.

    McGuire J J,Collins J A,Gouédard P,Roland E,Lizarralde D,Boettcher M S,Behn M D,van der Hilst R D. 2012. Variations in earthquake rupture properties along the Gofar transform fault,East Pacific Rise[J]. Nat Geosci,5(5):336–341. doi: 10.1038/ngeo1454

    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001

    Minshull T A,Muller M R,White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:Seismic constraints[J]. Geophys J Int,166(1):135–147. doi: 10.1111/j.1365-246X.2006.03001.x

    Mosher D C,Chapman C B,Shimeld J,Jackson H R,Chian D,Verhoef J,Hutchinson D,Lebedeva-Ivanova N,Pederson R. 2013. High Arctic marine geophysical data acquisition[J]. Leading Edge,32(5):524–536. doi: 10.1190/tle32050524.1

    Niu X W,Minshull T A,Li J B,Ruan A G,Wu Z L,Wei X D,Wang W,Li Y,Bayrakci G,Dong C Z,Ding W W,Fang Y X,Zhang J. 2023. Shear wave velocity structure and crustal lithology beneath the ultraslow spreading Southwest Indian Ridge at 50°E[J]. Geophys J Int,233(2):1416–1428. doi: 10.1093/gji/ggac516

    Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque:U.S. Geol. Surv.:93−322.

    Rekant P V,Gusev E A. 2016. Sediments in the Gakkel Ridge rift zone (Arctic Ocean):Structure and history[J]. Russ Geol Geophys,57(9):1283–1287. doi: 10.1016/j.rgg.2016.08.013

    Schlindwein V,Müller C,Jokat W. 2007. Microseismicity of the ultraslow-spreading Gakkel Ridge,Arctic Ocean:A pilot study[J]. Geophys J Int,169(1):100–112. doi: 10.1111/j.1365-246X.2006.03308.x

    Seher T,Crawford W C,Singh S C,Cannat M,Combier V,Dusunur D. 2010. Crustal velocity structure of the Lucky Strike segment of the Mid-Atlantic Ridge at 37°N from seismic refraction measurements[J]. J Geophys Res:Solid Earth,115(B3):B03103.

    Stähler S C,Sigloch K,Hosseini K,Crawford W C,Barruol G,Schmidt-Aursch M C,Tsekhmistrenko M,Scholz J R,Mazzullo A,Deen M. 2016. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion,western Indian Ocean[J]. Adv Geosci,41:43–63. doi: 10.5194/adgeo-41-43-2016

    Sutton G H,Duennebier F K. 1987. Optimum design of ocean bottom seismometers[J]. Mar Geophys Res,9(1):47–65. doi: 10.1007/BF00338250

    USGS. 2021. Earthquake lists,maps,and statistics[EB/OL]. [2023−08−18]. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics.

    Webb S C. 1988. Long-period acoustic and seismic measurements and ocean floor currents[J]. IEEE J Oceanic Eng,13(4):263–270. doi: 10.1109/48.9239

图(9)  /  表(2)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  12
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-02-19
  • 网络出版日期:  2025-01-22
  • 刊出日期:  2025-03-27

目录

/

返回文章
返回