The secular variation prediction method of geomagnetic field in Chinese mainland based on long short-term memory neural network
-
摘要:
选取中国大陆及邻近地区32个地磁台站地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,通过月均值年差分得到主磁场各要素的长期变化序列,然后将深度学习方法应用到地球主磁场长期变化研究中,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)、归一化均方根误差(NRMSE)平均值为1.139′和0.040;H分量的RMSE、NRMSE平均值为11.85 nT和0.086;Z分量的RMSE、NRMSE平均值为15.10 nT和0.026,LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 nT/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 nT/a,较线性外推法提高了47%,较二次外推法提高了57%。
-
关键词:
- 地球磁场 /
- 长短时记忆(LSTM) /
- 长期变化 /
- 深度学习 /
- 中国大陆
Abstract:The geomagnetic field is the result of the superposition of different magnetic substances and their dynamic processes within the Earth, as well as the magnetic field generated by the current systems both inside and outside the Earth. Researching the geomagnetic field is not only crucial for revealing the Earth’s spatial electromagnetic environment, exploring the Earth’s internal structure, and understanding the magnetohydrodynamic dynamics of the Earth’s core, but also plays an extremely important role in monitoring earthquake and volcanic activity, exploring mineral and energy resources, as well as positioning and navigating carrier. The magnetic field of the Earth’s core, also known as the main magnetic field, is widely believed to be generated by the magnetohydrodynamic generator mechanism in the Earth’s core, accounting for over 95% of the total magnetic field. The wavelength of the main magnetic field is relatively long, and its spatial distribution is dominated by dipole fields. The temporal variation shows long-term changes on the scale of hundreds to thousands of years and polarity reversal on the scale of millions of years. The main magnetic field and its secular variation have always been important research topics in geomagnetism.
Machine learning can extract features from large amounts of data, and can also learn and iterate to discover the data patterns and features we need. As an important branch of machine learning, deep learning learns and mines data features through deep neural networks. Deep learning can handle non-linear data without relying on the spectral characteristics of temporal data, and has good performance. LSTM (long short-term memory) adds a gate mechanism to the traditional RNN (recurrent neural network) structure, which can effectively solve the problems of gradient explosion and vanishing during RNN training. Therefore, LSTM has more complex temporal information memory units and is widely used in temporal data analysis and modeling.
Thus, we apply deep neural network LSTM to the research of secular variation prediction of geomagnetic field. We select the time averaged data of the horizontal component H, magnetic declination D, and vertical component Z of the geomagnetic field from 32 geomagnetic stations in Chinese mainland and its neighboring regions; use local time conditions and geomagnetic index conditions to select and calculate the daily mean of the time averaged data; further filter the data based on the geomagnetic quiet days published by the World Geomagnetic Data Center, and perform linear fitting on the filtered data to remove outliers and calculate the monthly mean; further obtain the secular variation time-series of the main magnetic field through the annual difference of the monthly mean. Finally, the secular variation time-series of the main magnetic field is input into the LSTM model for training, and the predicted results of the model are compared and analyzed with those of general methods.
The prediction results shows that for the D element the average RMSE and NRMSE of LSTM are 1.139' and 0.040, for the H element the average RMSE and NRMSE of LSTM are 11.85 nT and 0.086, for the Z element the average RMSE and NRMSE of LSTM are 15.10 nT and 0.026, suggesting the LSTM model has the highest prediction accuracy for Z element, followed by D element, and the worst for H element. There are two main reasons why the model has poor accuracy in predicting H elements. Firstly, during the geomagnetic quiet period, the distribution of Sq current system and equatorial current directly affects the recording of H elements at ground stations, especially in low latitude areas where H elements undergo significant changes. Secondly, the training set has limited sample data and lacks comprehensive secular variation information, resulting in the model which is able to fit well on the training set but has poor prediction accuracy on the testing set. Expanding the sample size of the training set as much as possible can improve this situation.
We calculate the annual rate error for various elements of the station obtained from LSTM model, linear extrapolation, and quadratic extrapolation. For the D element, the average RMSE of the LSTM prediction results is 0.361'/a, which is 54% higher than linear extrapolation and 59% higher than quadratic extrapolation. For the H element, the average RMSE of the LSTM prediction results is 3.921 nT/a, which is 58% higher than linear extrapolation and 76% higher than quadratic extrapolation. For the Z element, the average RMSE of the LSTM prediction results is 4.339 nT/a, which is 47% higher than linear extrapolation and 57% higher than quadratic extrapolation.
-
Keywords:
- geomagnetic field /
- LSTM /
- secular variation /
- deep learning /
- Chinese mainland
-
前言
地磁场观测是获取地球物理信息的重要手段,传统的地磁场观测需要建造地磁观测室,而这具有较高的土地使用成本和施工成本。为了节约开支,近年来采用体积较小的仓体观测,为地磁场观测提供了一种新思路。例如将仓体埋入地下的地埋式地磁场观测,不同于传统的地磁观测台站,具有占地面积小、无地面建筑物、施工简单、不受农田保护限制等特点,避免了征地和地磁观测房建设的困难(张秀霞等,2022)。现行的地震行业标准 《地磁台站建设规范:地磁台站》(中国地震局,2004)提出了有关地磁观测室的技术指标,但是尚无仓体类型地磁观测装置的技术要求。
目前我国各地磁台站或地磁试验场所使用的仓体类型地磁观测装置虽无统一样式,但普遍采用埋入地下的有底无盖仓体结构,因其内部磁场梯度受到仓体形状、仓体材料和所处背景地磁场的影响,可将其抽象为铁磁性物体在背景磁场下的磁场分析问题。利用具有一定磁矩的磁性物体,以其产生的磁场去代替较大铁磁性物体产生的磁场,采用这种等效源法的思路,可以简化静磁场问题的计算(周耀忠,张国友,2004),常见的磁性模拟体有磁偶极子、磁化球体、磁化线圈等。张朝阳等(2010)以不同的磁性物体模型为基础,对比了实测数据与磁矩理论计算数据,进一步提出了磁偶极子计算方法在一般工程领域的应用思路;Guo等(2012,2015)利用磁偶极子构造法计算了管道形物体的磁场分布情况;吴攀等(2020)利用磁偶极子构造法计算了球形矿体的磁场分布情况。上述研究的思路均是将目标实体模型化,然后根据物体的形态划分成磁偶极子,其计算往往比较繁琐。另一种计算思路是采用计算量较小的等效磁荷法,例如:王树萱和贾义侠(1990)推导了等效磁荷(equivalent magnetic charge,缩写为EMC)的计算公式;Soda等(2004)计算了非椭球体的轴向均匀磁化特性,但未考虑磁化方向非轴向的情况;Huang等(2013)利用等效磁荷法计算了不同磁化方向下的非轴向磁化圆筒体表面的磁荷密度分布和筒内的磁场分布,但尚未考虑筒体含底(即一端闭合)的形态,也未进行筒内磁场梯度的有关计算。
本文拟将等效磁荷法应用于地磁观测仓体的磁场分析,计算非轴向磁化圆柱形有底仓体表面的磁电荷密度分布和仓内的磁场分布,并进一步计算仓内的磁场梯度分布。本文采用的离散计算方法不依赖于测量点的分布,计算矩阵的方程较少。为验证计算结果的可靠性,还与有限元仿真计算的磁场分布及实际测量所得的磁场分布进行对比。
1. 磁场计算理论
对于一个相对磁导率为μ的均匀物体,感应磁场${\boldsymbol{B}} $与单位体积磁偶极矩${\boldsymbol{M}} $和磁场${\boldsymbol{H}} $的关系可表示为
$$ \boldsymbol{B}={\mu }_{0} ( \boldsymbol{H} + \boldsymbol{M} ) ={\mu }_{0}\mu \boldsymbol{H}, $$ (1) 式中:μ0为真空磁导率磁场,H可视为外加磁场H0和退磁场Hd的矢量和,即
$$ \boldsymbol{H}={\boldsymbol{H}}_{{0}} + {\boldsymbol{H}}_{{{\mathrm{d}}}} .$$ (2) 退磁场${\boldsymbol{H}}_{{{\mathrm{d}}}} $可表示为磁标势W的梯度。在均匀磁化的物体中,磁标势可以视为面磁荷密度在物体表面上的积分,即
$$ {\boldsymbol{H}}_{{{\mathrm{d}}}}=-\nabla {W}=-\frac{1}{4\pi {\mu }_{0}}{\overset{}{\int_{S} }}\nabla \frac{\sigma }{\left|\boldsymbol{r}-{\boldsymbol{r}}{'}\right|}{\mathrm{d}}S , $$ (3) 式中:r表示空间中某点的位置矢量,r′表示物体表面某点的位置矢量,σ为面磁荷密度。
当把空间中某点(位置矢量为${\boldsymbol{r}} $)放置在物体表面时(此时记为${\boldsymbol{r_{{\mathrm{s}}}}} $),计算${\boldsymbol{H}}_{{{\mathrm{d}}}} $可以采用如下思路:其积分方程中的S共有两部分,其一是包含点${\boldsymbol{r_{{\mathrm{s}}}}} $的一块小的面积S0,其二是除去点${\boldsymbol{r_{{\mathrm{s}}}}} $以外的面积S1,此时${\boldsymbol{H_{{\mathrm{d}}}}} $可表示为
$$ {\boldsymbol{H}}_{{{\mathrm{d}}}}={\boldsymbol{H}}_{{{\mathrm{d}}}{0}} + {\boldsymbol{H}}_{{{\mathrm{d}}}{1}}, $$ (4) 其中
$$ \begin{split} \\[-8pt] {\boldsymbol{H}}_{{{\mathrm{d}}}{0}}=-\frac{1}{4\pi {\mu }_{0}}{\overset{}{\int_{{S}_{ 0}} }}\nabla \frac{{\sigma }_{0}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S, \end{split}$$ (5) $$ \begin{split} \\[-8pt] {\boldsymbol{H}}_{{{\mathrm{d}}}{1}}=-\frac{1}{4\pi {\mu }_{0}}{\overset{}{\int_{{S }_{1}} }}\nabla \frac{{\sigma }_{1}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S, \end{split}$$ (6) 式中σ0和σ1分别为面积S0和S1上的面磁荷密度。
结合式(2)和式(4),可得到物体与空气的边界上的一个方程组(以a代表空气,以b代表物体),
$$ {\boldsymbol{H}}^{\mathrm{a}}={\boldsymbol{H}}_{\mathrm{0}}^{\mathrm{a}} + {\boldsymbol{H}}_{\mathrm{d}\mathrm{0}}^{\mathrm{a}} + {\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{a}} \text{,} $$ (7) $$ {\boldsymbol{H}}^{\mathrm{b}}={\boldsymbol{H}}_{{0}}^{\mathrm{b}} + {\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{b}} + {\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{b}}. $$ (8) 对于物体和空气而言,外加磁场${\boldsymbol{H}}_{{0}}^{{{\mathrm{a}}}} $与${\boldsymbol{H}}_{{0}}^{\mathrm{b}} $相等,物体表面其余部分S1在该处产生的磁场${\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{a}} $和${\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{b}} $也是相等的,而点${\boldsymbol{r}}_{{\mathrm{s}}} $所在的S0产生磁场${\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{a}} $的方向与${\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{b}} $相反,原因是物体内的退磁场方向与外加磁场的方向相反(图1),即
$$ {\boldsymbol{H}}_{{0}}^{\mathrm{a}}={\boldsymbol{H}}_{{0}}^{\mathrm{b}} \text{,} {\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{a}}={\boldsymbol{H}}_{\mathrm{d}{1}}^{\mathrm{b}} \text{,} {\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{a}}=-{\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{b}} . $$ (9) 考虑到磁场在不同材料边界处的关系,有
$$ ( {\boldsymbol{H}}^{\mathrm{a}}-{\boldsymbol{H}}^{\mathrm{b}} ) \bullet \boldsymbol{n}=\frac{{\sigma }_{0}}{{\mu }_{0}}, $$ (10) 式中n为r'处指向外的单位法向量。结合式(7)—(10),有
$$ {\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{a}}=-{\boldsymbol{H}}_{\mathrm{d}{0}}^{\mathrm{b}}=\frac{{\sigma }_{0}}{2{\mu }_{0}}\bullet \boldsymbol{n} . $$ (11) 将式(8)两端同时点乘${\boldsymbol{n}} $,将式(1)、(6)、(10)带入式(8),可得
$$ {\sigma }_{0}\left(\frac{1}{\mu -1} + \frac{1}{2}\right) + \frac{1}{4\pi }{\overset{}{\int_{{S}_{1}} }}\nabla \frac{{\sigma }_{1}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet \boldsymbol{n}={\boldsymbol{\mu }}_{0}{\boldsymbol{H}}_{0}\bullet \boldsymbol{n} ,$$ (12) 假设将物体表面分为N个单元,每个单元对应的面磁荷密度为σ1,σ2,···,σN,则对于每个单元而言,都可以建立式(12)形式的方程,这样便可构成以下方程组:
$$ \left\{\begin{split}& {\sigma }_{1}\left(\dfrac{1}{\mu -1} + \dfrac{1}{2}\right) + \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{2}} }}\nabla \dfrac{{\sigma }_{2}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{1}+\cdots + \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{N}} }}\nabla \dfrac{{\sigma }_{N}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{1}={{\mu }}_{0}{\boldsymbol{H}}_{0}\bullet {\boldsymbol{n}}_{1},\\ & \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{1}} }}\nabla \dfrac{{\sigma }_{1}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{2} + {\sigma }_{2}\left(\dfrac{1}{\mu -1} + \dfrac{1}{2}\right)+\cdots + \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{N}} }}\nabla \dfrac{{\sigma }_{N}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{2}={{\mu }}_{0}{\boldsymbol{H}}_{0}\bullet {\boldsymbol{n}}_{2},\\[-3pt] & \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \vdots \\[-3pt] & \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{1}} }}\nabla \dfrac{{\sigma }_{1}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{N} + \dfrac{1}{4\pi }{\overset{}{\int_{{S }_{2}} }}\nabla \dfrac{{\sigma }_{2}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S\bullet {\boldsymbol{n}}_{N}+\cdots + {\sigma }_{N}\left(\dfrac{1}{\mu -1} + \dfrac{1}{2}\right)={{\mu }}_{0}{\boldsymbol{H}}_{0}\bullet {\boldsymbol{n}}_{\boldsymbol{N}}.\end{split}\right. $$ (13) 通过解式(13)可以得到物体表面N个单元对应的面磁荷密度σ1,σ2,···,σN,再根据式(2)得到空间中某点的磁场${\boldsymbol{H}} $,即
$$ {\boldsymbol{H}}={{\boldsymbol{H}}}_{{{0}}}-\sum _{k=1}^{N}\frac{1}{4\pi {\mu }_{0}}{\overset{}{\int_{{S }_{k}} }}\nabla \frac{{\sigma }_{k}}{\left|\boldsymbol{r}-{\boldsymbol{r}}'\right|}{\mathrm{d}}S. $$ (14) 2. 计算模型和验证
建立一种圆筒形的仓体模型,其内径和外径分别为R1和R2,其内高和外高分别为L1和L2,对于无底的仓体,有L1=L2,具体如图2所示。将该仓体模型置于直角坐标系中,x轴指向地理南,y轴指向地理东,z轴垂直地表向上。外加磁场${\boldsymbol{H}}_{{0}} $即为地球磁场,其在一个小范围内可视为均匀稳定,由总磁场强度F、磁偏角D和水平分量H来表示。
实际工作中,仓体的材料一般为混凝土或岩石,这是出于对地磁观测仓体稳定性、密闭性和保温性的考虑。常见的硅酸盐类水泥的磁化率为200×10−6 (夏志成等,2004),而一般沉积岩的磁化率最大可至1 000×10−6 (郭友钊等,2001;单红丹,卢升高,2005),由此可见所用材料在很大程度上影响了地磁观测仓体的内部磁场分布。
利用等效磁荷法计算仓体内部的磁场分布,设置观测仓体的内径R1=1 m,外径R2=2 m,内高L1=4 m,外高L2=4.5 m。仓体采用混凝土材质,磁化率χ均设定为200×10−6。利用国际地磁参考场(International Geomagnetic Reference Field,缩写为IGRF)查询江苏高邮实验场地所对应的背景磁场${\boldsymbol{H}}_{{0}} $,总磁场强度F=
50136 nT,磁偏角D=−6.17°,水平分量H=32 480 nT。以图2中的东西向剖面和南北向剖面绘制磁场强度的模等值线图如图3所示,可以看出:观测仓内部的磁场强度在东西向上近似轴对称分布,这是由于地球背景磁场的磁偏角很小;在南北方向上,磁场强度近似中心对称分布;仓体内部靠近底部的大部分区域的磁场强度增大,相比于背景磁场的最大增幅约为1.2 nT;仓体内部靠近顶部大部分区域的磁场强度减小,相比于背景磁场的最大减幅约为1.5 nT。
图4所示为计算所得两个剖面的水平磁场梯度和垂直磁场梯度,可见梯度较大的位置集中于仓体顶部边缘和仓体底部边缘。以地震行业标准 《地磁台站建设规范:地磁台站》 (中国地震局,2004)中提出的以1.5 nT/m作为磁场梯度的界限,本研究无需对仓体的垂直内壁设置避让距离,对仓体底部、顶部则需分别设置避让距离0.4 m和0.9 m。
图 4 仓体内部剖面的磁场梯度分布(a) 南北向剖面的水平梯度;(b) 南北向剖面的垂直梯度;(c) 东西向剖面的水平梯度;(d) 东西向剖面的垂直梯度Figure 4. Distribution of magnetic field gradient along the internal profiles of the bin(a) Horizontal gradient along the N-S profile;(b) Vertical gradient along the N-S profile; (c) Horizontal gradien along the E-W profile;(d) Vertical gradient along the E-W profile为验证计算结果的可靠性,利用计算机仿真和实测结果与其进行对比。计算机仿真设置的条件与等效磁荷法的计算条件相同。实测仓体位于江苏高邮,仓体尺寸、背景磁场与等效磁荷法的计算条件相同,实测采用加拿大GSM-19T Overhauser磁力仪。共设置三条测线(图5中箭头所指为测线方向):仓体内部的垂直测线、距离仓体底部1 m处的南北向测线、距离仓体顶部1 m处的东西向测线,测量点位间隔均为0.1 m。
图 5 利用三种方法得到的仓体内部沿三条测线的磁场分布对比(a) 仓体内部的垂直测线;(b) 距离仓体底部1 m处的南北向测线;(c) 距离仓体顶部1 m处的东西向测线Figure 5. Comparison of magnetic field distribution along three measuring lines in the bin by the three methods(a) Vertical line inside the bin;(b) N-S line 1 m from the bottom of the bin;(c) E-W line 1 m from the top of the bin图5所示为利用三种方法得到的仓体内部测线上的磁场分布对比结果。可以看出,在每一条测线上三种结果较为相近,以等效磁荷法计算得到的磁场与实测结果之差<0.1 nT,相对差值<0.000 1%。根据等效磁荷法的计算结果,在垂线上靠近仓体底部的区域,磁场强度的最大增幅约为0.7 nT;在垂线上靠近仓体顶部的区域,磁场强度的最大减幅约为0.2 nT。计算机仿真结果相比于等效磁荷法,曲线并不平滑,这是由于计算机仿真得到的数据很大程度上取决于网格划分方案和划分密度,更高的计算精度需要高性能计算机的支持。
3. 仓体设计参数对磁场的影响
地磁观测仓体应尽量保证其内部磁场梯度小,因此本文着重讨论仓体底部厚度、仓体高度与直径之比以及仓体材料磁化率对内部磁场梯度的影响。
在地磁观测仓体外高L2=4.5 m、内径R1=4 m、外径R2=5 m的情况下,计算不同底部厚度的仓体内部的磁场梯度,此处以磁场梯度≤1.5 nT/m为界限。考虑到仓体内部符合梯度要求的有效空间为不规则形状,故分别用有效空间水平方向最小内径与仓体内径之比、有效空间垂直方向最小高度与仓体内高之比作为计算内容,具体列于表1。可见:随着仓体底部厚度的减小,仓体内部在水平方向上具有更多的有效空间;当仓体为无底结构(内高/底厚→∞)时,仓体内部在水平方向上具有最大的有效空间,但无底结构不能增加仓体内部在垂直方向上的有效空间。
表 1 不同仓体底厚对应的仓体内部磁场梯度分布特征Table 1. The distribution characteristics of the magnetic field gradient inside the bin with different bottom thickness of the bin仓体底部
厚度/m仓体内高与
底厚之比水平方向最小内径
与仓体内径之比垂直方向最小高度
与仓体内高之比2.25 1.00 0.82 0.78 1.13 3.00 0.83 0.86 0.75 5.00 0.84 0.75 0.56 7.00 0.84 0.75 0.45 9.00 0.84 0.75 0 ∞ 0.87 0.83 为讨论仓体高度和直径对磁场梯度的影响,分别计算不同内高和内径所对应的仓体内部的有效空间(以磁场梯度≤1.5 nT/m为界限),结果如表2所示。可见:在仓体的外高和内高不变的情况下,随着内径的增大,仓体内部在垂直方向上具有更多的有效空间,在水平方向无明显规律;在仓体的内径和外径不变的情况下,随着内高的增大,仓体内部在水平方向上具有更多的有效空间,在垂直方向无明显规律。
表 2 仓体高度和直径对应的仓体内部磁场梯度的分布特征Table 2. The distribution characteristics of the magnetic field gradient inside the bin with different height and diameter of the bin内高
/m不同内径情况下水平方向最小内径与仓体内径之比 不同内径情况下垂直方向最小高度与仓体内高之比 1 m 2 m 3 m 4 m 5 m 1 m 2 m 3 m 4 m 5 m 1 0.70 0.70 0.80 0.85 0.88 0.80 0.90 0.90 0.90 0.90 2 0.95 0.80 0.80 0.85 0.88 0.60 0.80 0.95 0.95 0.95 3 0.95 0.90 0.87 0.85 0.88 0.73 0.73 0.90 0.97 0.97 4 0.96 0.97 0.97 0.90 0.88 0.80 0.80 0.85 0.93 0.98 5 0.98 0.98 0.98 0.92 0.89 0.84 0.84 0.91 0.97 0.99 上述计算结果一定程度上与图3和图4所显示的情况一致,即仓体内部的较高磁场梯度集中在仓体的顶、底边缘处,且随着仓体尺寸的增加,仓体内部有效空间的占比在增大。
在仓体尺寸不变的情况下对比不同磁化率对仓体内部磁场梯度的影响,结果列于表3,可以看出,随着磁化率的增加,仓体内部的有效空间无明显变化。
表 3 不同仓体材料磁化率对应的仓体内部磁场梯度的分布特征Table 3. The distribution characteristics of the magnetic field gradient inside the bin with magnetic susceptibility of different bin materials磁化率χ
/10−6水平方向最小内径与
仓体内径之比垂直方向最小高度与
仓体内高之比100 0.82 0.78 200 0.82 0.78 400 0.84 0.78 600 0.84 0.77 800 0.86 0.77 4. 讨论与结论
等效磁荷法是通过建立并求解物体表面的磁荷密度方程来计算磁场分布的方法。本文利用该方法计算了非轴向磁化圆柱形有底仓体表面的磁荷密度分布和仓内的磁场分布,主要结论如下:
1) 通过等效磁荷法计算所得到的磁场分布与计算机仿真结果和实测结果之间的相对差值<0.001%。本文对磁场的计算一般精确到10−1级别,若想提高计算的精度,需要对物体表面进行更细致的划分,但这会增加计算的复杂程度;另一方面,等效磁荷法应用在形状相对简单且对称的物体时具有较高的计算效率。
2) 对一个圆筒形仓体而言,较高磁场梯度集中在仓体顶、底边缘处,无底结构不能有效地增加仓体内部的低磁场梯度空间,即实际工作中,因稳定性或工程需求,可以设计为有底结构。同时,在磁化率≤800×10−6的情况下,降低磁化率也不能有效地增加仓体内部的低磁场梯度空间。
3) 设计仓体结构时,仓体高度与直径之比并非影响仓体内部磁场梯度的关键因素,因此可适当增加高度和直径来确保仓体内部的低磁场梯度空间达到观测需求。当仓体内高≥4 m、仓体内径≥0.5 m时,仓体内部水平方向和垂直方向的有效空间占比平均在85%以上。
本文在讨论材料的影响时,认为整个仓体是均匀的,但是从工程实践的角度看,很难在选材阶段就确定材料的磁化率,故应当提前制作形状简单的材料样品,利用等效磁荷法计算其磁场分布,将计算数据与实测数据进行对比,进一步估算材料的磁化率范围,便于开展后续的工程。
-
图 6 LSTM模型在D (左) ,H (中),Z (右)要素的模型值与相应的台站观测值对比
图中蓝实线是台站的观测值,绿实线是基于地磁台站观测值提取的长期变化,红实线是LSTM模型在训练集上的拟合值,红虚线是LSTM模型在测试集上的预测值(a) MZL台;(b) COM台;(c) QIX台;(d) QGZ台;(e) WMQ台;(f) KSH台;(g) KAK台
Figure 6. Comparison of LSTM model values for elements D (left),H (middle) and Z (right) with corresponding station observations
The blue solid line represents the station observation,the green solid line represents the secular variation extracted from the observations of the geomagnetic station,the red solid line represents the fitted value of the LSTM model on the training set,and the red dashed line represents the predicted value of the LSTM model on the validation set (a) MZL station;(b) COM station;(c) QIX station;(d) QGZ station;(e) WMQ station;(f) KSH station;(g) KAK station
图 7 由LSTM、线性外推、二次外推法得到的D (左),H (中)和Z(右)要素年变率
图中蓝线表示由原始数据计算的年变率,红线表示由LSTM模型计算的年变率,绿线表示由线性外推计算的年变率,黄线表示由二次外推计算的年变率(a) MZL台;(b) COM台;(c) QIX台;(d) QGZ台;(e) WMQ台;(f) KSH台;(g) KAK台
Figure 7. Annual variation rates of the elements D (left),H (middle) and Z (right) obtained from LSTM,Liner extrapolation and Quadratic extrapolation
The blue line represents the annual variation rates calculated from the original data,the red line represents the annual variation rates calculated from the LSTM model,the green line represents the annual variation rates calculated from the linear extrapolation,and the yellow line represents the annual variation rates calculated from the Quadratic extrapolation (a) MZL station;(b) COM station;(c) QIX station;(d) QGZ station;(e) WMQ station;(f) KSH station;(g) KAK station
表 1 LSTM模型在各台站的预测精度
Table 1 Prediction accuracy of LSTM model at each stations
D/´ H/nT Z/nT MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 CDP 0.615 0.837 0.037 0.991 15.265 17.04 0.039 0.927 9.66 10.28 0.012 0.999 CHL 0.983 1.072 0.030 0.994 11.45 13.14 0.074 0.959 5.82 6.51 0.038 0.998 CNH 1.254 1.362 0.037 0.988 15.58 16.83 0.072 0.873 7.91 9.10 0.026 0.992 COM 0.578 0.649 0.009 0.998 0.96 1.94 0.016 0.994 13.523 13.80 0.008 0.995 DED 0.386 0.452 0.014 0.999 6.34 7.17 0.024 0.989 3.90 4.85 0.052 0.996 DLG 0.516 0.551 0.018 0.998 10.587 11.41 0.073 0.959 11.293 12.56 0.024 0.993 GLM 1.438 1.683 0.121 0.929 8.31 10.05 0.040 0.985 12.933 14.27 0.014 0.998 GZH 2.640 2.776 0.022 0.930 10.03 10.81 0.084 0.569 8.51 10.92 0.022 0.998 JIH 0.823 0.901 0.026 0.996 11.086 12.83 0.043 0.968 4.56 7.03 0.019 0.998 JYG 0.670 0.772 0.036 0.993 10.112 11.17 0.042 0.989 6.91 8.49 0.014 0.999 KSH 0.229 0.277 0.023 0.998 3.01 4.01 0.024 0.995 9.53 11.27 0.013 0.998 LSA 0.857 0.920 0.158 0.897 4.27 5.56 0.022 0.886 39.15 43.80 0.019 0.979 LYH 0.591 0.681 0.032 0.998 11.912 13.32 0.065 0.966 12.787 13.26 0.029 0.996 LZH 1.347 1.513 0.057 0.975 7.88 9.33 0.047 0.985 14.20 21.60 0.025 0.991 MCH 1.004 1.248 0.030 0.991 12.940 13.89 0.041 0.906 16.467 17.87 0.033 0.993 MZL 0.430 0.504 0.028 0.995 9.12 9.82 0.052 0.987 7.39 8.12 0.023 0.991 QGZ 0.669 0.701 0.019 0.995 6.89 7.17 0.028 0.836 7.75 8.55 0.008 0.999 QIX 0.282 0.307 0.006 0.999 2.94 3.27 0.012 0.998 9.12 10.51 0.016 0.998 QZH 0.793 1.211 0.037 0.992 12.682 15.64 0.130 0.030 17.004 19.28 0.028 0.992 SYG 1.058 1.270 0.024 0.983 14.713 17.09 0.108 0.362 15.319 16.90 0.033 0.996 TAA 0.919 1.189 0.024 0.992 16.291 19.53 0.069 0.892 14.583 16.23 0.039 0.992 TAY 1.552 1.729 0.040 0.981 12.059 14.67 0.066 0.965 4.53 5.69 0.024 0.999 THJ 0.572 0.635 0.038 0.990 8.05 9.03 0.070 0.902 19.547 21.42 0.020 0.995 TSY 1.078 1.216 0.030 0.988 10.249 12.19 0.034 0.965 4.79 6.01 0.014 0.999 WHN 1.337 1.437 0.045 0.985 13.02 15.39 0.057 0.801 13.64 14.02 0.021 0.996 WMQ 0.899 0.982 0.086 0.926 10.67 12.09 0.018 0.987 28.81 30.12 0.015 0.985 XIC 0.577 0.674 0.048 0.990 4.11 5.11 0.023 0.988 9.72 16.31 0.020 0.997 YON 0.892 1.256 0.047 0.980 6.01 6.66 0.911 0.880 16.822 20.06 0.015 0.995 IRT 2.674 3.062 0.076 0.979 24.03 27.84 0.038 0.977 17.46 19.39 0.059 0.974 KAK 0.795 1.090 0.043 0.994 13.38 15.66 0.191 0.906 11.17 12.07 0.013 0.994 KNY 2.590 2.713 0.014 0.981 11.39 12.47 0.113 0.864 19.31 20.18 0.015 0.989 GUA 0.588 0.784 0.025 0.997 14.88 17.15 0.123 0.962 27.01 32.68 0.118 0.885 注:RMSE为均方根误差,MAE为平均绝对误差,NRMSE为归一化均方根误差,R2为决定系数,下同。 表 2 LSTM模型预测精度汇总
Table 2 Summary for prediction accuracy of LSTM model
D/(´) H/(nT) Z/(nT) MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 MAE RMSE NRMSE R2 Min 0.229 0.277 0.006 0.897 0.96 1.94 0.012 0.030 3.90 4.85 0.008 0.885 Max 2.674 3.062 0.158 0.999 24.03 27.84 0.911 0.998 39.15 43.80 0.118 0.999 Mean 0.989 1.139 0.040 0.982 10.32 11.85 0.086 0.883 13.16 15.10 0.026 0.991 表 3 LSTM模型、线性外推、二次外推预测的D,H,Z要素年变率精度
Table 3 The accuracy of annual rate for D,H,and Z elements predicted by LSTM model,liner extrapolation and quadratic extrapolation
台站 D年变/(′⋅a−1) H年变/(nT⋅a−1) Z年变/(nT⋅a−1) 方法 MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ CDP LSTM 0.222 0.288 0.195 0.942 4.545 5.545 0.424 0.785 2.674 3.368 0.140 0.981 线性外推 0.398 0.512 0.327 0.817 6.598 9.445 0.632 0.375 5.109 6.306 0.242 0.933 二次外推 0.354 0.475 0.354 0.843 14.88 18.814 0.885 −1.481 4.662 5.924 0.231 0.941 CHL LSTM 0.352 0.453 0.300 0.909 3.830 4.680 0.369 0.812 3.082 3.854 0.170 0.972 线性外推 0.660 0.895 0.506 0.645 5.492 6.839 0.508 0.600 4.543 5.908 0.232 0.934 二次外推 0.567 0.694 0.407 0.786 13.87 16.380 0.907 −1.297 8.046 10.042 0.402 0.809 CNH LSTM 0.337 0.502 0.318 0.884 3.576 4.534 0.358 0.859 3.128 4.152 0.206 0.957 线性外推 0.484 0.571 0.351 0.850 6.844 8.162 0.567 0.543 5.367 7.277 0.321 0.869 二次外推 0.672 1.156 0.619 0.384 12.81 15.556 0.821 −0.661 8.741 11.486 0.501 0.674 COM LSTM 0.151 0.197 0.124 0.984 0.894 1.837 0.181 0.959 1.615 2.782 0.102 0.988 线性外推 0.533 0.724 0.427 0.784 6.185 8.400 0.747 0.137 5.580 8.318 0.289 0.895 二次外推 0.516 0.638 0.388 0.832 11.92 14.526 0.936 −1.580 8.189 10.196 0.381 0.842 DED LSTM 0.219 0.305 0.210 0.954 2.066 2.549 0.172 0.966 2.749 3.516 0.217 0.954 线性外推 0.496 0.673 0.453 0.776 7.208 9.438 0.571 0.532 6.354 7.890 0.433 0.767 二次外推 0.890 1.148 0.685 0.349 12.10 14.817 0.761 −0.152 7.203 9.696 0.532 0.648 DLG LSTM 0.271 0.360 0.263 0.927 3.359 4.222 0.406 0.822 2.519 2.977 0.120 0.984 线性外推 0.496 0.676 0.448 0.743 5.587 6.965 0.555 0.516 5.463 7.079 0.272 0.909 二次外推 0.557 0.708 0.485 0.718 11.94 14.201 0.933 −1.011 6.792 8.964 0.356 0.853 GLM LSTM 0.501 0.656 0.422 0.807 3.091 3.631 0.318 0.837 3.110 3.993 0.176 0.969 线性外推 0.937 1.251 0.656 0.298 6.170 7.929 0.706 0.225 7.064 9.033 0.371 0.840 二次外推 0.944 1.201 0.679 0.353 14.41 17.390 1.028 −2.730 9.053 11.905 0.464 0.721 GZH LSTM 0.157 0.214 0.095 0.989 3.384 4.040 0.418 0.788 4.419 5.723 0.225 0.948 线性外推 0.266 0.416 0.187 0.958 5.803 7.141 0.626 0.337 8.291 12.332 0.447 0.760 二次外推 0.564 0.791 0.351 0.848 10.41 12.718 0.900 −1.102 10.125 14.212 0.501 0.681 JIH LSTM 0.216 0.303 0.224 0.947 2.725 3.395 0.305 0.900 2.274 3.333 0.141 0.981 线性外推 0.333 0.453 0.297 0.882 4.721 6.028 0.467 0.686 3.808 5.087 0.190 0.955 二次外推 0.544 0.671 0.471 0.741 12.91 15.893 0.879 −1.183 5.848 6.873 0.273 0.917 JYG LSTM 0.165 0.241 0.134 0.972 2.925 3.674 0.345 0.866 3.915 5.155 0.204 0.959 线性外推 0.768 0.984 0.533 0.537 7.782 10.522 0.767 −0.100 9.179 12.754 0.456 0.748 二次外推 0.618 0.780 0.442 0.709 11.04 13.002 0.731 −0.679 10.725 12.683 0.460 0.751 KSH LSTM 0.141 0.167 0.168 0.973 2.200 2.831 0.287 0.884 3.743 4.412 0.193 0.958 线性外推 0.972 1.657 1.110 −1.65 10.56 15.045 1.184 −2.276 8.898 11.765 0.486 0.701 二次外推 1.144 1.556 0.869 −1.34 13.10 15.314 0.878 −2.394 6.125 7.716 0.323 0.871 LSA LSTM 0.255 0.350 0.315 0.876 2.390 3.942 0.322 0.897 5.106 6.289 0.189 0.959 线性外推 0.578 0.768 0.598 0.405 8.991 11.874 0.759 0.063 8.145 10.640 0.319 0.883 二次外推 0.482 0.624 0.527 0.607 16.05 23.492 0.935 −2.667 6.962 8.610 0.264 0.923 LYH LSTM 0.490 0.659 0.490 0.718 3.755 4.766 0.406 0.811 2.603 3.202 0.132 0.983 线性外推 0.683 0.936 0.619 0.430 5.225 6.410 0.470 0.657 4.994 6.933 0.259 0.921 二次外推 1.019 1.635 0.841 −0.74 17.16 21.387 1.041 −2.816 5.337 6.504 0.248 0.930 LZH LSTM 0.411 0.536 0.336 0.837 3.988 4.797 0.420 0.774 2.785 4.536 0.176 0.951 线性外推 0.815 1.198 0.698 0.186 8.578 12.882 0.945 −0.627 5.358 7.398 0.328 0.871 二次外推 0.862 1.165 0.700 0.230 15.27 22.319 0.871 −3.883 10.247 13.422 0.562 0.575 MCH LSTM 0.261 0.340 0.246 0.920 2.495 3.633 0.291 0.892 4.396 5.115 0.199 0.962 线性外推 0.734 1.075 0.737 0.200 7.035 9.009 0.623 0.336 7.389 9.072 0.323 0.879 二次外推 0.692 0.853 0.579 0.496 18.39 21.430 0.989 −2.755 9.028 11.092 0.398 0.819 MZL LSTM 0.194 0.253 0.161 0.973 3.025 4.173 0.284 0.921 1.915 2.219 0.119 0.982 线性外推 0.563 0.710 0.398 0.791 5.268 6.800 0.400 0.791 5.328 6.679 0.365 0.832 二次外推 0.624 0.786 0.435 0.744 12.41 16.565 0.797 −0.242 6.961 8.457 0.449 0.731 QGZ LSTM 0.114 0.165 0.126 0.969 2.116 2.858 0.316 0.896 2.863 4.121 0.159 0.974 线性外推 0.582 0.766 0.656 0.326 8.834 11.160 0.949 −0.586 6.213 7.912 0.284 0.905 二次外推 0.734 0.893 0.603 0.085 14.86 18.402 1.081 −3.311 8.916 11.902 0.428 0.785 QIX LSTM 0.077 0.145 0.110 0.985 0.816 0.975 0.071 0.991 2.753 3.986 0.161 0.975 线性外推 0.459 0.563 0.368 0.779 7.115 8.569 0.673 0.306 4.923 6.140 0.229 0.940 二次外推 0.513 0.735 0.484 0.623 13.97 17.477 0.980 −1.885 8.186 10.228 0.380 0.833 QZH LSTM 0.228 0.368 0.214 0.916 3.793 5.074 0.506 0.734 4.675 5.604 0.222 0.950 线性外推 0.657 0.910 0.608 0.485 7.955 9.824 0.764 0.002 4.997 6.433 0.233 0.935 二次外推 0.620 0.792 0.503 0.610 15.60 19.366 1.025 −2.877 6.195 8.256 0.309 0.892 SYG LSTM 0.246 0.351 0.324 0.885 3.743 5.301 0.374 0.801 4.216 5.357 0.189 0.964 线性外推 0.438 0.602 0.449 0.660 11.89 17.502 1.079 −1.164 5.255 6.877 0.223 0.941 二次外推 0.624 0.772 0.576 0.442 16.81 19.542 1.052 −1.697 6.784 9.348 0.312 0.891 TAA LSTM 0.276 0.357 0.279 0.913 4.464 5.181 0.494 0.766 4.029 4.650 0.192 0.963 线性外推 0.487 0.703 0.489 0.663 7.638 9.009 0.671 0.293 6.313 8.079 0.306 0.889 二次外推 0.467 0.591 0.435 0.762 12.19 14.390 0.814 −0.803 6.354 9.361 0.360 0.851 TAY LSTM 0.575 0.774 0.494 0.646 4.511 5.512 0.436 0.775 3.337 4.486 0.198 0.962 线性外推 0.954 1.328 0.740 −0.04 9.085 11.003 0.750 0.103 6.555 8.597 0.345 0.860 二次外推 1.517 1.980 0.945 −1.31 18.75 28.224 1.098 −4.902 6.905 8.272 0.336 0.871 THJ LSTM 0.174 0.207 0.164 0.958 3.185 4.323 0.419 0.830 3.677 4.883 0.214 0.954 线性外推 0.342 0.449 0.341 0.805 6.149 7.727 0.577 0.457 4.817 6.475 0.262 0.920 二次外推 0.307 0.368 0.329 0.868 12.07 14.113 0.824 −0.811 5.103 6.332 0.263 0.923 TSY LSTM 0.283 0.353 0.254 0.923 5.178 6.948 0.691 0.498 3.513 4.464 0.188 0.965 线性外推 0.634 0.815 0.519 0.591 10.36 14.890 1.057 −1.308 5.861 8.257 0.325 0.880 二次外推 0.544 0.740 0.500 0.662 13.63 16.474 1.058 −1.825 6.355 7.402 0.297 0.904 WHN LSTM 0.192 0.326 0.199 0.929 3.269 4.208 0.393 0.801 4.148 5.250 0.215 0.947 线性外涂 0.556 0.767 0.540 0.605 5.735 7.552 0.607 0.360 8.213 14.070 0.532 0.621 二次外推 0.641 0.827 0.528 0.541 9.705 12.099 0.842 −0.642 9.227 13.362 0.481 0.658 WMQ LSTM 0.347 0.466 0.390 0.817 1.504 2.034 0.154 0.974 3.802 4.501 0.169 0.970 线性外推 0.659 1.002 0.711 0.153 6.708 8.291 0.577 0.576 7.164 8.661 0.303 0.890 二次外推 0.738 1.091 0.790 −0.004 8.861 11.928 0.664 0.123 9.198 12.274 0.418 0.779 XIC LSTM 0.268 0.316 0.248 0.909 1.979 2.509 0.172 0.969 4.144 5.646 0.190 0.958 线性外推 0.572 0.799 0.591 0.420 8.932 12.246 0.647 0.272 8.479 11.392 0.369 0.830 二次外推 0.663 0.885 0.560 0.290 19.14 24.864 0.887 −2.003 12.220 16.116 0.470 0.660 YON LSTM 0.245 0.331 0.322 0.851 1.917 2.467 0.180 0.952 2.767 3.911 0.158 0.975 线性外推 0.420 0.527 0.489 0.622 6.527 8.712 0.603 0.407 4.585 6.065 0.222 0.940 二次外推 0.502 0.745 0.636 0.246 11.47 13.378 0.775 −0.398 6.459 7.450 0.286 0.909 IRT LSTM 0.532 0.796 0.260 0.914 3.619 4.408 0.214 0.950 3.774 5.111 0.218 0.949 线性外推 0.750 1.001 0.341 0.865 5.788 7.471 0.351 0.856 7.499 10.957 0.449 0.764 二次外推 0.971 1.209 0.408 0.803 8.129 11.606 0.526 0.652 11.499 15.821 0.595 0.508 KAK LSTM 0.178 0.254 0.216 0.944 2.500 3.221 0.314 0.888 0.345 2.891 0.117 0.984 线性外推 0.266 0.335 0.293 0.902 4.618 6.035 0.541 0.608 4.186 0.889 0.198 0.955 二次外推 0.342 0.471 0.419 0.806 8.103 11.395 0.864 −0.399 5.543 7.227 0.301 0.902 KNY LSTM 0.178 0.264 0.208 0.957 2.842 3.604 0.347 0.873 2.350 2.893 0.116 0.986 线性外推 0.233 0.291 0.215 0.948 4.799 6.127 0.514 0.634 3.687 4.623 0.178 0.963 二次外推 0.340 0.465 0.333 0.867 8.297 11.233 0.763 −0.232 5.078 6.300 0.251 0.932 GUA LSTM 0.155 0.195 0.142 0.979 3.154 4.112 0.319 0.889 3.871 5.472 0.172 0.970 线性外推 0.352 0.453 0.321 0.887 6.679 8.376 0.591 0.541 6.561 8.524 0.252 0.927 二次外推 0.391 0.458 0.324 0.885 11.55 14.381 0.815 −0.354 5.756 8.547 0.251 0.927 表 4 LSTM模型、线性外推和二次外推预测的各要素年变率精度汇总
Table 4 Summary of annual rate accuracy for elements predicted by LSTM model,linear extrapolation and quadratic extrapolation
方法 D年变/(′⋅a−1) H年变/(nT⋅a−1) Z年变/(nT⋅a−1) MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $ MAE RMSE NRMSE $ {R}^{2} $
LSTMMin 0.077 0.145 0.095 0.646 0.816 0.975 0.071 0.498 0.345 2.219 0.102 0.947 Max 0.575 0.796 0.494 0.989 5.178 6.948 0.691 0.991 5.106 6.289 0.225 0.988 Mean 0.264 0.361 0.251 0.909 3.021 3.921 0.335 0.854 3.283 4.339 0.177 0.966
线性外推Min 0.233 0.291 0.187 −1.653 4.618 6.028 0.351 −2.276 3.687 0.889 0.178 0.621 Max 0.972 1.657 1.110 0.958 11.89 17.502 1.184 0.856 9.179 14.070 0.532 0.963 Mean 0.568 0.777 0.502 0.541 7.160 9.374 0.676 0.150 6.185 8.173 0.320 0.866
二次外推Min 0.307 0.368 0.324 −1.340 8.103 11.233 0.526 −4.902 5.078 6.300 0.248 0.489 Max 1.517 1.980 0.945 0.885 19.14 28.224 1.098 0.652 12.220 16.116 0.595 0.932 Mean 0.663 0.889 0.546 0.416 13.15 16.652 0.885 −1.499 7.800 10.133 0.389 0.796 -
常宜峰. 2015. 卫星磁测数据处理与地磁场模型反演理论与方法研究[D]. 郑州:中国人民解放军战略支援部队信息工程大学,106−110. Chang Y F. 2015. Research On Satellite Geomagnetic Data Process And Geomagnetic Model Recovery Theory And Method[D]. Zhengzhou:Information Engineering University,106−110 (in Chinese).
陈斌,顾左文,高金田,袁洁浩,狄传芝. 2010. 中国地区地磁长期变化研究[J]. 地球物理学报,53(9):2114–2154. Chen B,Gu Z W,Gao J T,Yuan J H,Di C Z. 2010. Study of geomagnetic secular variation in China[J]. Chinese Journal of Geophysics,53(9):2114–2154 (in Chinese).
杜奕. 2023. 基于多源遥感数据的大气PM2.5产品缺失数据重构方法研究[D]. 上海:上海师范大学,12−23. Du Y. 2023. Research On the Reconstruction Method of Missing Data For Atmospheric PM2.5 Products Based on Multi-source Remote Sensing Data[D]. Shanghai:Shanghai Normal University,12−23 (in Chinese).
葛轶洲,许翔,杨锁荣,周青,申富饶. 2021. 序列数据的数据增强方法综述[J]. 计算机科学与探索,15(7):1207–1219. doi: 10.3778/j.issn.1673-9418.2012062 Ge Y Z,Xu X,Yang S R,Zhou Q,Shen F R. 2021. Survey on Sequence Data Augmentation[J]. Journal of Frontiers of Computer Science and Technology,15(7):1207–1219 (in Chinese).
顾左文,陈斌,高金田,辛长江,袁洁浩,狄传芝. 2009. 应用NOC方法研究中国地区地磁时空变化[J]. 地球物理学报,52(10):2602–2612. doi: 10.3969/j.issn.0001-5733.2009.10.020 Gu Z W,Chen B,Gao J T,Xin C J,Yuan J H,Di C Z. 2009. Research of geomagnetic spatial-temporal variations in China by the NOC method[J]. Chinese Journal of Geophysics,52(10):2602–2612 (in Chinese).
康国发,高国明,白春华,狄传芝. 2009. CHAMP卫星主磁场长期变化和长期加速度的分布特征[J]. 地球物理学报,52(8):1976–1984. doi: 10.3969/j.issn.0001-5733.2009.08.004 Kang G F,Gao G M,Bai C H,Di C Z. 2009. Characteristics of the secular variation and secular acceleration distributions of the main geomagnetic field for the CHAMP satellite[J]. Chinese Journal of Geophysics,52(8):1976–1984 (in Chinese).
卢兆兴,吕志峰,李婷,张金生,姚垚. 2021. 基于BP神经网络的地磁变化场预测研究[J]. 大地测量与地球动力学,41(3):229–233. Lu Z Y,Lü Z F,Li T,Zhang J S,Yao Y. 2021. Forecasting of the Variable Geomagnetic Field Based on BP Neural Network[J]. Journal of Geodesy and Geodynamics,41(3):229–233 (in Chinese).
毛宁,陈石,杨永友,吴旭,李永波. 2023. 地磁长期变化信号提取和模型预测精度评估[J]. 地球物理学报,66(8):3302–3315. doi: 10.6038/cjg2022Q0499 Mao N,Chen S,Yang Y Y,Wu X,Li Y B. 2023. Extraction of secular variation signals of geomagnetic field and evaluation of prediction accuracy of geomagnetic field models[J]. Chinese Journal of Geophysics,66(8):3302–3315 (in Chinese).
邱耀东. 2018. 联合CHAMP和Swarm卫星磁测数据反演中国大陆区域岩石圈磁场[D]. 武汉:武汉大学,1−2. Qiu Y D. 2018. Invert the Lithospheric Magnetic Field in China Mainland by Combining CHAMP And Swarm Satellite Data[D]. Wuhan:Wuhan University:1−2 (in Chinese).
汪凯翔,黄清华,吴思弘. 2020. 长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报,63(8):3015–3024. doi: 10.6038/cjg2020O0119 Wang K X,Huang Q H. Wu S H. 2020. Application of long short-term memory network in geoelectric field data processing[J]. Chinese Journal of Geophysics,63(8):3015–3024 (in Chinese).
王月华. 2002. 1985-1997年中国地磁场长期变化的正交模型[J]. 地球物理学报,45(5):624–630. doi: 10.3321/j.issn:0001-5733.2002.05.004 Wang Y H. 2002. Regional orthogonal model of secular variation of the geomagnetic field in China during 1985-1997[J]. Chinese Journal of Geophysics,45(5):624–630 (in Chinese).
王振东,王粲,袁洁浩,毛丰龙. 2019. 中国及邻近地区地磁长期变化分析[J]. 地震研究,42(1):102–111. doi: 10.3969/j.issn.1000-0666.2019.01.014 Wang Z D,Wang C,Yuan J J,Mao F L. 2019. Analysis of Geomagnetic Secular Variation in China and Its Neighboring Regions[J]. Journal of Seismological Research,42(1):102–111 (in Chinese).
熊波,李肖霖,王宇晴,张瀚铭,刘子君,丁锋,赵必强. 2022. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报,65(7):2365–2377. doi: 10.6038/cjg2022P0557 Xiong B,Li X L,Wang Y Q,Zhang H M,Liu Z J,Ding F,Zhao B Q. 2022. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics,65(7):2365–2377 (in Chinese).
徐文耀. 2009. 地球电磁现象物理学[M]. 合肥:中国科学技术大学出版社:19−29. Xu W Y. 2009. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei:Science and technology of China press:19−29 (in Chinese).
张素琴,陈传华,王建军,赵旭东,何宇飞,李琪,杨冬梅,胡秀娟. 2021. 1985-1990年地磁基准台时均值数据集[J]. 地震地磁观测与研究,42(4):173–182. Zhang S Q,Chen C H,Wang J J,Zhao X D,He Y F,Li Q,Yang D M,Hu X J. 2021. Hourly mean values datasets of geomagnetic stations from 1985-1990[J]. Seismological and Geomagnetic Observation and Research,42(4):173–182 (in Chinese).
赵旭东,何宇飞,李琪,刘晓灿. 2022. 基于中国地磁台网数据的太阳静日期间地磁场Z分量日变化幅度分析[J]. 地球物理学报,65(10):3728–3742. doi: 10.6038/cjg2022P0628 Zhao X D,He Y F,Li Q,Liu X C. 2022. Analysis of the geomagnetic component Z daily variation amplitude based on the Geomagnetic Network of China during solar quiet days[J]. Chinese Journal of Geophysics, 65 (10):3728−3742 Regional orthorgonal model of secular variation of the geomagnetic f.
Alken P,Thébault E,Beggan C D,Amit H,Aubert J,Baerenzung J,Bondar T N,Brown W J,Califf S,Chambodut A,Chulliat A,Cox G A,Finlay C C,Fournier A,Gillet N,Grayver A,Hammer M D,Holschneider M,Huder L,Hulot G,Jager T,Kloss C,Korte M,Kuang W,Kuvshinov A,Langlais B,Léger J M,Lesur V,Livermore P W,Lowes F J,Macmillan S,Magnes W,Mandea M,Marsal S,Matzka J,Metmab M C,Minami T,Morschhauser A,Mound J E,Nair M,Nakano S,Olsen N,Pavón-Carrasco F J,Petrov V G,Ropp G,Rother M,Sabaka T J,Saturnino D,Schnepf N R,Shen X,Stolle C,Tangborn A,TØffner-Clausen L,Toh H,Torta J M,Varner J,Vervelidou F,Vigneron P,Wardinski I,Wicht J,Woods A,Yang Y,Zeren Z,Zhou B. 2021. International Geomagnetic Reference Field:the thirteenth generation[J]. Earth Planets and Space,73(1):1–25. doi: 10.1186/s40623-020-01323-x
Brown W J,Mound J E,Livermore P W. 2013. Jerks abound:An analysis of geomagnetic observatory data from 1957 to 2008[J]. Physics Earth Planet Inter,223:62–76. doi: 10.1016/j.pepi.2013.06.001
Finlay C C,Maus S,Beggan C D,Bondar T N,Chambodut A,Chernova T A,Chulliat A,Golovkov V P,Hamilton B,Hamoudi M,Holme R,Hulot G,Kuang W,Langlais B,Lesur V,Lowes F J,Lühr H,Macmillan S,Mandea M,McLean S,Manoj C,Menvielle M,Michaelis I,Olsen N,Rauberg J,Rother M,Sabaka T J,Tangborn A,TØffner-Clausen L,Thébault E,Thomson A W P,Wardinski I,Wei Z,Zvereva T I. 2010. International Geomagnetic Reference Field:the eleventh generation[J]. Geophys J Inter,183(3):1216–1230. doi: 10.1111/j.1365-246X.2010.04804.x
Golovkov V P,Papitashvili N E,Tiupkin I S,Kharin E P. 1978. Separation of geomagnetic field variations on the quiet and disturbed components by the MNOC[J]. Geomagnetic and Aeronomy,18(18):511–515.
Hamed A,Langel A,Purucker M. 1994. Secular magnetic anomaly maps of earth derived from POGO and MAGSAT data[J]. Journal of Geophysical Research Solid Earth,99(B12):24075–24090.
Hochreiter S,Schmidhuber J. 1997. Long Short-Term Memory[J]. Neural Computation, 9 (8):1735–1780.
Kother L,Hammer M D,Finlay C C,Olsen N. 2015. An equivalent source method for modelling the global lithospheric magnetic field[J]. Geophysical Journal International,203(1):553–566.
Maus S,Yin F,Lühr H,Manoj C,Rother M,Rauberg J,Michaelis I,Stolle C,Müller R D. 2008. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements[J]. Geochemistry,Geophysics,Geosystems,9(7):1335–1346.
Nevanlinna H. 1987. On the drifting parts in the spatial power spectrum of geomagnetic secular variation[J]. Journal of Geomagnetism and Geoelectricity,39(6):367–376.
Olsen N,Lühr H,Finlay C C,Sabaka T J,Rauberg J,TØffner-Clausen Lr. 2014. The CHAOS-4 geomagnetic field model[J]. Geophysical Journal International,197(2):815–827.
Pushkov A N,Frynberg E B,Chernova T A,Fiskina M V. 1976. Analysis of the space-time structure of the main geomagnetic field by expansion into natural orthogonal component[J]. Geomagnetic and Aeronomy,16:337–343.
Singh D,Singh B. 2020. Investigating the impact of data normalization on classification performance[J]. Applied Soft Computing,97.
Wen Q,Sun L,Yang F,Song X M,Gao J K,Wang X,Xu H. 2021. Time Series Data Augmentation for Deep Learning:A Survey. International Joint Conferences on Artifical Intelligence Organization.
Xu J Y,Lin Y F. 2023. Dynamic mode decomposition of the geomagnetic field over the last two decades[J]. Earth Planet. Phys,7(1):32–38
Zhang G P,Qi M. 2005. Neural network forecasting for seasonal and trend time series[J]. Operations Research,160(2):501–514.