The secular variation prediction method of geomagnetic field in Chinese mainland based on long short-term memory neural network
-
摘要:
选取中国大陆及邻近地区32个地磁台站地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,通过月均值年差分得到主磁场各要素的长期变化序列,然后将深度学习方法应用到地球主磁场长期变化研究中,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)、归一化均方根误差(NRMSE)平均值为1.139′和0.040;H分量的RMSE、NRMSE平均值为11.85 nT和0.086;Z分量的RMSE、NRMSE平均值为15.10 nT和0.026,LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 nT/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 nT/a,较线性外推法提高了47%,较二次外推法提高了57%。
-
关键词:
- 地球磁场 /
- 长短时记忆(LSTM) /
- 长期变化 /
- 深度学习 /
- 中国大陆
Abstract:The geomagnetic field is the result of the superposition of different magnetic substances and their dynamic processes within the Earth, as well as the magnetic field generated by the current systems both inside and outside the Earth. Researching the geomagnetic field is not only crucial for revealing the Earth’s spatial electromagnetic environment, exploring the Earth’s internal structure, and understanding the magnetohydrodynamic dynamics of the Earth’s core, but also plays an extremely important role in monitoring earthquake and volcanic activity, exploring mineral and energy resources, as well as positioning and navigating carrier. The magnetic field of the Earth’s core, also known as the main magnetic field, is widely believed to be generated by the magnetohydrodynamic generator mechanism in the Earth’s core, accounting for over 95% of the total magnetic field. The wavelength of the main magnetic field is relatively long, and its spatial distribution is dominated by dipole fields. The temporal variation shows long-term changes on the scale of hundreds to thousands of years and polarity reversal on the scale of millions of years. The main magnetic field and its secular variation have always been important research topics in geomagnetism.
Machine learning can extract features from large amounts of data, and can also learn and iterate to discover the data patterns and features we need. As an important branch of machine learning, deep learning learns and mines data features through deep neural networks. Deep learning can handle non-linear data without relying on the spectral characteristics of temporal data, and has good performance. LSTM (long short-term memory) adds a gate mechanism to the traditional RNN (recurrent neural network) structure, which can effectively solve the problems of gradient explosion and vanishing during RNN training. Therefore, LSTM has more complex temporal information memory units and is widely used in temporal data analysis and modeling.
Thus, we apply deep neural network LSTM to the research of secular variation prediction of geomagnetic field. We select the time averaged data of the horizontal component H, magnetic declination D, and vertical component Z of the geomagnetic field from 32 geomagnetic stations in Chinese mainland and its neighboring regions; use local time conditions and geomagnetic index conditions to select and calculate the daily mean of the time averaged data; further filter the data based on the geomagnetic quiet days published by the World Geomagnetic Data Center, and perform linear fitting on the filtered data to remove outliers and calculate the monthly mean; further obtain the secular variation time-series of the main magnetic field through the annual difference of the monthly mean. Finally, the secular variation time-series of the main magnetic field is input into the LSTM model for training, and the predicted results of the model are compared and analyzed with those of general methods.
The prediction results shows that for the D element the average RMSE and NRMSE of LSTM are 1.139' and 0.040, for the H element the average RMSE and NRMSE of LSTM are 11.85 nT and 0.086, for the Z element the average RMSE and NRMSE of LSTM are 15.10 nT and 0.026, suggesting the LSTM model has the highest prediction accuracy for Z element, followed by D element, and the worst for H element. There are two main reasons why the model has poor accuracy in predicting H elements. Firstly, during the geomagnetic quiet period, the distribution of Sq current system and equatorial current directly affects the recording of H elements at ground stations, especially in low latitude areas where H elements undergo significant changes. Secondly, the training set has limited sample data and lacks comprehensive secular variation information, resulting in the model which is able to fit well on the training set but has poor prediction accuracy on the testing set. Expanding the sample size of the training set as much as possible can improve this situation.
We calculate the annual rate error for various elements of the station obtained from LSTM model, linear extrapolation, and quadratic extrapolation. For the D element, the average RMSE of the LSTM prediction results is 0.361'/a, which is 54% higher than linear extrapolation and 59% higher than quadratic extrapolation. For the H element, the average RMSE of the LSTM prediction results is 3.921 nT/a, which is 58% higher than linear extrapolation and 76% higher than quadratic extrapolation. For the Z element, the average RMSE of the LSTM prediction results is 4.339 nT/a, which is 47% higher than linear extrapolation and 57% higher than quadratic extrapolation.
-
Keywords:
- geomagnetic field /
- LSTM /
- secular variation /
- deep learning /
- Chinese mainland
-
引言
2021年5月21日21时21分至22时31分,云南大理州漾濞县接连发生4次MS≥5.0地震,分别是MS5.6,MS6.4,MS5.0和MS5.2地震(以下简称漾濞地震),其中MS6.4地震打破了2014年10月7日云南景谷MS6.6地震后云南地区长达6年多的M6.0以上地震平静。统计发现,此次漾濞地震震源区为少震区,且地震活动强度不大。震中西北30 km左右的洱源地区1970年以来偶有M5.0地震活动,最大震级为MS5.5。
漾濞MS5.6地震前,2021年5月18日18时至5月21日21时,漾濞地区接连发生了13次ML3.0—4.9地震和上百次ML3.0以下地震,其中ML4.0—4.9地震3次,最大地震为5月19日20时5分的ML4.5地震。根据震群的定义(国家地震局科技监测司,1990),此次地震序列已然构成震群(以下简称漾濞震群)。同时,漾濞震群尚在持续活动时发生了漾濞4次MS≥5.0地震。与以往漾濞地区地震活动特征对比可知,此次漾濞震群较以往震级明显偏大、频度明显偏高,1970年以来该地区尚无类似强度和频度的小震震群活动,表明震源区及附近区域地壳介质应力水平较以往偏高。从统计分析的角度看,根据漾濞地区的历史地震活动水平,很难判定漾濞震群后区域地震危险性如何,也很难预测漾濞震群后漾濞将发生4次MS≥5.0地震。本文拟通过分析漾濞4次MS≥5.0地震前后的b值变化,重新认识漾濞震群与漾濞地震的关系。
古登堡—里克特关系式(Gutenberg,Richter,1944)中的b值具有较明确的物理含义。多数岩石破裂实验表明b值代表了介质内部应力水平的高低,并随应力增加而下降(Scholz,1968;张智等,1987;曾正文等,1995;刘力强等,2001;Amitrano,2003;李小军等,2010),即b值与应力水平呈反比(Wyss,1973;Urbancic et al,1992;Schorlemmer,2004)。许多震例研究表明强震前b值出现下降变化(马鸿庆,1978;Wiemer,Wyss,1997;Wyss et al,2004;王辉等,2012;易桂喜等,2014;邵延秀等,2015;史海霞等,2018;张帆等,2018;韩佳东等,2019;曾宪伟等,2020,2021),因此,b值作为监视破坏性地震孕育过程的一种手段,可以反映一个地区承受平均应力和接近岩石破裂强度极限的程度(李全林等,1976)。这一认识与大多数实验及观测结果相符。
本文拟利用漾濞地震震源区及其附近地区2015年以来记录的小震资料,通过分析2021年漾濞4次MS≥5.0地震前后b值的时空变化特征,研究漾濞震群的前震意义,探讨震源区的应力变化过程。
1. 资料选取与最小完整性震级分析
1.1 资料选取
本文以2021年5月21日漾濞地震震源区及其附近区域为研究区(图1),选取2015年1月1日至2021年6月4日的地震资料,开展震前与震后b值空间变化的分析研究。该时段地震的震相报告通过全国统一编目系统(中国地震台网中心,2020)获得,其中2015年1月至2021年3月震相报告为全国台网正式观测报告,2021年4月以来为云南台网快报观测报告。
2015年至2021年漾濞地震前,研究区主要以小震活动为主(图1,2),仅于2016年5月18日和2017年3月27日发生过云龙MS5.0地震和漾濞MS5.2地震。从历史地震活动情况看,漾濞地区鲜有M5.0以上地震发生,此次漾濞地震的强度和频次均打破了以往对该地区中强地震活动的认识。在保证研究区完备震级的条件下(最小完整性震级Mc=ML1.5,具体分析见2.2节),选取截止震级Mcut-off=ML1.5绘制地震密度分布图(图3)。图3为2.3节b值空间扫描计算时同步绘制的图像,研究区网格划分为0.01°×0.01°,每个节点的地震密度为搜索区域内每平方千米的地震次数N。从研究区地震分布密度看,M5.0以上地震震中区为小震密度最大的地区(图3)。
1.2 最小完整性震级分析
最小完整性震级Mc的大小与测震台站的分布密度相关,故Mc往往存在区域差异。研究区Mc分布结果显示(图4),研究区中北部云龙以东地区Mc为ML1.0左右,中南部漾濞地震附近区域Mc为ML1.8左右,其它地区Mc基本介于ML1.2—1.4,故研究区Mc基本介于ML1.0—1.8。
1.3 扫描参数设置
进行b值空间扫描时,参数设置一般采用固定搜索半径或固定计算样本量的方式。前者适合于地震密度较高且分布较均匀的区域,若地震稀疏则样本量不足将导致无法计算b值;后者根据地震分布密度调整每个节点的搜索半径,适合地震分布不均匀的地区。本文采用固定计算样本量的设置方式,将研究区划分为0.01°×0.01°的网格,每个节点的地震次数固定为100,并满足大于最小完整性震级Mc的地震次数至少为20,分析b值空间扫描的所有节点搜索半径占比(图5),图5显示80%以上的节点搜索半径在5—17 km。因此,大部分地区未出现因搜索半径过大而降低b值空间分辨率的情况,说明b值扫描参数的设置是合适的。
2. 结果分析
2.1 重新定位
为了得到更可靠的b值空间分析结果,本文对研究区的地震进行重新定位,地壳速度结构取自王帅军等(2015)的深地震探测研究结果。首先利用Hyp2000定位方法(Klein,2007)对研究区内的地震进行绝对定位,再利用双差定位法(Waldhauser,Ellsworth,2000)进行相对定位。由于双差定位后往往会造成部分地震丢失,为了满足b值计算的需要,本文采用将双差定位地震与Hyp2000定位地震进行合并的方法(曾宪伟等,2021)以保证地震目录的完整性。重新定位的地震共计6 097次,其中ML0.0—0.9地震1 193次,ML1.0—1.9地震3 746次,ML2.0—2.9地震958次,ML3.0—3.9地震164次,ML4.0—4.9地震29次,ML5.0—5.9地震6次,ML6.0地震1次。重定位误差结果显示,双差定位水平向和垂直向误差均小于0.1 km (相对震群矩心的相对误差)的地震占98%以上,Hyp2000定位水平向误差均值为1.8 km,垂直向误差均值为2.3 km。两种方法重新定位后的地震震源更加精确,基础数据更加可靠,b值计算的可靠性得到保证。
2.2 背景b值计算
研究表明,低b值阈值大小与震源深度(Mori,Abercrombie,1997)以及震源机制类型(Schorlemmer et al,2005)有关。因此,不同构造区往往低b值阈值的大小不同(王辉等,2012;易桂喜等,2014;邵延秀等,2015;张帆等,2018;韩佳东等,2019)。为了确定研究区低b值的阈值大小,首先需要计算研究区背景b值的大小。本文选取2015年以来收集到的研究区的全部地震资料,利用极大似然法(Utsu,1966;Woessner,Wiemer,2005)计算区域平均b值及其标准差,以此作为研究区的背景b值。
首先需要分析b值计算时截止震级Mcut-off对b值的影响。图6显示,当Mcut-off≤ML1.4时,b值标准差随Mcut-off的增大而减小,b值计算结果浮动范围较大;当ML1.5≤Mcut-off≤ML1.9时,b值标准差最小,且b值计算结果稳定;当Mcut-off≥ML2.0时,b值标准差随Mcut-off的增大而增大,b值计算结果存在起伏。因此,计算b值时取ML1.5≤Mcut-off≤ML1.9是合适的。震级-频度曲线(图7)的拟合结果显示,最小完整性震级Mc=ML1.5,与b值计算结果稳定时的截止震级吻合,此时研究区b值及其标准差分别为0.65和0.04,b值大小可表示为0.65±0.04。本文将0.65作为低b值异常的阈值。
2.3 b值空间变化
2021年5月18日至5月21日21时,漾濞地区发生震群活动,其中ML3.0—3.9地震10次,ML4.0—4.9地震3次,ML3.0以下地震上百次。本文以此次震群活动时间为依据,对比分析2015年1月1日至2021年5月17日(A时段)、2015年1月1日至2021年5月21日21时(B时段)和2015年1月1日至2021年6月4日(C时段)三个时段的b值空间变化,即分别对应漾濞震群前、漾濞震群后漾濞地震前和全时段的b值空间分布。
进行b值空间扫描时,按照1.3节的参数设置,利用极大似然法计算每个节点的b值,分别绘制以上三个时段的b值平面分布图(图8),以及B时段相对A时段及C时段相对B时段的b值变化分布图(图9),即漾濞震群前后和漾濞地震前后的b值变化。结果显示:① 低b值区基本处于地震分布较密集的地区(图3、图8和图9),这些区域搜索半径偏小,b值空间分辨率较高;② A时段漾濞震群前,漾濞地震震源区b值偏高(图8a),漾濞地震西北出现两处低b值异常区,分别发生过2016年5月18日云龙MS5.0地震和2017年3月27日漾濞MS5.1地震,文后将对这两次地震与低b值异常的关系作具体分析;③ B时段漾濞震群后漾濞地震前,漾濞地震震源区出现明显的低b值异常(图8b),b值在3天内快速下降(图9a),可能预示着局部地壳介质强度接近临界状态,区域孕震过程出现临震信号,这一认识与岩石破裂试验结果相符(Scholz,1968;张智等,1987;曾正文等,1995;刘力强等,2001;Amitrano,2003;李小军等,2010);④ C时段漾濞地震后,震源区低b值异常减弱(图8c),相比B时段震源区b值明显回升(图9b),这与区域应力释放、地震危险性降低相吻合。同时震源区小范围低b值异常依旧存在(图8c),显示余震可能持续,但震级不大。另外,还需关注震源区周围出现零星小范围b值下降现象(图9b),应与局部应力调整有关,b值下降区可能出现一些小震活动。
图 8 研究区不同时段b值空间分布Figure 8. Spatial distribution of b-value in different periods in the studied area① 2016-05-18 00:48 MS5.0;② 2017-03-27 07:55 MS5.2;③ 2021-05-21 21:21 MS5.6; ④ 2021-05-21 21:48 MS6.4;⑤ 2021-05-21 21:55 MS5.0;⑥ 2021-05-21 22:31 MS5.2 (a) 2015-01-01—2021-05-17;(b) 2015-01-01—2021-05-21 21:00;(c) 2015-01-01—2021-06-04漾濞地震前后b值变化特征再次表明,将b值平面分布图(低b值异常区预示高应力积累区)和变化图(b值快速下降区预示强震危险)结合起来,可作为一种区域地震危险性判定的可行方法(曾宪伟等,2020)。
3. 关于b值剖面分布的讨论
选取B时段(2015-01-01—2021-05-21 21:00)的地震资料,沿图1中地震展布方向绘制NW向震源深度剖面(图10a),并将深度剖面划分为1 km×1 km的网格,b值扫描参数设置同2.3节,计算得到b值剖面分布图(图10b)。结果显示:① MS5.0以上地震基本发生在低b值异常区的边缘或内部,尤其是漾濞4次MS≥5.0地震(图10b中③④⑤⑥)均沿低b值异常区的边缘分布;② 低b值异常区深度基本在15 km以浅,且异常区分布对中强地震的震源位置具有指示意义;③ 漾濞震群发生后,b值剖面西部出现20 km×20 km的低b值异常区。漾濞MS6.4地震震源机制为右旋走滑机制(中国地震局地球物理研究所,2021),可采用华北地区走滑型地震的震级与震源破裂长度的关系式MS=1.86lgL+3.821以及震级与震源破裂面积的关系式MS=0.954lgA+4.134估算震级大小(龙锋等,2006),将长度L=20 km和面积A=20 km×20 km分别代入以上两式,估算震级分别为MS6.2和MS6.6,与实际发生震级MS6.4基本吻合;④ b值剖面中部存在一个长约35 km的低b值异常区,该区域曾发生2017年3月27日漾濞MS5.2地震,但低b值异常尚不能完全与漾濞MS5.2地震相对应。原因有两个方面:一是MS5.2地震前震中附近出现低b值异常区(图11b),而震后直至2021年6月低b值异常仍在持续,且异常区较大,显示局部应力水平一直偏高(图7,10);二是将低b值异常区长度L=35 km和面积A=35 km×15 km (图10)分别代入以上震级与震源破裂长度和震级与震源破裂面积的关系式,估算震级均为MS6.7。因此,漾濞西北40 km处未来存在发生强震的风险,且震源深度应在15 km以浅;⑤ b值剖面西部存在一个长约15 km的低b值异常区,该区域曾发生2016年5月18日云龙MS5.0地震,同样低b值异常也不能完全对应云龙MS5.0地震。分析认为:一是MS5.0地震前震中附近未出现低b值异常(图11a),而低b值异常出现在震后(图7,10,11);二是将低b值异常区长度L=15 km和面积A=15 km×18 km (图10)分别代入上文两个关系式,估算震级分别为MS6.0和MS6.4。因此,漾濞西北70 km处未来存在发生6级左右地震的风险,且震源深度应在20 km以浅。
研究表明,低速体与高速介质的同时存在有利于应力集中而孕育地震(滕吉文,2010)。诸多震例分析也印证了地震往往发生于高速区与低速区的过渡带(Lees,Malin,1990;孙若昧,刘福田,1995;王椿镛等,2002;陈九辉等,2005;曾宪伟等,2014,2017)。贾佳(2020)利用双差层析成像法研究了洱源—漾濞地区0.25°×0.25°网格和0.15°×0.15°网格的三维P波速度精细结构。前者沿断裂方向(NW向)的P波速度结构剖面结果显示,12—20 km深度存在低速体,且低速体范围较广,在100 km左右;后者沿断裂方向(NW向)的P波速度结构剖面结果显示,在14—20 km深度存在两处显著的低速异常体,2017年3月27日漾濞MS5.2地震和2021年漾濞地震震源位置与这两处低速体位置吻合。由此可见,研究区存在低速异常体为中强地震孕育提供了介质条件,意味着该区域20 km以浅未来存在发生中强地震的危险。这一认识与前文基于b值剖面的地震危险性分析得到的结论是一致的。
4. 结论
本文选取2015年1月1日至2021年6月4日漾濞地震震源区及其附近区域记录到的地震资料,利用极大似然法计算了研究区b值的背景大小为0.65±0.04,并将0.65作为低b值异常的阈值。然后分析了漾濞震群前、漾濞震群后漾濞地震前和全时段三个不同时段的b值空间分布特征,以及漾濞震群前后和漾濞地震前后的b值空间变化特征,主要得到以下认识:
1) 漾濞震群发生后,震源区出现b值快速下降,可能预示着局部地壳介质强度接近临界状态。漾濞地震发生后,震源区b值明显回升,与区域应力释放、地震危险性降低相吻合。同时,震源区依旧存在小范围低b值异常,应与余震持续活动有关,但震级不大。震源区周围出现零星小范围b值下降现象,推测与局部应力调整有关。漾濞地震前后b值变化特征分析结果再次证明,综合分析b值平面分布图和变化图可作为一种区域地震危险性判定的有效方法。
2) 漾濞震群发生后,漾濞4次MS≥5.0地震均沿剖面低b值异常区的边缘分布,反映了低b值异常区的分布对中强地震的震源位置具有一定的指示意义。根据剖面低b值异常区的尺度以及震级与震源破裂长度和震级与震源破裂面积的经验关系式,推测漾濞地震震源区孕震震级为MS6.2和MS6.6,与实际发生震级MS6.4基本吻合,推测漾濞地震西北40 km和70 km处未来存在发生中强地震的风险,且震源深度应在15—20 km以浅。
本文的b值计算和绘图程序来自zmap程序包(Wiemer,2001),审稿专家提出了富有建设性的意见和建议,作者在此一并表示感谢。
-
图 6 LSTM模型在D (左) ,H (中),Z (右)要素的模型值与相应的台站观测值对比
图中蓝实线是台站的观测值,绿实线是基于地磁台站观测值提取的长期变化,红实线是LSTM模型在训练集上的拟合值,红虚线是LSTM模型在测试集上的预测值(a) MZL台;(b) COM台;(c) QIX台;(d) QGZ台;(e) WMQ台;(f) KSH台;(g) KAK台
Figure 6. Comparison of LSTM model values for elements D (left),H (middle) and Z (right) with corresponding station observations
The blue solid line represents the station observation,the green solid line represents the secular variation extracted from the observations of the geomagnetic station,the red solid line represents the fitted value of the LSTM model on the training set,and the red dashed line represents the predicted value of the LSTM model on the validation set (a) MZL station;(b) COM station;(c) QIX station;(d) QGZ station;(e) WMQ station;(f) KSH station;(g) KAK station
图 7 由LSTM、线性外推、二次外推法得到的D (左),H (中)和Z(右)要素年变率
图中蓝线表示由原始数据计算的年变率,红线表示由LSTM模型计算的年变率,绿线表示由线性外推计算的年变率,黄线表示由二次外推计算的年变率(a) MZL台;(b) COM台;(c) QIX台;(d) QGZ台;(e) WMQ台;(f) KSH台;(g) KAK台
Figure 7. Annual variation rates of the elements D (left),H (middle) and Z (right) obtained from LSTM,Liner extrapolation and Quadratic extrapolation
The blue line represents the annual variation rates calculated from the original data,the red line represents the annual variation rates calculated from the LSTM model,the green line represents the annual variation rates calculated from the linear extrapolation,and the yellow line represents the annual variation rates calculated from the Quadratic extrapolation (a) MZL station;(b) COM station;(c) QIX station;(d) QGZ station;(e) WMQ station;(f) KSH station;(g) KAK station
表 1 LSTM模型在各台站的预测精度
Table 1 Prediction accuracy of LSTM model at each stations
D/´ H/nT Z/nT MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 CDP 0.615 0.837 0.037 0.991 15.265 17.04 0.039 0.927 9.66 10.28 0.012 0.999 CHL 0.983 1.072 0.030 0.994 11.45 13.14 0.074 0.959 5.82 6.51 0.038 0.998 CNH 1.254 1.362 0.037 0.988 15.58 16.83 0.072 0.873 7.91 9.10 0.026 0.992 COM 0.578 0.649 0.009 0.998 0.96 1.94 0.016 0.994 13.523 13.80 0.008 0.995 DED 0.386 0.452 0.014 0.999 6.34 7.17 0.024 0.989 3.90 4.85 0.052 0.996 DLG 0.516 0.551 0.018 0.998 10.587 11.41 0.073 0.959 11.293 12.56 0.024 0.993 GLM 1.438 1.683 0.121 0.929 8.31 10.05 0.040 0.985 12.933 14.27 0.014 0.998 GZH 2.640 2.776 0.022 0.930 10.03 10.81 0.084 0.569 8.51 10.92 0.022 0.998 JIH 0.823 0.901 0.026 0.996 11.086 12.83 0.043 0.968 4.56 7.03 0.019 0.998 JYG 0.670 0.772 0.036 0.993 10.112 11.17 0.042 0.989 6.91 8.49 0.014 0.999 KSH 0.229 0.277 0.023 0.998 3.01 4.01 0.024 0.995 9.53 11.27 0.013 0.998 LSA 0.857 0.920 0.158 0.897 4.27 5.56 0.022 0.886 39.15 43.80 0.019 0.979 LYH 0.591 0.681 0.032 0.998 11.912 13.32 0.065 0.966 12.787 13.26 0.029 0.996 LZH 1.347 1.513 0.057 0.975 7.88 9.33 0.047 0.985 14.20 21.60 0.025 0.991 MCH 1.004 1.248 0.030 0.991 12.940 13.89 0.041 0.906 16.467 17.87 0.033 0.993 MZL 0.430 0.504 0.028 0.995 9.12 9.82 0.052 0.987 7.39 8.12 0.023 0.991 QGZ 0.669 0.701 0.019 0.995 6.89 7.17 0.028 0.836 7.75 8.55 0.008 0.999 QIX 0.282 0.307 0.006 0.999 2.94 3.27 0.012 0.998 9.12 10.51 0.016 0.998 QZH 0.793 1.211 0.037 0.992 12.682 15.64 0.130 0.030 17.004 19.28 0.028 0.992 SYG 1.058 1.270 0.024 0.983 14.713 17.09 0.108 0.362 15.319 16.90 0.033 0.996 TAA 0.919 1.189 0.024 0.992 16.291 19.53 0.069 0.892 14.583 16.23 0.039 0.992 TAY 1.552 1.729 0.040 0.981 12.059 14.67 0.066 0.965 4.53 5.69 0.024 0.999 THJ 0.572 0.635 0.038 0.990 8.05 9.03 0.070 0.902 19.547 21.42 0.020 0.995 TSY 1.078 1.216 0.030 0.988 10.249 12.19 0.034 0.965 4.79 6.01 0.014 0.999 WHN 1.337 1.437 0.045 0.985 13.02 15.39 0.057 0.801 13.64 14.02 0.021 0.996 WMQ 0.899 0.982 0.086 0.926 10.67 12.09 0.018 0.987 28.81 30.12 0.015 0.985 XIC 0.577 0.674 0.048 0.990 4.11 5.11 0.023 0.988 9.72 16.31 0.020 0.997 YON 0.892 1.256 0.047 0.980 6.01 6.66 0.911 0.880 16.822 20.06 0.015 0.995 IRT 2.674 3.062 0.076 0.979 24.03 27.84 0.038 0.977 17.46 19.39 0.059 0.974 KAK 0.795 1.090 0.043 0.994 13.38 15.66 0.191 0.906 11.17 12.07 0.013 0.994 KNY 2.590 2.713 0.014 0.981 11.39 12.47 0.113 0.864 19.31 20.18 0.015 0.989 GUA 0.588 0.784 0.025 0.997 14.88 17.15 0.123 0.962 27.01 32.68 0.118 0.885 注:RMSE为均方根误差,MAE为平均绝对误差,NRMSE为归一化均方根误差,R2为决定系数,下同。 表 2 LSTM模型预测精度汇总
Table 2 Summary for prediction accuracy of LSTM model
D/(´) H/(nT) Z/(nT) MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 Min 0.229 0.277 0.006 0.897 0.96 1.94 0.012 0.030 3.90 4.85 0.008 0.885 Max 2.674 3.062 0.158 0.999 24.03 27.84 0.911 0.998 39.15 43.80 0.118 0.999 Mean 0.989 1.139 0.040 0.982 10.32 11.85 0.086 0.883 13.16 15.10 0.026 0.991 表 3 LSTM模型、线性外推、二次外推预测的D,H,Z要素年变率精度
Table 3 The accuracy of annual rate for D,H,and Z elements predicted by LSTM model,liner extrapolation and quadratic extrapolation
台站 D年变/(′⋅a−1) H年变/(nT⋅a−1) Z年变/(nT⋅a−1) 方法 MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ CDP LSTM 0.222 0.288 0.195 0.942 4.545 5.545 0.424 0.785 2.674 3.368 0.140 0.981 线性外推 0.398 0.512 0.327 0.817 6.598 9.445 0.632 0.375 5.109 6.306 0.242 0.933 二次外推 0.354 0.475 0.354 0.843 14.88 18.814 0.885 −1.481 4.662 5.924 0.231 0.941 CHL LSTM 0.352 0.453 0.300 0.909 3.830 4.680 0.369 0.812 3.082 3.854 0.170 0.972 线性外推 0.660 0.895 0.506 0.645 5.492 6.839 0.508 0.600 4.543 5.908 0.232 0.934 二次外推 0.567 0.694 0.407 0.786 13.87 16.380 0.907 −1.297 8.046 10.042 0.402 0.809 CNH LSTM 0.337 0.502 0.318 0.884 3.576 4.534 0.358 0.859 3.128 4.152 0.206 0.957 线性外推 0.484 0.571 0.351 0.850 6.844 8.162 0.567 0.543 5.367 7.277 0.321 0.869 二次外推 0.672 1.156 0.619 0.384 12.81 15.556 0.821 −0.661 8.741 11.486 0.501 0.674 COM LSTM 0.151 0.197 0.124 0.984 0.894 1.837 0.181 0.959 1.615 2.782 0.102 0.988 线性外推 0.533 0.724 0.427 0.784 6.185 8.400 0.747 0.137 5.580 8.318 0.289 0.895 二次外推 0.516 0.638 0.388 0.832 11.92 14.526 0.936 −1.580 8.189 10.196 0.381 0.842 DED LSTM 0.219 0.305 0.210 0.954 2.066 2.549 0.172 0.966 2.749 3.516 0.217 0.954 线性外推 0.496 0.673 0.453 0.776 7.208 9.438 0.571 0.532 6.354 7.890 0.433 0.767 二次外推 0.890 1.148 0.685 0.349 12.10 14.817 0.761 −0.152 7.203 9.696 0.532 0.648 DLG LSTM 0.271 0.360 0.263 0.927 3.359 4.222 0.406 0.822 2.519 2.977 0.120 0.984 线性外推 0.496 0.676 0.448 0.743 5.587 6.965 0.555 0.516 5.463 7.079 0.272 0.909 二次外推 0.557 0.708 0.485 0.718 11.94 14.201 0.933 −1.011 6.792 8.964 0.356 0.853 GLM LSTM 0.501 0.656 0.422 0.807 3.091 3.631 0.318 0.837 3.110 3.993 0.176 0.969 线性外推 0.937 1.251 0.656 0.298 6.170 7.929 0.706 0.225 7.064 9.033 0.371 0.840 二次外推 0.944 1.201 0.679 0.353 14.41 17.390 1.028 −2.730 9.053 11.905 0.464 0.721 GZH LSTM 0.157 0.214 0.095 0.989 3.384 4.040 0.418 0.788 4.419 5.723 0.225 0.948 线性外推 0.266 0.416 0.187 0.958 5.803 7.141 0.626 0.337 8.291 12.332 0.447 0.760 二次外推 0.564 0.791 0.351 0.848 10.41 12.718 0.900 −1.102 10.125 14.212 0.501 0.681 JIH LSTM 0.216 0.303 0.224 0.947 2.725 3.395 0.305 0.900 2.274 3.333 0.141 0.981 线性外推 0.333 0.453 0.297 0.882 4.721 6.028 0.467 0.686 3.808 5.087 0.190 0.955 二次外推 0.544 0.671 0.471 0.741 12.91 15.893 0.879 −1.183 5.848 6.873 0.273 0.917 JYG LSTM 0.165 0.241 0.134 0.972 2.925 3.674 0.345 0.866 3.915 5.155 0.204 0.959 线性外推 0.768 0.984 0.533 0.537 7.782 10.522 0.767 −0.100 9.179 12.754 0.456 0.748 二次外推 0.618 0.780 0.442 0.709 11.04 13.002 0.731 −0.679 10.725 12.683 0.460 0.751 KSH LSTM 0.141 0.167 0.168 0.973 2.200 2.831 0.287 0.884 3.743 4.412 0.193 0.958 线性外推 0.972 1.657 1.110 −1.65 10.56 15.045 1.184 −2.276 8.898 11.765 0.486 0.701 二次外推 1.144 1.556 0.869 −1.34 13.10 15.314 0.878 −2.394 6.125 7.716 0.323 0.871 LSA LSTM 0.255 0.350 0.315 0.876 2.390 3.942 0.322 0.897 5.106 6.289 0.189 0.959 线性外推 0.578 0.768 0.598 0.405 8.991 11.874 0.759 0.063 8.145 10.640 0.319 0.883 二次外推 0.482 0.624 0.527 0.607 16.05 23.492 0.935 −2.667 6.962 8.610 0.264 0.923 LYH LSTM 0.490 0.659 0.490 0.718 3.755 4.766 0.406 0.811 2.603 3.202 0.132 0.983 线性外推 0.683 0.936 0.619 0.430 5.225 6.410 0.470 0.657 4.994 6.933 0.259 0.921 二次外推 1.019 1.635 0.841 −0.74 17.16 21.387 1.041 −2.816 5.337 6.504 0.248 0.930 LZH LSTM 0.411 0.536 0.336 0.837 3.988 4.797 0.420 0.774 2.785 4.536 0.176 0.951 线性外推 0.815 1.198 0.698 0.186 8.578 12.882 0.945 −0.627 5.358 7.398 0.328 0.871 二次外推 0.862 1.165 0.700 0.230 15.27 22.319 0.871 −3.883 10.247 13.422 0.562 0.575 MCH LSTM 0.261 0.340 0.246 0.920 2.495 3.633 0.291 0.892 4.396 5.115 0.199 0.962 线性外推 0.734 1.075 0.737 0.200 7.035 9.009 0.623 0.336 7.389 9.072 0.323 0.879 二次外推 0.692 0.853 0.579 0.496 18.39 21.430 0.989 −2.755 9.028 11.092 0.398 0.819 MZL LSTM 0.194 0.253 0.161 0.973 3.025 4.173 0.284 0.921 1.915 2.219 0.119 0.982 线性外推 0.563 0.710 0.398 0.791 5.268 6.800 0.400 0.791 5.328 6.679 0.365 0.832 二次外推 0.624 0.786 0.435 0.744 12.41 16.565 0.797 −0.242 6.961 8.457 0.449 0.731 QGZ LSTM 0.114 0.165 0.126 0.969 2.116 2.858 0.316 0.896 2.863 4.121 0.159 0.974 线性外推 0.582 0.766 0.656 0.326 8.834 11.160 0.949 −0.586 6.213 7.912 0.284 0.905 二次外推 0.734 0.893 0.603 0.085 14.86 18.402 1.081 −3.311 8.916 11.902 0.428 0.785 QIX LSTM 0.077 0.145 0.110 0.985 0.816 0.975 0.071 0.991 2.753 3.986 0.161 0.975 线性外推 0.459 0.563 0.368 0.779 7.115 8.569 0.673 0.306 4.923 6.140 0.229 0.940 二次外推 0.513 0.735 0.484 0.623 13.97 17.477 0.980 −1.885 8.186 10.228 0.380 0.833 QZH LSTM 0.228 0.368 0.214 0.916 3.793 5.074 0.506 0.734 4.675 5.604 0.222 0.950 线性外推 0.657 0.910 0.608 0.485 7.955 9.824 0.764 0.002 4.997 6.433 0.233 0.935 二次外推 0.620 0.792 0.503 0.610 15.60 19.366 1.025 −2.877 6.195 8.256 0.309 0.892 SYG LSTM 0.246 0.351 0.324 0.885 3.743 5.301 0.374 0.801 4.216 5.357 0.189 0.964 线性外推 0.438 0.602 0.449 0.660 11.89 17.502 1.079 −1.164 5.255 6.877 0.223 0.941 二次外推 0.624 0.772 0.576 0.442 16.81 19.542 1.052 −1.697 6.784 9.348 0.312 0.891 TAA LSTM 0.276 0.357 0.279 0.913 4.464 5.181 0.494 0.766 4.029 4.650 0.192 0.963 线性外推 0.487 0.703 0.489 0.663 7.638 9.009 0.671 0.293 6.313 8.079 0.306 0.889 二次外推 0.467 0.591 0.435 0.762 12.19 14.390 0.814 −0.803 6.354 9.361 0.360 0.851 TAY LSTM 0.575 0.774 0.494 0.646 4.511 5.512 0.436 0.775 3.337 4.486 0.198 0.962 线性外推 0.954 1.328 0.740 −0.04 9.085 11.003 0.750 0.103 6.555 8.597 0.345 0.860 二次外推 1.517 1.980 0.945 −1.31 18.75 28.224 1.098 −4.902 6.905 8.272 0.336 0.871 THJ LSTM 0.174 0.207 0.164 0.958 3.185 4.323 0.419 0.830 3.677 4.883 0.214 0.954 线性外推 0.342 0.449 0.341 0.805 6.149 7.727 0.577 0.457 4.817 6.475 0.262 0.920 二次外推 0.307 0.368 0.329 0.868 12.07 14.113 0.824 −0.811 5.103 6.332 0.263 0.923 TSY LSTM 0.283 0.353 0.254 0.923 5.178 6.948 0.691 0.498 3.513 4.464 0.188 0.965 线性外推 0.634 0.815 0.519 0.591 10.36 14.890 1.057 −1.308 5.861 8.257 0.325 0.880 二次外推 0.544 0.740 0.500 0.662 13.63 16.474 1.058 −1.825 6.355 7.402 0.297 0.904 WHN LSTM 0.192 0.326 0.199 0.929 3.269 4.208 0.393 0.801 4.148 5.250 0.215 0.947 线性外涂 0.556 0.767 0.540 0.605 5.735 7.552 0.607 0.360 8.213 14.070 0.532 0.621 二次外推 0.641 0.827 0.528 0.541 9.705 12.099 0.842 −0.642 9.227 13.362 0.481 0.658 WMQ LSTM 0.347 0.466 0.390 0.817 1.504 2.034 0.154 0.974 3.802 4.501 0.169 0.970 线性外推 0.659 1.002 0.711 0.153 6.708 8.291 0.577 0.576 7.164 8.661 0.303 0.890 二次外推 0.738 1.091 0.790 −0.004 8.861 11.928 0.664 0.123 9.198 12.274 0.418 0.779 XIC LSTM 0.268 0.316 0.248 0.909 1.979 2.509 0.172 0.969 4.144 5.646 0.190 0.958 线性外推 0.572 0.799 0.591 0.420 8.932 12.246 0.647 0.272 8.479 11.392 0.369 0.830 二次外推 0.663 0.885 0.560 0.290 19.14 24.864 0.887 −2.003 12.220 16.116 0.470 0.660 YON LSTM 0.245 0.331 0.322 0.851 1.917 2.467 0.180 0.952 2.767 3.911 0.158 0.975 线性外推 0.420 0.527 0.489 0.622 6.527 8.712 0.603 0.407 4.585 6.065 0.222 0.940 二次外推 0.502 0.745 0.636 0.246 11.47 13.378 0.775 −0.398 6.459 7.450 0.286 0.909 IRT LSTM 0.532 0.796 0.260 0.914 3.619 4.408 0.214 0.950 3.774 5.111 0.218 0.949 线性外推 0.750 1.001 0.341 0.865 5.788 7.471 0.351 0.856 7.499 10.957 0.449 0.764 二次外推 0.971 1.209 0.408 0.803 8.129 11.606 0.526 0.652 11.499 15.821 0.595 0.508 KAK LSTM 0.178 0.254 0.216 0.944 2.500 3.221 0.314 0.888 0.345 2.891 0.117 0.984 线性外推 0.266 0.335 0.293 0.902 4.618 6.035 0.541 0.608 4.186 0.889 0.198 0.955 二次外推 0.342 0.471 0.419 0.806 8.103 11.395 0.864 −0.399 5.543 7.227 0.301 0.902 KNY LSTM 0.178 0.264 0.208 0.957 2.842 3.604 0.347 0.873 2.350 2.893 0.116 0.986 线性外推 0.233 0.291 0.215 0.948 4.799 6.127 0.514 0.634 3.687 4.623 0.178 0.963 二次外推 0.340 0.465 0.333 0.867 8.297 11.233 0.763 −0.232 5.078 6.300 0.251 0.932 GUA LSTM 0.155 0.195 0.142 0.979 3.154 4.112 0.319 0.889 3.871 5.472 0.172 0.970 线性外推 0.352 0.453 0.321 0.887 6.679 8.376 0.591 0.541 6.561 8.524 0.252 0.927 二次外推 0.391 0.458 0.324 0.885 11.55 14.381 0.815 −0.354 5.756 8.547 0.251 0.927 表 4 LSTM模型、线性外推和二次外推预测的各要素年变率精度汇总
Table 4 Summary of annual rate accuracy for elements predicted by LSTM model,linear extrapolation and quadratic extrapolation
方法 D年变/(′⋅a−1) H年变/(nT⋅a−1) Z年变/(nT⋅a−1) MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $
LSTMMin 0.077 0.145 0.095 0.646 0.816 0.975 0.071 0.498 0.345 2.219 0.102 0.947 Max 0.575 0.796 0.494 0.989 5.178 6.948 0.691 0.991 5.106 6.289 0.225 0.988 Mean 0.264 0.361 0.251 0.909 3.021 3.921 0.335 0.854 3.283 4.339 0.177 0.966
线性外推Min 0.233 0.291 0.187 −1.653 4.618 6.028 0.351 −2.276 3.687 0.889 0.178 0.621 Max 0.972 1.657 1.110 0.958 11.89 17.502 1.184 0.856 9.179 14.070 0.532 0.963 Mean 0.568 0.777 0.502 0.541 7.160 9.374 0.676 0.150 6.185 8.173 0.320 0.866
二次外推Min 0.307 0.368 0.324 −1.340 8.103 11.233 0.526 −4.902 5.078 6.300 0.248 0.489 Max 1.517 1.980 0.945 0.885 19.14 28.224 1.098 0.652 12.220 16.116 0.595 0.932 Mean 0.663 0.889 0.546 0.416 13.15 16.652 0.885 −1.499 7.800 10.133 0.389 0.796 -
常宜峰. 2015. 卫星磁测数据处理与地磁场模型反演理论与方法研究[D]. 郑州:中国人民解放军战略支援部队信息工程大学,106−110. Chang Y F. 2015. Research On Satellite Geomagnetic Data Process And Geomagnetic Model Recovery Theory And Method[D]. Zhengzhou:Information Engineering University,106−110 (in Chinese).
陈斌,顾左文,高金田,袁洁浩,狄传芝. 2010. 中国地区地磁长期变化研究[J]. 地球物理学报,53(9):2114–2154. Chen B,Gu Z W,Gao J T,Yuan J H,Di C Z. 2010. Study of geomagnetic secular variation in China[J]. Chinese Journal of Geophysics,53(9):2114–2154 (in Chinese).
杜奕. 2023. 基于多源遥感数据的大气PM2.5产品缺失数据重构方法研究[D]. 上海:上海师范大学,12−23. Du Y. 2023. Research On the Reconstruction Method of Missing Data For Atmospheric PM2.5 Products Based on Multi-source Remote Sensing Data[D]. Shanghai:Shanghai Normal University,12−23 (in Chinese).
葛轶洲,许翔,杨锁荣,周青,申富饶. 2021. 序列数据的数据增强方法综述[J]. 计算机科学与探索,15(7):1207–1219. doi: 10.3778/j.issn.1673-9418.2012062 Ge Y Z,Xu X,Yang S R,Zhou Q,Shen F R. 2021. Survey on Sequence Data Augmentation[J]. Journal of Frontiers of Computer Science and Technology,15(7):1207–1219 (in Chinese).
顾左文,陈斌,高金田,辛长江,袁洁浩,狄传芝. 2009. 应用NOC方法研究中国地区地磁时空变化[J]. 地球物理学报,52(10):2602–2612. doi: 10.3969/j.issn.0001-5733.2009.10.020 Gu Z W,Chen B,Gao J T,Xin C J,Yuan J H,Di C Z. 2009. Research of geomagnetic spatial-temporal variations in China by the NOC method[J]. Chinese Journal of Geophysics,52(10):2602–2612 (in Chinese).
康国发,高国明,白春华,狄传芝. 2009. CHAMP卫星主磁场长期变化和长期加速度的分布特征[J]. 地球物理学报,52(8):1976–1984. doi: 10.3969/j.issn.0001-5733.2009.08.004 Kang G F,Gao G M,Bai C H,Di C Z. 2009. Characteristics of the secular variation and secular acceleration distributions of the main geomagnetic field for the CHAMP satellite[J]. Chinese Journal of Geophysics,52(8):1976–1984 (in Chinese).
卢兆兴,吕志峰,李婷,张金生,姚垚. 2021. 基于BP神经网络的地磁变化场预测研究[J]. 大地测量与地球动力学,41(3):229–233. Lu Z Y,Lü Z F,Li T,Zhang J S,Yao Y. 2021. Forecasting of the Variable Geomagnetic Field Based on BP Neural Network[J]. Journal of Geodesy and Geodynamics,41(3):229–233 (in Chinese).
毛宁,陈石,杨永友,吴旭,李永波. 2023. 地磁长期变化信号提取和模型预测精度评估[J]. 地球物理学报,66(8):3302–3315. doi: 10.6038/cjg2022Q0499 Mao N,Chen S,Yang Y Y,Wu X,Li Y B. 2023. Extraction of secular variation signals of geomagnetic field and evaluation of prediction accuracy of geomagnetic field models[J]. Chinese Journal of Geophysics,66(8):3302–3315 (in Chinese).
邱耀东. 2018. 联合CHAMP和Swarm卫星磁测数据反演中国大陆区域岩石圈磁场[D]. 武汉:武汉大学,1−2. Qiu Y D. 2018. Invert the Lithospheric Magnetic Field in China Mainland by Combining CHAMP And Swarm Satellite Data[D]. Wuhan:Wuhan University:1−2 (in Chinese).
汪凯翔,黄清华,吴思弘. 2020. 长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报,63(8):3015–3024. doi: 10.6038/cjg2020O0119 Wang K X,Huang Q H. Wu S H. 2020. Application of long short-term memory network in geoelectric field data processing[J]. Chinese Journal of Geophysics,63(8):3015–3024 (in Chinese).
王月华. 2002. 1985-1997年中国地磁场长期变化的正交模型[J]. 地球物理学报,45(5):624–630. doi: 10.3321/j.issn:0001-5733.2002.05.004 Wang Y H. 2002. Regional orthogonal model of secular variation of the geomagnetic field in China during 1985-1997[J]. Chinese Journal of Geophysics,45(5):624–630 (in Chinese).
王振东,王粲,袁洁浩,毛丰龙. 2019. 中国及邻近地区地磁长期变化分析[J]. 地震研究,42(1):102–111. doi: 10.3969/j.issn.1000-0666.2019.01.014 Wang Z D,Wang C,Yuan J J,Mao F L. 2019. Analysis of Geomagnetic Secular Variation in China and Its Neighboring Regions[J]. Journal of Seismological Research,42(1):102–111 (in Chinese).
熊波,李肖霖,王宇晴,张瀚铭,刘子君,丁锋,赵必强. 2022. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报,65(7):2365–2377. doi: 10.6038/cjg2022P0557 Xiong B,Li X L,Wang Y Q,Zhang H M,Liu Z J,Ding F,Zhao B Q. 2022. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics,65(7):2365–2377 (in Chinese).
徐文耀. 2009. 地球电磁现象物理学[M]. 合肥:中国科学技术大学出版社:19−29. Xu W Y. 2009. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei:Science and technology of China press:19−29 (in Chinese).
张素琴,陈传华,王建军,赵旭东,何宇飞,李琪,杨冬梅,胡秀娟. 2021. 1985-1990年地磁基准台时均值数据集[J]. 地震地磁观测与研究,42(4):173–182. Zhang S Q,Chen C H,Wang J J,Zhao X D,He Y F,Li Q,Yang D M,Hu X J. 2021. Hourly mean values datasets of geomagnetic stations from 1985-1990[J]. Seismological and Geomagnetic Observation and Research,42(4):173–182 (in Chinese).
赵旭东,何宇飞,李琪,刘晓灿. 2022. 基于中国地磁台网数据的太阳静日期间地磁场Z分量日变化幅度分析[J]. 地球物理学报,65(10):3728–3742. doi: 10.6038/cjg2022P0628 Zhao X D,He Y F,Li Q,Liu X C. 2022. Analysis of the geomagnetic component Z daily variation amplitude based on the Geomagnetic Network of China during solar quiet days[J]. Chinese Journal of Geophysics, 65 (10):3728−3742 Regional orthorgonal model of secular variation of the geomagnetic f.
Alken P,Thébault E,Beggan C D,Amit H,Aubert J,Baerenzung J,Bondar T N,Brown W J,Califf S,Chambodut A,Chulliat A,Cox G A,Finlay C C,Fournier A,Gillet N,Grayver A,Hammer M D,Holschneider M,Huder L,Hulot G,Jager T,Kloss C,Korte M,Kuang W,Kuvshinov A,Langlais B,Léger J M,Lesur V,Livermore P W,Lowes F J,Macmillan S,Magnes W,Mandea M,Marsal S,Matzka J,Metmab M C,Minami T,Morschhauser A,Mound J E,Nair M,Nakano S,Olsen N,Pavón-Carrasco F J,Petrov V G,Ropp G,Rother M,Sabaka T J,Saturnino D,Schnepf N R,Shen X,Stolle C,Tangborn A,TØffner-Clausen L,Toh H,Torta J M,Varner J,Vervelidou F,Vigneron P,Wardinski I,Wicht J,Woods A,Yang Y,Zeren Z,Zhou B. 2021. International Geomagnetic Reference Field:the thirteenth generation[J]. Earth Planets and Space,73(1):1–25. doi: 10.1186/s40623-020-01323-x
Brown W J,Mound J E,Livermore P W. 2013. Jerks abound:An analysis of geomagnetic observatory data from 1957 to 2008[J]. Physics Earth Planet Inter,223:62–76. doi: 10.1016/j.pepi.2013.06.001
Finlay C C,Maus S,Beggan C D,Bondar T N,Chambodut A,Chernova T A,Chulliat A,Golovkov V P,Hamilton B,Hamoudi M,Holme R,Hulot G,Kuang W,Langlais B,Lesur V,Lowes F J,Lühr H,Macmillan S,Mandea M,McLean S,Manoj C,Menvielle M,Michaelis I,Olsen N,Rauberg J,Rother M,Sabaka T J,Tangborn A,TØffner-Clausen L,Thébault E,Thomson A W P,Wardinski I,Wei Z,Zvereva T I. 2010. International Geomagnetic Reference Field:the eleventh generation[J]. Geophys J Inter,183(3):1216–1230. doi: 10.1111/j.1365-246X.2010.04804.x
Golovkov V P,Papitashvili N E,Tiupkin I S,Kharin E P. 1978. Separation of geomagnetic field variations on the quiet and disturbed components by the MNOC[J]. Geomagnetic and Aeronomy,18(18):511–515.
Hamed A,Langel A,Purucker M. 1994. Secular magnetic anomaly maps of earth derived from POGO and MAGSAT data[J]. Journal of Geophysical Research Solid Earth,99(B12):24075–24090.
Hochreiter S,Schmidhuber J. 1997. Long Short-Term Memory[J]. Neural Computation, 9 (8):1735–1780.
Kother L,Hammer M D,Finlay C C,Olsen N. 2015. An equivalent source method for modelling the global lithospheric magnetic field[J]. Geophysical Journal International,203(1):553–566.
Maus S,Yin F,Lühr H,Manoj C,Rother M,Rauberg J,Michaelis I,Stolle C,Müller R D. 2008. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements[J]. Geochemistry,Geophysics,Geosystems,9(7):1335–1346.
Nevanlinna H. 1987. On the drifting parts in the spatial power spectrum of geomagnetic secular variation[J]. Journal of Geomagnetism and Geoelectricity,39(6):367–376.
Olsen N,Lühr H,Finlay C C,Sabaka T J,Rauberg J,TØffner-Clausen Lr. 2014. The CHAOS-4 geomagnetic field model[J]. Geophysical Journal International,197(2):815–827.
Pushkov A N,Frynberg E B,Chernova T A,Fiskina M V. 1976. Analysis of the space-time structure of the main geomagnetic field by expansion into natural orthogonal component[J]. Geomagnetic and Aeronomy,16:337–343.
Singh D,Singh B. 2020. Investigating the impact of data normalization on classification performance[J]. Applied Soft Computing,97.
Wen Q,Sun L,Yang F,Song X M,Gao J K,Wang X,Xu H. 2021. Time Series Data Augmentation for Deep Learning:A Survey. International Joint Conferences on Artifical Intelligence Organization.
Xu J Y,Lin Y F. 2023. Dynamic mode decomposition of the geomagnetic field over the last two decades[J]. Earth Planet. Phys,7(1):32–38
Zhang G P,Qi M. 2005. Neural network forecasting for seasonal and trend time series[J]. Operations Research,160(2):501–514.