2023年云南芒市MS5.0地震震源深度测定及其发震机理探讨

顾慧冬, 姜金钟, 李姣, 常玉巧, 杨跃文, 王光明, 张帅, 姚远

顾慧冬,姜金钟,李姣,常玉巧,杨跃文,王光明,张帅,姚远. 2024. 2023年云南芒市MS5.0地震震源深度测定及其发震机理探讨. 地震学报,46(0):1−20. DOI: 10.11939/jass.20240026
引用本文: 顾慧冬,姜金钟,李姣,常玉巧,杨跃文,王光明,张帅,姚远. 2024. 2023年云南芒市MS5.0地震震源深度测定及其发震机理探讨. 地震学报,46(0):1−20. DOI: 10.11939/jass.20240026
Gu H D,Jiang J Z,Li J,Chang Y Q,Yang Y W,Wang G M,Zhang S,Yao Y. 2024. Focal depth determination of the MS5.0 earthquake in Mangshi,Yunnan,2023,and discussion on its seismogenic mechanism. Acta Seismologica Sinica46(0):1−20. DOI: 10.11939/jass.20240026
Citation: Gu H D,Jiang J Z,Li J,Chang Y Q,Yang Y W,Wang G M,Zhang S,Yao Y. 2024. Focal depth determination of the MS5.0 earthquake in Mangshi,Yunnan,2023,and discussion on its seismogenic mechanism. Acta Seismologica Sinica46(0):1−20. DOI: 10.11939/jass.20240026

2023年云南芒市MS5.0地震震源深度测定及其发震机理探讨

基金项目: 云南省地震局科技专项(2021ZX04,2023ZX03)、“云南地震重点危险区密集台阵观测系统建设”项目和云南省地震局“地震机理与孕震环境研究”创新团队项目共同资助
详细信息
    作者简介:

    顾慧冬,硕士,工程师,主要从事震源机制解和破裂方向性方面的研究,e-mail:1574354495@qq.com

    通讯作者:

    姜金钟,博士,副研究员,主要从事地震学方面的研究,e-mail:jiangjz@seis.ac.cn

  • 中图分类号: P315.33

Focal depth determination of the MS5.0 earthquake in Mangshi,Yunnan,2023,and discussion on its seismogenic mechanism

  • 摘要:

    基于云南地震台网近震波形资料和两种区域速度模型,利用CAP方法反演了2023年12月2日芒市地震序列中MS5.0主震和4次ML≥3.5余震的震源机制解和震源深度,然后采用sPL深度震相进一步测定了震源深度,最后综合震源深度、地震烈度和地震重定位等结果探讨了此次芒市地震的发震机理。结果表明:芒市MS5.0主震为走滑型地震兼具正断分量,最佳双力偶机制解为节面I:89°/78°/−20°;节面Ⅱ:183°/70°/−167°。4次ML≥3.5余震为走滑兼逆冲型或逆冲型地震,最佳双力偶机制解均存在NE走向节面,该节面的走向/倾角/滑动角平均值约为247°/65°/26°,与芒市地震序列震中分布走向和地震烈度长轴走向比较一致。MS5.0主震与4次ML≥3.5余震震源深度在5—7 km范围内,说明震区内地震主要发生在上地壳浅部。鉴于此次地震发生在水库库区且地震时库区处于高水位、震源分布较浅和主余震震源机制解明显不一致等因素,本研究初步推测库区流体作用可能促进了此次地震的发生,且主震破裂引起局部应力调整导致临近断层滑动使得本次地震序列余震的优势分布方向沿NE向展布。

    Abstract:

    Focal depth is an important parameter for the study of regional seismicity and seismic hazard. Accurate focal depths can provide valuable references for seismic hazard assessment and seismogenic mechanism research. However, it is a challenge to determine an accurate focal depth for earthquakes that occur in regions with sparse seismic networks. Traditional methods relying on seismic wave (e.g. the P and S phases) arrival times are severely limited by network density, resulting in low measurement accuracy. Nonetheless, utilizing information such as seismic wave amplitudes, spectra, and depth phases, even in sparse seismic networks, can facilitate the accurate determination of focal depths.

    In recent years, the sPL depth phase method has been widely utilized for determining the focal depths of local small and moderate earthquakes. The travel time of the sPL depth phase is primarily related to the focal depth and almost independent of the epicentral distance. Therefore, utilizing the sPL depth phase method not only avoids the compromise between the origin time and focal depth of earthquakes but also effectively reduces measurement errors induced by velocity models. Moreover, the CAP (cut-and-paste) method is a full waveform inversion method with significant advantages in determining focal depths for moderate earthquakes.

    On 2 December, 2023, at 01:36:33 Beijing time, an earthquake of MS5.0 (local magnitude is ML5.3) occurred in Mangshi, Yunnan Province, followed by four ML≥3.5 aftershocks. Different institutions have reported significant disparities in the determined focal depth of the Mangshi MS5.0 mainshock. Hence, it is necessary to reassess the focal depth of the MS5.0 mainshock by using more regional seismic waveforms and different methods. Based on the broadband waveform data from the Yunnan Seismic Network and two regional velocity models, this study employed the CAP method to invert the focal mechanisms and focal depths of the mainshock (MS5.0) and four aftershocks (ML≥3.5) in the Mangshi earthquake sequence. Additionally, we employed the sPL depth phase to further determine the focal depths. Our research results indicate that: the Mangshi MS5.0 mainshock is characterized by a strike-slip fault with a significant normal component. The optimal double-couple focal mechanism solution is as follows: fault plane I: strike 89°, dip 78°, rake −20°; fault plane Ⅱ: strike 183°, dip 70°, rake −167°. The four ML≥3.5 aftershocks exhibit strike-slip with thrust or pure thrust mechanisms, the optimal double-couple focal mechanism solutions for these aftershocks all feature fault planes trending northeast (NE), and the strike, dip, and rake angles of the average plane for the four ML≥3.5 aftershocks are approximately 247°, 65°, 26°, respectively. This orientation of the average plane is consistent with the distribution of the double-difference relocated aftershocks and the orientation of the maximum seismic intensity axis of the Mangshi earthquake sequence. Furthermore, the focal mechanisms of both the mainshock and the four aftershocks of ML≥3.5 have complex orientations of the P and T axes, indicating the presence of a complex stress regime within the source region. It is plausible to speculate that the rupture of the MS5.0 mainshock may have triggered nearby faults (with different fault planes) due to regional stress adjustments, resulting in significant differences in the focal mechanism types between the MS5.0 mainshock and the subsequent four ML≥3.5 aftershocks. Additionally, by using the CAP method, the optimal focal depth of the MS5.0 mainshock in Mangshi is determined to be 7 km, while the focal depths of the four ML≥3.5 aftershocks range from 5 to 7 km. On the other hand, the focal depth of the MS5.0 mainshock in Mangshi is estimated to be 7 km, and the focal depths of the four aftershocks are all approximately 5 km by utilizing the sPL depth phase method. The consistency between the focal depths determined by both two methods (with a difference of less than 2 km) indicates that the Mangshi earthquake sequence mainly occurred in the shallow part of the upper crust.

    Considering that the epicenter of the Mangshi earthquake is located within the Longjiang Reservoir area, we statistically analyze the relationship between the ML≥1.0 seismic events and water level changes in the Longjiang Reservoir area from 2010 to 2024 to depict the characteristics of seismic activities in the reservoir area after the reservoir impoundment. Our study results indicate that seismic events with ML≥3.0 in the Longjiang Reservoir area are closely related to reservoir water levels, except for one ML3.1 earthquake, which occurred during a period of low annual water level on June 8, 2013, all other ML≥3.0 earthquakes in the reservoir area occurred during periods of high annual water levels. Among them, the largest earthquake, with a magnitude of ML4.2, occurred on September 24, 2011, during a period of high water levels after the impoundment of the Longjiang Reservoir.

    The seismic activities in the Longjiang Reservoir area can be divided into four stages: the first stage is from January 2010 to February 2016, during which seismic activities of ML≥1.0 earthquakes were relatively calm (monthly frequency less than 10 times), with a calm period of about six years; the second stage is from January 2016 to December 2017, during which the water level of the reservoir changed drastically, and the seismic activities were relatively active, with monthly frequencies of ML≥1.0 seismic activity ranging from a dozen to several dozen times; the third stage is from January 2018 to September 2023, during which the seismicity with magnitude above ML1.0 was relatively calm (monthly frequency less than 10 times) by a period of about six years; the fourth stage is from October 2023 to December 2023, during which the reservoir was at a high water level and its water level changed drastically followed the Mangshi MS5.0 earthquake on December 2, suggesting that there may be a certain correlation between the water level changes in the Longjiang Reservoir and the occurrence of this MS5.0 earthquake.

    Given that this earthquake occurred within the Longjiang Reservoir area, as well as factors such as high water levels, shallow hypocentral distribution, and conspicuous discrepancies in the focal mechanism solutions of the main and aftershocks, this study tentatively hypothesizes that the infiltration of fluids into pre-existing fault fractures with potential for generating moderate to strong earthquakes within the reservoir area may have facilitated the occurrence of this MS5.0 mainshock. Additionally, the rupture of the mainshock was likely to induce adjustments of the local stress field, triggering slip along nearby NE-trending faults, and resulting in the predominant NE-oriented distribution of aftershocks in this seismic source area.

  • 2022年9月5日12时52分,四川甘孜州泸定县发生MS6.8地震,震源深度为16 km,最高烈度可达Ⅸ度,震中位于(29.25°N,102.08°E)。此次地震造成了大量交通、通信、电力等基础设施受损,同时诱发了大量崩塌、滑坡等地质灾害,截止到2022年9月11日17时,该地震已经造成93人遇难、25人失联、至少400人受伤。

    地震烈度是综合考虑震源特征和地表情况的评定指标,2022年泸定MS6.8地震的最大烈度与2013年MS7.0芦山地震(殷志强等,2014)一致,为Ⅸ度,表明本次地震在地表产生的破坏较为严重。野外现场调查表明,此次地震不仅对地表构筑物产生了破坏,而且对地质环境的破坏更为严重,其中包含了大量的同震地质灾害。除泸定地震以外,近15年来川西地区发生了多次中强地震(MS≥6.0),包括2008年汶川MS8.0地震、2013年芦山MS7.0地震、2017年九寨沟MS7.0地震和2022年MS6.1芦山地震。以往的地震地质灾害研究表明,同震地质灾害的发育规律和主控因素的总结对地震灾区地质灾害的应急排(详)查、地质灾害的演化趋势研判以及震区的灾后重建和国土空间规划具有较为重要的现实意义(付小方等,2008黄润秋,李为乐,2008Yin et al,2009许冲等,2013张佳佳等,2015戴岚欣等,2017范宣梅等,2022a李洪梁等,2022)。

    鉴于此,作者于泸定地震发生后第一时间深入震区,开展地震地质灾害的应急调查工作,先后前往震中区的磨西镇、得妥镇、燕子沟镇、德威镇等同震地质灾害多发区域,通过野外调查,结合高分 6 号、2 号光学遥感影像,分析泸定地震同震地质灾害的发育特征和主控因素,研判同震地质灾害的演化趋势,针对同震地质灾害防灾减灾的不同阶段给予相应的建议,以期对震区的地质灾害防治工作有所裨益。

    研究区处于川西高原与四川盆地的过渡带,地跨扬子陆块与羌塘—三江造山系两大一级构造单元(图1)。区内断裂发育,北东向分布有龙门山逆冲断裂带,南东向分布有安宁河—则木河断裂带,西部有鲜水河断裂带,其中鲜水河断裂带为区内活动性最强的大型左旋走滑断裂带(闻学泽等,1989潘家伟等,2020),该断裂带自1725年以来共发生MS≥5.0地震45次,其中MS6.0—6.9地震17次,MS>7.0地震9次(图1),最新的研究表明鲜水河断裂带未来仍有发生M6.0以上地震事件的风险(Jiang et al,2015Shao et al,2016Bai et al,2018)。基于断裂的平面形态与不连续性,前人将鲜水河断裂带划分为九段,本次地震发生在该断裂带最东南的磨西段(四川省地震局地震地质队鲜水河活动断裂带填图组,2013潘家伟等,2020),为全新世活动断裂,晚第四纪以来的平均滑移速率9.6—13.4 mm/a (白明坤等,2022),断裂破碎带宽度50—100 m (赵德军等,2008)。1786年磨西断裂曾发生了M7.8地震,诱发形成大量同震滑坡,其中磨岗岭滑坡造成大渡河堵塞,形成堰塞坝(周洪福等,2017)。

    图  1  2022年9月5日四川泸定地震区域构造图
    Figure  1.  Tectonic settings of Luding earthquake occurred on September 5,2022

    区内主要出露地层除寒武系缺失外,从前震旦系到第四系均有不同程度的发育,其中以中生界、古生界三叠系及元古界变质岩系分布最广。震中磨西镇主要出露花岗岩、石英岩、云母片岩、千枚岩以及第四系松散堆积物。区内平均海拔约为2 000 m,最高点为大雪山主峰贡嘎山,海拔7 556 m。地形上严格受构造控制,总体地形特点为西高东低。大渡河为区内主要河流,沿大渡河两岸支沟发育,与大渡河呈正交分布,河谷或沟谷多呈“V”型,谷缘到谷底的相对高差较大,一般在2 000—3 000 m,为典型的高山峡谷地貌,为滑坡、崩塌等斜坡地质灾害的发生提供了有利的地形地貌条件。震区受东南、西南季风和青藏高原冷空气双重影响,气候垂直差异明显,海拔1800 m以下地区属热带季风气候,贡嘎山区属大陆性季风高原型气候,不同区域降水量有所不同,整个海螺沟景区的年均降水量为1 934.7 mm,总体90%降水分布在5—10月(倪化勇,2010)。植被覆盖率较高,垂直分带明显,从低往高由灌丛、灌木、阔叶林、针叶林向高山草甸过渡。

    泸定地震诱发了大量的同震地质灾害,基于遥感解译、现场调查和资料搜集(铁永波等,2022),本次地震共诱发了2 546处同震地质灾害(图2)。同震地质灾害表现出的发育特征如下:灾害类型主要以崩塌、滑坡为主;规模上,同震崩滑以小−中型为主,其中小型1 768处,中型693处,大型及以上85处;力学机制方面,同震滑坡表现为浅表层的滑移−铲刮特征,同震崩塌则表现为高位的抛射−坠落特征;地理空间分布显示,震中周边15 km范围内,分布了80%以上的同震崩滑,并可划出三个密集发育区,分别是磨西镇及海螺沟区域、得妥镇湾东村区域以及得妥镇大渡河两岸(图2)。与孕灾条件的相关性表现为同震地质灾害的分布特征与主控因素密切相关,震中及发震断裂附近集中分布了泸定地震的同震崩滑,大渡河、磨西河等干流及其支沟两侧的斜坡上为同震崩滑的主要发育区,同震崩滑往往分布在斜坡的中上部,表现出较为明显的高程效应。

    图  2  2022年9月5日四川泸定地震同震地质灾害分布图
    Figure  2.  Distribution of coseismic landslides triggered by Luding earthquake

    该区域同震崩滑主要分布在磨西堆积台地周边和海螺沟内的斜坡上(图2)。磨西台地周边多以小型崩塌、落石为主,崩塌体多为冰水堆积的卵石土,这是因为台地周边地形高陡,且布设较多公路,同震崩塌、落石失稳后直接冲击、掩埋坡脚公路和过往车辆,造成道路损毁和人员伤亡(图3a);而小型崩滑导致的通勤困难,也是同震地质灾害造成人员、财产损失的重要组成部分,这也是地震发生后磨西场镇最近的救援道路中断的主要原因;海螺沟沟域内的同震地质灾害以高位的崩塌和浅表层的土质滑坡为主,沟域内的高位崩塌在地震的触发下发生抛射坠落,以滚动、跳跃的方式向斜坡坡脚运动,沿途刮铲斜坡表层土体,往往形成长条状的地表破坏形态(图3b),直接堆积在斜坡上和坡脚平缓区域。沟内浅表层的土质滑坡面积和方量均不大,造成的人员和财产损失有限,更多的是对景区植被景观的破坏。

    图  3  (a) 磨西台地典型冰水堆积物崩塌;(b) 海螺沟景区内的高位崩塌
    Figure  3.  (a) Collapse occurred in glaciofluvial sediment around Moxi platform;(b) High-locality collapse occurred in Hailuogou valley

    湾东村区域的同震崩滑总体分布于湾东村域所在的银厂沟、飞水沟和大沟三条冲沟两侧的斜坡上(图2),崩滑类型整体与海螺沟沟域基本一致,总体也是以高位抛射−坠落式的崩塌和浅表层的土质滑坡为主(图4a)。需要指出的是,因为区内高位崩塌发育较为密集,多个崩塌区域汇集在一起形成面状分布(图4b)。另一方面,因为磨西断裂长期活动,本次地震前断裂沿线已经发育了较多的不稳定斜坡,在本次地震动荷载下发生了整体失稳滑动,其中湾东村堵河滑坡即为典型的实例。

    图  4  (a) 湾东村区域大沟内的同震崩滑;(b) 湾东村村委会周边同震崩滑的面状特征
    Figure  4.  (a) Collapse occurred in Dagou valley of Wandong village;(b) Polygon shape feature of landslides around Wandong Village Committee

    得妥镇大渡河两岸的同震地质灾害总体以浅表滑坡和高位崩塌为主,两类灾害呈现“面滑”和“点抛”的运动特征。浅表滑坡力学机制为滑移-铲刮 ,运动特征表现为由斜坡中上部推移至坡脚,平面形态为圈椅状-面状,滑坡的方量较小,但影响面积较大(图5a)。主要分布于地震烈度Ⅸ和Ⅷ度区的大渡河沿岸斜坡,堆积物少量进入大渡河,多数停留在坡脚下公路、民房处及低洼地带并成灾,这也是导致得妥镇段道路遭受影响的主要原因;高位崩塌力学机制是抛射-坠落 ,运动特征表现为由斜坡坡顶坠落解体后滚落和弹跳,平面形态为线状和锥状,堆积在斜坡坡脚,发育特征与海螺沟较为一致,主要分布于地震烈度Ⅸ和Ⅷ度区,沿斜坡顶部呈带状广泛发育(图5)。另外区内也存在中-大型滑坡,较为典型的为大渡河东岸的磨岗岭滑坡的重新复活,初步估算方量约300万m2,属大型滑坡(图2图5b)。

    图  5  (a) 得妥镇大渡河大桥上游的同震崩滑;(b) 磨岗岭滑坡后缘变形特征
    Figure  5.  (a) Landslides occurred in the upstream of Daduhe river bridge;(b) Deformation feature at backedge of Mogangling landslide

    泸定MS6.8地震为主震-余震型地震,截至9月6日6时42分, 393次余震的精定位结果表明,余震呈北北西向分布(图6),余震震源深度集中在4—15 km (中国地震局地球物理研究所,2022)。发生地震时,主震释放的能量传播到地表对其直接造成破坏,能量随着距离变大逐渐衰减,同震崩滑往往表现出距发震断裂的“距离效应”(殷跃平,2008许强,李为乐,2010)。泸定地震同震崩滑距离发震断裂的空间分布规律结果显示,发震断裂两盘区域的同震崩滑分布总体具有明显的“距离效应”,即越靠近断裂,同震崩滑越集中,密度越大,最大点处崩滑密度达到2.23个/km2图7)。另外,主震后的余震也一定程度影响了局部同震崩滑的分布,余震密集发育的区域,斜坡经历多次强震动,更易发生失稳变形,这种规律在田湾乡、海螺沟表现较为显著(图6)。

    图  6  磨西镇—田湾乡鲜水河断裂沿线同震崩滑与断裂、地震的位置关系
    Figure  6.  The spatial relationship between coseismic landslides and fault,earthquakes along Moxi-Tianwan segment of Xianshuihe fault
    图  7  同震崩滑距离发震断裂的空间分布规律
    Figure  7.  The spatial distribution law between co-seismic landslides and the seismogenic fault

    本次地震的发震断裂为鲜水河断裂带磨西段,活动断裂对同震崩滑的影响主要表现在两方面:一方面是对同震崩滑宏观空间分布的影响。震源机制解分析(中国地震局地球物理研究所,2022)表明,发震断裂总体表现为走滑兼具逆冲分量,断裂产状约为85°,向南西陡倾,断裂两盘的同震崩滑未表现出显著的空间分布差异。断裂两侧2 km内,南西盘平均点密度为1.069个/km2,北东盘平均点密度为1.082个/km2,两盘同震崩滑空间分布较为一致(图7),这与发震断裂的性质和几何结构密切相关。另一方面,断裂带活动本身会造成岩体的破碎。现场调查未发现地表破裂,但磨西断裂为全新世活动断裂,断裂破碎带宽50—100 m,断裂历史活动造成的破碎带为断裂带上同震崩滑发育的主要影响因素。沿该断裂走向,由北西至南东,磨西镇以北因为断裂沿山前展布,地形较为开阔,同震崩滑发育程度一般,但至得妥乡湾东村的高山峡谷区,飞水沟、大沟沟谷两岸密集发育了大量的同震崩滑(图6),其中多处滑坡甚至一度阻塞了沟道(图4a),形成堰塞坝,活动断裂表现出明显的控制作用。

    具有一定高度、坡度的斜坡和前缘的临空面是崩塌、滑坡发生的必要条件,区内的同震崩塌、滑坡主要分布在磨西河、大渡河及河流支沟两侧的斜坡上(图2),具体到斜坡的细分地貌特征,又表现出高程效应(范宣梅等,2022b)以及斜坡坡肩、斜坡突出部位等微地貌的聚集效应。同震崩塌、滑坡总体表现出高位特征,高程效应明显,尤其是海螺沟、燕子沟、大渡河等高山峡谷地貌区域;磨西台地周边因为斜坡高陡,垂直高差约为120 m,坡度约为80°,台地周边有约30%的斜坡发生了不同程度的崩塌滑坡(图3a)。大渡河岸坡同样有类似特征(图5b),斜坡坡肩的聚集效应表现明显,斜坡突出部位往往也是崩滑的集中区,地震波在这样的区域往往会形成放大效应,从而使得岩土体受到更强的地震加速度(黄润秋,李为乐,2008)。

    前已述及,震区易崩易滑土质斜坡的物质组成主要为冰水堆积卵石土和坡积碎石土。冰水堆积卵石土的成因为磨西河流域冰川退缩后形成(郑本兴,2001),土体由粗砂、次棱角-次圆状的卵石组成,整体胶结程度中等,无外界扰动情况下,具有较好的力学强度,因此可以形成坡度大于50°的斜坡(图3a),部分呈直立状,但整体力学强度不及同时期冰碛物的强度,尤其在外界扰动的情况下(图8a);坡积碎石土则是经过常年累月的风化剥蚀作用,堆积在斜坡表层的残坡积和崩坡积物,物质本身较为松散,但因表层植被的稳固,正常工况下表现出较好的稳定性,地震作用下往往以点状的崩塌和面状的浅表滑坡发生失稳(图8b)。

    图  8  震区特殊岩土体中的同震崩塌和滑坡
    (a) 燕子沟景区公路沿线的冰水堆积崩塌;(b) 海螺沟景区公路沿线坡积碎石土中形成的滑坡;(c) 大渡河沿岸S211公路云母片岩中的顺向坡滑坡;(d) 燕子沟景区公路北侧斜坡花岗岩中的崩塌
    Figure  8.  Co-seismic landslides occurred in special rock and sediment mass
    (a) Collapse occurred in glaciofluvial sediment along road in Yanzigou valley;(b) Landslide occurred in gravel soil along road in Hailuogou valley;(c) Consequent landslide occurred in mica slate along S211 road along Daduhe river; (d) Rockfall occurred in granite along road in Yanzigou valley

    岩体方面,震区主要发育石英岩、云母片岩、花岗岩、闪长岩等。云母片岩岩体结构以层状结构为主,抗风化能力弱,易于崩解软化,顺向坡部位容易产生顺层滑移(图8c);大渡河及磨西河两岸分布斜长花岗岩、石英闪长岩和石英岩,岩质坚硬,岩体结构以块状结构为主,抗压强度高,但经过断裂作用,在鲜水河、大渡河断裂附近为镶嵌碎裂结构或碎裂结构,地震加载作用下易产生岩质崩塌(图8d),这与范宣梅等(2022b)的统计规律一致。

    受此次地震影响,震区高位斜坡节理裂隙密度增加,地震烈度Ⅸ度及Ⅷ度区斜坡上广泛发育了浅表层滑坡和崩塌。历史地震震后地质灾害活动性趋势的研究显示,不同区域的震后地质灾害活跃期存在较大差异(表1),主要是与震级大小、地质环境的差异有关,例如汶川MS8.0地震的震后地质灾害活跃期为20年(黄润秋,2011),1923年日本关东MS7.9地震为15年(Nakamura et al,2000),而1999年台湾集集MS7.6地震和2005年巴基斯坦克什米尔MS7.6地震仅为5年(Lin et al,2006Khan et al,2013)。类比川西类似震级、地震烈度和地质环境的2013年MS7.0芦山地震(崔鹏等,2013),本文预测泸定MS6.8地震震后地质灾害会在未来10年内极为活跃,且崩塌、滑坡活跃期少于泥石流。一方面,震后高陡斜坡坡肩部位造成拉裂缝,大渡河高阶地和磨西镇古冰水堆积台地边缘裂缝扩展,在未来余震、降雨等作用下会继续发生崩塌、滑坡地质灾害,震后17天海螺沟景区内发生的一次大型滑坡即是这样的典型案例;另一方面,因为沟道两侧物源激增,同震崩滑密集发育的沟道未来发生泥石流的降雨临界阈值会显著降低(唐川,梁京涛,2008),其中尤以地震烈度Ⅸ度区的磨西镇和得妥镇境内的泥石流最为活跃。

    表  1  历史地震震后地质灾害活跃期统计
    Table  1.  Statistics of active period of geohazard after historical earthquakes
    地震MS震后地质灾害活跃期/a
    1923年日本关东地震 7.9 15
    1999年台湾集集地震 7.6 5
    2005年巴基斯坦克什米尔地震 7.6 5
    2008年汶川地震 8.0 20
    2013年芦山地震 7.0 10
    下载: 导出CSV 
    | 显示表格

    1) 过渡性安置详细调查阶段。建议针对三个密集发育区域的同震地质灾害的典型发育特征,加强破坏交通、民房、景区基础设施的同震滑坡、崩塌等的隐患识别和详细调查,加强同震高位崩塌、滑坡物源在暴雨工况转化为泥石流的风险调查与研判。

    2) 恢复重建阶段。建议开展因地质灾害避险搬迁群众永久安置点的地质灾害危险性评估工作,具体如下:大渡河及其支沟高山峡谷段崩塌、滑坡、泥石流极其发育,建议实施高位崩塌、滑坡的综合工程治理;进一步开展磨西台地地质灾害的综合防治工作,磨西冰水堆积台地属于该区域良好的土地资源,因其长期遭受燕子沟、雅家梗河侧蚀及地震震损,台地边缘崩塌、滑坡频发,台地面积逐步减小。因此,加强磨西台地的保护与地质灾害综合防治具有重要意义。

    3) 长远规划阶段。建议加强地质灾害“三查”工作,为各级政府地质灾害防治工作提供依据。加强该区域暴雨型泥石流、高位崩滑堵江灾害链的专业监测预警体系研究与运用,尤其是地震烈度Ⅸ度区的磨西镇和得妥镇境内的泥石流以及磨岗岭滑坡等的大型滑坡,需在后续加强监测,提供适宜的预警阈值,切实起到防灾减灾效果;加强沿大渡河、进出磨西快速通道、景区等高位崩塌、滑坡成因机制及其防治对策研究。

    1) 2022年9月5日泸定MS6.8地震诱发了大量的同震崩滑地质灾害,整体以小−中型的崩塌、滑坡为主。集中分布在磨西镇及海螺沟区域、得妥镇湾东村区域、得妥镇大渡河沿岸三个区域。

    2) 同震崩滑的空间分布特征与主控因素密切相关。主震及余震、鲜水河活动断裂、地形地貌、孕灾岩土体是泸定地震同震崩滑空间分布的主控因素。

    3) 泸定地震烈度Ⅸ度及Ⅷ度区内的地质灾害会在未来10年内极为活跃。需密切关注磨西河及支沟、大渡河河谷两侧的高陡岸坡,大渡河高阶地、磨西台地边缘区域,以及磨西镇、得妥镇同震崩滑密集发育的泥石流沟谷。

    4) 根据同震地质灾害应急防范的管理逻辑,建议地方政府应按照详查阶段、恢复重建阶段、长远规划阶段三个阶段来针对性的开展地质灾害的防灾减灾工作。

    甘孜州自然资源和规划局海螺沟直属分局、四川省国土空间生态修复与地质灾害防治研究院对本文野外调查工作给予了大力支持,中国科学院成都山地灾害与环境研究所游勇研究员、中国地质科学院地质研究所李海兵研究员团队为本文提出了有益的建议,中国地震局地球物理研究所房立华研究员团队为本文提供了余震数据,高分辨率对地观测系统四川数据与应用中心为本文提供了震区卫星遥感数据,作者在此一并表示感谢。

  • 图  1   芒市地震震中位置、断裂及周边台站分布

    Figure  1.   Distribution of surrounding stations,faults and epicenters in Mangshi area

    图  2   sPL射线路径示意图(a)和铜壁关台(53 km)记录的三分量波形(b)

    Figure  2.   Schematic of sPL ray paths (a) and three-component waveforms recorded at TBG (53 km) seismic stations (b)

    图  3   均匀半空间下逆冲型双力偶源(257°/51°/53°)的三分量格林函数波形图,滤波频率为0.01—1.5 Hz

    (a) 震源深度为10 km时波形随震中距的变化图;(b) 震中距为43 km时波形随震源深度的变化图

    Figure  3.   Three components Green functions of a thrust-type double couple source with the half space model,all waveforms are band-passed with frequency range of 0.01—1.5 Hz

    (a) Plot of waveforms versus epicenter distance for a focal depth of 10 km;(b) Plot of waveforms versus focal depth for an epicenter distance of 43 km

    图  4   台站方位角分布不均对CAP方法反演震源机制的影响测试

    (a) 一维速度模型;(b) 震源深度拟合误差;(c) 最优震源深度对应的理论和观测波形拟合图

    Figure  4.   Testing of the effect of uneven station azimuthal distribution on the inversion of focal mechanisms by the CAP method

    (a) 1-D velocity model;(b) Focal depth fitting error;(c) The theoretical and observed waveform fitting diagram corresponding to the optimal focal depth

    图  6   利用速度模型A (a),B (b)反演得到的芒市MS5.0地震在震源深度7 km处的理论波形(红线)和观测波形(黑线)的对比图

    Figure  6.   Comparison between observed (black line) and synthetic (red line) seismograms of the Mangshi MS5.0 earthquake at a source depth of 7 km obtained using velocity models A (a)and B (b)

    图  5   利用速度模型A反演芒市ML≥3.5地震震源深度拟合误差图

    Figure  5.   Focal depths fitting errors of the Mangshi ML≥3.5 earthquakes inverted by using velocity model A

    图  7   观测(红色)与理论(黑色) sPL震相波形对比(径向分量)

    (a) 地震事件202312020136;(b) 地震事件202312020214;(c) 地震事件202312020216;(d) 地震事件202312020224;(e) 地震事件202312031514

    Figure  7.   Observed (red) and theoretical (black) sPL depth phase waveform fits

    (a) Seismic event 202312020136;(b) Seismic event 202312020214;(c) Seismic event 202312020216;(d) Seismic event 202312020224;(e) Seismic event 202312031514

    图  8   2010—2024年震区内地震震级与水库水位时序图(a)和地震频次与水库水位时序图(b)

    Figure  8.   Earthquake magnitude versus reservoir level time series (a) and frequency of earthquakes versus reservoir level time series (b) in the earthquake zone during 2010—2024

    图  9   芒市MS5.0地震烈度图及双差重定位后的震中分布

    Figure  9.   Intensity map and DD-relocated epicentral distribution of the MS5.0 Mangshi earthquake

    图  1   事件202312020214(a)和202312020216(b)基于速度模型A(左),B(右)在最佳震源深度的理论波形(红线)和观测波形(黑线)的对比图

    Figure  1.   Comparison of theoretical (red line) and observed (black line) waveforms using velocity model A (left) and B (right) for event 202312020214 (a) and 202312020216 (b) at the optimal source depth

    图  2   事件202312020224 (a)和202312031514 (b)基于速度模型A(左),B(右)在最佳震源深度的理论波形(红线)和观测波形(黑线)的对比图

    Figure  2.   Comparison of theoretical (red line) and observed (black line) waveforms using velocity model A (left) and B (right) for event 202312020224 (a) and 202312031514 (b) at the optimal source depth

    表  1   云南地震台网给出的芒市ML≥3.5地震目录

    Table  1   The catalogue of earthquakes with ML≥3.5 in Mangshi area from Yunnan Seismic Network

    事件编号 发震日期
    年−月−日
    时:分:秒 北纬/° 东经/° 深度/km ML
    202 312 020 136 2 023−12−02 01:36:32.60 24.294 98.087 10.0 5.3 (MS5.0)
    202 312 020 214 2 023−12−02 02:14:53.20 24.283 98.110 7.0 3.5
    202 312 020 216 2 023−12−02 02:16:23.10 24.276 98.099 13.0 3.9
    202 312 020 224 2 023−12−02 02:24:55.60 24.290 98.071 8.0 4.2
    202 312 031 514 2 023−12−03 15:14:50.70 24.266 98.108 8.0 3.6
    下载: 导出CSV

    表  2   利用CAP方法反演芒市ML≥3.5地震的震源机制解

    Table  2   Focal mechanisms of Mangshi ML≥3.5 earthquakes inverted by using CAP method

    事件编号震级速度模型震源深度/km节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    202 312 020 136MS5.0模型A78979−1818372−168
    模型B78978−2018370−167
    202 312 020 214ML3.5模型A525060515786150
    模型B725060515786150
    202 312 020 216ML3.9模型A6242713014162158
    模型B6242693213960156
    202 312 020 224ML4.2模型A5240801414876170
    模型B5241801314977170
    202 312 031 514ML3.6模型A6254524912954130
    模型B5257515312752127
    下载: 导出CSV

    表  3   芒市ML≥3.5地震震源深度测定结果

    Table  3   Focal depth determination results of ML≥3.5 earthquakes in Mangshi

    事件编号 震中位置 ML 震源深度/km
    北纬/° 东经/° CAP (model A CAP (model B sPL 中国地震台网
    202312020136 24.294 98.087 5.3 7.0 7.0 7.0 10
    202312020214 24.283 98.110 3.5 5.0 7.0 5.0 10
    202312020216 24.276 98.099 3.9 6.0 6.0 5.0 10
    202312020224 24.290 98.071 4.2 5.0 5.0 5.0 10
    202312031514 24.266 98.108 3.6 6.0 5.0 5.0 10
    下载: 导出CSV
  • 包丰,倪四道,赵建和,谢军,陈伟文,曾祥方. 2013. 时钟不准情形地震精确定位研究:以2011年1月19日安庆地震序列为例[J]. 地震学报,35(2):160–172. doi: 10.3969/j.issn.0253-3782.2013.02.003

    Bao F,Ni S D,Zhao J H,Xie J,Chen W Y,Zeng X F. 2013. Accurate earthquake location with instrumental clock error:A case study for the 19 January 2011 Anqing earthquake sequence[J]. Acta Seismologica Sinica,35(2):160–172 (in Chinese).

    崇加军,倪四道,曾祥方. 2010. sPL,一个近距离确定震源深度的震相[J]. 地球物理学报,53(11):2620–2630.

    Chong J J,Ni S D,Zeng X F. 2010. sPL,an Effective Seismic Phase for Determining Focal Depth at near Distance[J]. Chinese Journal of Geophysics,53(11):2620–2630 (in Chinese).

    刁桂苓,王曰风,冯向东,王晓山,冯志仁,张洪智,程万正,李悦,王利兵. 2014. 溪洛渡库首区蓄水后震源机制分析[J]. 地震地质,36(3):644–657. doi: 10.3969/j.issn.0253-4967.2014.03.008

    Diao G L,Wang Y F,Feng X D,Wang X S,Feng Z R,Zhang H Z,Cheng W Z,Li Y,Wang L B. 2014. Analysis of characteristics of focal mechanism in reservoir head region of Xiluodu Reservoir after impoundment[J]. Seismology and Geology,36(3):644–657 (in Chinese).

    董彦君,王秋良,申学林,魏贵春. 2018. sPL震相在巴东 M4.3 地震序列震源深度测定中的应用[J]. 大地测量与地球动力学,38(3):221–224.

    Dong Y J,Wang Q L,Shen X L,Wei G C. 2018. Application of sPL Phase in focal depth determination of the Badong M4.3 earthquake sequence[J]. Journal of Geodesy and Geodynamics,38(3):221–224 (in Chinese).

    杜苛,李红谊,李炎臻,黄雅芬. 2023. 紫坪铺水库及邻区的微震检测与定位[J]. 地震学报,45(6):970–984. doi: 10.11939/jass.20230008

    Du K,Li H Y,Li Y Z,Huang Y F. 2023. Microseismic detection and location around the Zipingpu reservoir and its adjacent areas[J]. Acta Seismologica Sinica,45(6):970–984 (in Chinese).

    段刚. 2019. 利用 sPL 震相测定福建仙游 M4.6 地震震源深度[J]. 地球物理学进展,34(2):0417–0422.

    Duan G. 2019. Determination of foal depth of the Xianyou M4.6 earthquake in Fujian application of sPL phase[J]. Progress in Ceophysics,34(2):0417–0422 ( in Chinese).

    房立华,吴建平,张天中,黄静,王长在,杨婷. 2011. 2011 年云南盈江MS5.8地震及其余震序列重定位[J]. 地震学报,33(2):262–267. doi: 10.3969/j.issn.0253-3782.2011.02.013

    Fang L H,Wu J P,Zhang T Z,Huang J,Wang C Z,Yang T. 201l. Relocation of mainshock and aftershocks of the 2011 Yingjiang MS5.8 earthquake in Yunnan[J]. Acta Seismologica Sinica, 33 (2):262−267 (in Chinese).

    郭伟,赵翠萍,左可桢,赵策. 2022. 金沙江下游白鹤滩水库蓄水前后地震活动特征[J]. 地球物理学报,65(12):4659–4671. doi: 10.6038/cjg2022Q0119

    Guo W,Zhao C P,Zuo K Z,Zhao C. 2022. Characteristics of seismicity before and after impoundment of Baihetan dam in the lower reaches of Jinsha River[J]. Chinese Journal of Geophysics,65(12):4659–4671 (in Chinese).

    胡锦涛,谢军,危自根,金超. 2023. 三峡库区秭归段浅层速度结构及孕震环境[J]. 地震学报,45(2):223–233. doi: 10.11939/jass.20210194

    Hu J T,Xie J,Wei Z G,Jin C. 2023. Shallow velocity structure and seismologenic environment in the Zigui section of the Three Gorges Reservior region of China[J]. Acta Seismologica Sinica,45(2):223–233 (in Chinese).

    姜金钟,付虹,陈棋福. 2016. 位于构造活跃区的小湾水库地震活动特征-基于地震精定位的分析[J]. 地球物理学报,59(7):2468–2485. doi: 10.6038/cjg20160713

    Jiang J Z,Fu H,Chen Q F. 2016. Characteristics of seismicity of the Xiaowan reservoir in an area of active tectonics from double-difference relocation analysis[J]. Chinese Journal of Geophysics,59(7):2468–2485 (in Chinese).

    姜金钟,付虹,李涛. 2021. 2021年云南漾濞MS6.4地震序列重定位及发震构造探讨[J]. 地震研究,44(3):320–329.

    Jiang J Z,Fu H,Li T. 2021. Relocation of the 2021 Yangbi,Yunnan MS6.4 earthquake sequence and discussion of its seismogenic fault[J]. Journal of Seismological Research,44(3):320–329 (in Chinese).

    李姣,姜金钟,王光明,付虹. 2021. 2018年云南通海2次MS5.0地震震源机制解及深度测定[J]. 地震研究,44(2):133–144. doi: 10.3969/j.issn.1000-0666.2021.02.001

    Li J,Jiang J Z,Wang G M,Fu H. 2021. Focal mechanism and focal depth determination of the two Tonghai,Yunnan,MS5.0 earthquakes in 2018[J]. Journal of Seismological Research,44(2):133–144 (in Chinese).

    李志伟,黄志斌,王晓欣,韩立波,陈伟文,包丰. 2015. USGS 地震目录中4~5级震源深度异常地震可靠性初步研究:以南北地震带若干地震为例[J]. 地球物理学报,58(4):1236–1250. doi: 10.6038/cjg20150412

    Li Z W,Huang Z B,Wang X X,Han L B,Chen W W,Bao F. 2015. A study on the reliability of M4~5 earthquakes with anomalous focal depth in the USGS earthquake catalog:Several earthquakes in the North-South Seismic Belt[J]. Chinese Journal of Geophysics,58(4):1236–1250 (in Chinese).

    龙锋,张永久,闻学泽,倪四道,张致伟. 2010. 2008年8月30日攀枝花—会理6.1级地震序列ML≥4.0事件的震源机制解[J]. 地球物理学报,53(12):2852–2860. doi: 10.3969/j.issn.0001-5733.2010.12.008

    Long F,Zhang Y J,Wen X Z,Ni S D,Zhang Z W. 2010. Focal mechanism solutions of ML≥4.0 events in the MS6.1 Panzhihua-Huili earthguake sequence of Aug 30,2008[J]. Chinese Journal of Geophysics,53(12):2852–2860 (in Chinese).

    罗艳,曾祥方,倪四道. 2013. 震源深度测定方法研究进展[J]. 地球物理学进展,28(5):2309–2321. doi: 10.6038/pg20130513

    Luo Y,Zeng X F,Ni S D. 2013. Progress on the determination of focal depth[J]. Progress in Geophysics,28(5):2309–2321 (in Chinese).

    罗艳,赵里,田建慧. 2020. 2008年8月30日攀枝花MS6.1地震序列深度及震源区应力特征[J]. 中国科学:地球科学,50(3):404–417.

    Luo Y,Zhao L,Tian J H. 2020. The focal depths of the 2008 Panzhihua earthquake sequence and the stress field in the source region[J]. Science China:Earth Sciences,50(3):404–417 (in Chinese).

    潘睿,姜金钟,付虹,李姣. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定[J]. 地震研究,42(3):338–348. doi: 10.3969/j.issn.1000-0666.2019.03.005

    Pan R,Jiang J Z,Fu H,Li J. 2019. Focal mechanism and Focal determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017[J]. Journal of Seismological Research,42(3):338–348 (in Chinese).

    Seismology小组. 2023. 2023 年12月02日云南芒市5.0级地震的震源机制中心解及在周边产生变形场[EB/OL]. [2023−12−05]. https://ses-kled.cidp.edu.cn/info/1084/1486.html.

    Seismology Group. 2023. The central focal mechanism solution of the M5.0 earthquake in Mangshi,Yunnan Province on December 02,2023 and the deformation field in the surrounding area [EB/OL]. [2023−12−05]. https://ses-kled.cidp.edu.cn/info/1084/1486.html (in Chinese).

    王妙月,杨懋源,胡毓良,李自强,陈运泰,金严,冯锐. 1976. 新丰江水库地震的震源机制及其成因初步探讨[J]. 地球物理学报,19(1):1–17.

    Wang M Y,Yang M Y,Hu Y L,Li Z Q,Chen Y T,Jin Y,Feng R. 1976. Mechanism of the reservoir impounding earthquakes at Xingfengjiang and a preliminary endeavour to discuss their cause[J]. Chinese Journal of Geophysics,19(1):1–17 (in Chinese).

    叶庆东,余大新,王凯明,毛远凤,阎春恒. 2023. 龙滩水库库区地震活动与水位的互相关分析及孔隙压力扩散系数估算[J]. 地震学报,45(6):1068–1078. doi: 10.11939/jass.20220083

    Ye Q D,Yu D X,Wang K M,Mao Y F,Yan C H. 2023. Analysis of the cross-correlation between seismicity and water level and estimation of the hydraulic diffusivity in the Longtan reservoir area[J]. Acta Seismologica Sinica,45(6):1068–1078 (in Chinese).

    张国民,汪素云,李丽,张晓东,马宏生. 2002. 中国大陆地震震源深度及其构造含义[J]. 科学通报,47(9):663–668. doi: 10.3321/j.issn:0023-074X.2002.09.004

    Zhang G M,Wang S Y,Li L,Zhang X D,Ma H S. 2002. Focal depth research of earthquakes in mainland China and implication for tectonics[J]. Chinese Science Bulletin,47(9):663–668 (in Chinese). doi: 10.1360/csb2002-47-9-663

    张瑞青,吴庆举. 2008. 四川攀枝花2008年8月31日MS5.6地震震源深度的确定[J]. 国际地震动态,12:1–5. doi: 10.3969/j.issn.0253-4975.2008.06.001

    Zhang R Q,Wu Q J. 2008. Focal depth for an earthquake(MS5.6) on August 31,2008 in Panzhihua of Sichuan Province[J]. Recent Developments in World Seismology,12:1–5 (in Chinese).

    赵韬,储日升,倪四道,王莹,周勇,曾祥方. 2019. 广西苍梧MS5.4地震震源深度[J]. 地震地质,41(3):619–632. doi: 10.3969/j.issn.0253-4967.2019.03.006

    Zhao T,Chu R S,Ni S D,Wang Y,Zhou Y,Zeng X F. 2019. Study on focal depth of the MS5.4 Cangwu earthquake in Guangxi[J]. Seismology and Geology,41(3):619–632 (in Chinese).

    中国地震局地球物理研究所. 2023. 2023年12月2日云南德宏州芒市5.0级地震科技支撑简报 [EB/OL]. [2023-12-04]. https://www.cea-igp.ac.cn/kydt/280396.html.

    Institute of Geophysics,China Earthquake Administration. 2023. Science and technology support for the M5.0 earthquake in Mangshi,Dehong Prefecture,Yunnan Province on December 2,2023[EB/OL]. [2023-12-04]. https://www.cea-igp.ac.cn/kydt/280396.html(in Chinese).

    中国地震台网中心. 2023. 云南德宏州芒市5.0级地震[EB/OL]. [2023−12−02]. https://news.ceic.ac.cn/CC20231202013633.html.

    China Earthquake Networks Center. 2023. M5.0 earthquake in Mangshi,Dehong Prefecture,Yunnan Province[EB/OL]. [2023−12−02]. https://news.ceic.ac.cn/CC20231202013633.html (in Chinese).

    Chen W W,Wang D C,Wei S J. 2013. A study on the uncertainties of the centroid depth of the 2013 Lushan earthquake from teleseimic body wave data[J]. Earthquake Science,26(3-4):161–168. doi: 10.1007/s11589-013-0042-z

    Fox B D,Selby N D,Heyburn R,Woodhouse J H. 2012. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra[J]. Geophys J Int,191(2):601–615. doi: 10.1111/j.1365-246X.2012.05612.x

    Helmberger D V,Stead R,Liu P H,Dreger D. 1992. Broadband modeling of regional seismograms:Imperial Valley to Pasadena[J]. Geophys J Int,110(1):42–54. doi: 10.1111/j.1365-246X.1992.tb00711.x

    Laske G,Masters G,Ma Z T,Pasyanos M. 2013. Update on CRUST1.0:A 1-degree Global Model of Earth’s Crust[C]//Proceedings of EGU General Assembly Conference. 15:EGU2013−2658.

    Lei X L. 2011. Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake[J]. Journal of Asian Earth Sciences,40(4):844–854. doi: 10.1016/j.jseaes.2010.05.004

    Liu Y,Yu Z Y,Zhang Z Q,Yao H J,Wang W T,Zhang H J,Fang H J,Fang L H. 2023. The high-resolution community velocity model V2.0 of southwest China,constructed by joint body and surface wave tomography of data recorded at temporary dense arrays[J]. Science China Earth Science,66(10):2368–2385. doi: 10.1007/s11430-022-1161-7

    Luo Y,Ni S D,Zeng X F,Zheng Y,Chen Q F,Chen Y. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone[J]. Science China Earth Sciences,53(11):1655–1664. doi: 10.1007/s11430-010-4026-8

    Ma S T. 2010. Focal depth determination for moderate and small earthquakes by modeling regional depth phases sPg,sPmP,and sPn[J]. Bull Seismol Soc Am,100(3):1073–1088. doi: 10.1785/0120090103

    Rajkumar,Prajapati S K,Pal S K,Srivastava H N. 2022. Determination of focal depths of moderate earthquakes in Northeast Indian region using depth phase sPn[J]. Nat Hazards,114:427–455. doi: 10.1007/s11069-022-05396-7

    USGS. 2024. M5.0:13 km W of Zhefang,China [EB/OL]. [2024−02−06]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000lf6x/moment-tensor.

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Wang Z J,Chong J J,Ni S D,Romanowicz B. 2011. Determination of focal depth by two waveform based methods:A case study for the 2008 Panzhihua earthquake[J]. Earthquake Science,24(4):321–328. doi: 10.1007/s11589-011-0794-2

    Wessel P,Luis J F,Uieda L,Scharroo R,Wobbe F,Smith W H F,Tian D. 2019. The Generic Mapping Tools version 6[J]. Geochemistry,Geophysics,Geosystems,20(11):5556–5564.

    Xu Y,Li D N,Gao Y,He J B. 2015. Relocations of five Yingjiang sequences(China-Myanmar border):Details of seismogenic faults[J]. Bull Seismol Soc Am,105(1):314–329. doi: 10.1785/0120130326

    Yao Y S,Wang Q L,Liao W L,Zhang L F. 2017. Influences of the Three Gorges Project on seismic activities in the reservoir area[J]. Science Bulletin,62(15):1089–1098. doi: 10.1016/j.scib.2017.07.014

    Zhang M,Ge S M,Yang Q,Ma X D. 2021. Impoundment-associated hydro-mechanical changes and regional seismicity near the Xiluodu reservoir,Southwestern China[J]. J Geophys Res,126(9):e2020JB021590. doi: 10.1029/2020JB021590

    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhao M,Long F,Yi G X,Liang M J,Xie J T,Wang S W. 2021. Focal mechanism and seismogenic structure of the MS5.1 Qingbaijiang earthquake on February 3,2020,Southwestern China[J]. Frontiers of Earth Science,9:644142. doi: 10.3389/feart.2021.644142

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634

    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x

  • 期刊类型引用(9)

    1. 余建胜,赵斌,董培育,刘刚,刘成利,徐锐,陈正松,黄功文,房立华,熊维,王明明,林牧,聂兆生,乔学军. GNSS约束的2022年泸定M6.8地震滑动分布及同震应力变化. 地球物理学报. 2024(03): 1022-1036 . 百度学术
    2. 张亦凡,伍纯昊,李渝生,易树健. 同震岩体损伤特征的定量分析——以2022年泸定M_S6.8地震为例. 工程地质学报. 2024(03): 1020-1034 . 百度学术
    3. 田钧灵,李育,代雨,孙乙,薛婧,彭彬,李勋,张艳. “9.5”泸定地震对土壤呼吸及团聚体有机质的影响. 现代农业研究. 2024(07): 98-103 . 百度学术
    4. 李环宇,李东平,尹晶飞,李敏,孙海青. 新疆乌什7.1级地震人口热力及其应急响应功能分析. 地震工程学报. 2024(04): 992-1000 . 百度学术
    5. 邬凯,易雪斌,付晓东,张磊,康景宇,袁泉,邵江. 泸定地震震中海螺沟景区道路地质灾害发育规律及灾后重建对策. 岩石力学与工程学报. 2024(08): 1909-1922 . 百度学术
    6. 牛鹏飞,韩竹军,郭鹏,李科长,吕丽星. 2022年青海门源M_S6.9地震灾害致灾机理. 地震地质. 2024(04): 761-782 . 百度学术
    7. 王鹏程,罗永红,刘红枫,景俊杰. “9·5”四川泸定M_s6.8级地震诱发磨西台地地震响应分析. 山地学报. 2024(04): 576-590 . 百度学术
    8. 田钧灵,薛婧,代雨,孙乙,李育,周佳慧,罗林,邓金坤,张艳. “9·5”泸定地震对土壤团聚体及其碳储量的影响. 现代园艺. 2024(23): 6-9 . 百度学术
    9. 匡萱,余斌,陈龙,董秀军. 基于无人机测量的泥石流固体颗粒图像识别与泥石流预警. 山地学报. 2023(05): 733-747 . 百度学术

    其他类型引用(3)

图(11)  /  表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  17
  • PDF下载量:  36
  • 被引次数: 12
出版历程
  • 收稿日期:  2024-02-24
  • 修回日期:  2024-06-09
  • 录用日期:  2024-06-10
  • 网络出版日期:  2025-04-09

目录

/

返回文章
返回