湖北中强震孕震环境和震源机制研究

胡锦涛, 危自根, 谢军, 盛敏汉, 金超, 范心甜, 刘益炜, 陈闯

胡锦涛,危自根,谢军,盛敏汉,金超,范心甜,刘益炜,陈闯. 2025. 湖北中强震孕震环境和震源机制研究. 地震学报,47(3):374−389. DOI: 10.11939/jass.20240031
引用本文: 胡锦涛,危自根,谢军,盛敏汉,金超,范心甜,刘益炜,陈闯. 2025. 湖北中强震孕震环境和震源机制研究. 地震学报,47(3):374−389. DOI: 10.11939/jass.20240031
Hu J T,Wei Z G,Xie J,Sheng M H,Jin C,Fan X T,Liu Y W,Chen C. 2025. The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province. Acta Seismologica Sinica47(3):374−389. DOI: 10.11939/jass.20240031
Citation: Hu J T,Wei Z G,Xie J,Sheng M H,Jin C,Fan X T,Liu Y W,Chen C. 2025. The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province. Acta Seismologica Sinica47(3):374−389. DOI: 10.11939/jass.20240031

湖北中强震孕震环境和震源机制研究

基金项目: 

国家自然科学基金(42474094)和湖北省自然科学基金(2023AFB1076)联合资助

详细信息
    作者简介:

    胡锦涛,硕士,助理工程师,从事地球内部构造、震源以及地球物理勘探相关研究,e-mail:1298985349@qq.com

    通讯作者:

    危自根,博士,副研究员,从事以接收函数方法为主的壳幔结构研究,e-mail:weizigen@apm.ac.cn

  • 中图分类号: P315.33

The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province

  • 摘要:

    通过CAP技术反演了湖北省2018年秭归MS4.5和2006年随州ML4.7地震的震源参数,并采用接收函数与面波相速度频散曲线联合方法揭示了湖北省有地震记录以来的三次M6以上强震和1958年地震仪观测以来的六次M4.5—6.0地震震中处的地壳剪切波速度。结果显示:随州地震走向呈NW向,震源深度为8 km,发震断层与襄樊—广济断裂带以及皂市断裂或潜北断裂有关;秭归地震走向为NNE和NE向,震源深度为5 km,发震断层与新华—龙王冲断裂带和高桥断裂带有关。基于前人采用CAP等方法得到的2013年巴东MS5.1、2014年秭归MS4.6和2019年应城MS4.9地震的震源机制解以及本文接收函数与面波联合反演所得的地壳S波速度对孕震环境和震源机制进行研究,结果显示:湖北地区中等地震的发震断层都以走滑为主,与断裂构造分布状况相对应;获得震源机制解的五次中强地震分别发生在不同速度特征的垂向高低速转换区域,四次震源深度未知的中强震在传统发震层深度范围内也呈现明显的垂向高低速互层变化特征;2006年随州ML4.7、2014年秭归MS4.6和2019年应城MS4.9地震可能为构造型地震,2013年巴东MS5.1和2018年秭归MS4.5地震可能为水库触发型地震。

    Abstract:

    Research on earthquake trends, investigations of seismo-geological characteristics, and studies of seismic activity in Hubei Province shows that Hubei and its neighboring regions exhibit a background conducive of moderate to strong earthquakes. In the Yangtze craton of Hubei Province, which is structurally stable and characterized by low heat flow and strong rigidity, moderate to strong earthquakes occurred one after another in recent years. The seismogenic background and seismogenic structure have drawn considerable attention, but systematic research in this regard remains relatively scarce.

    In this paper we uses CAP (cut and paste) technology to invert the source parameters of the 2018 Zigui MS4.5 earthquake and the 2006 Suizhou ML4.7 earthquake. And then we have employed a joint method of receiver function and surface wave phase velocity dispersion curve to reveal the shear wave velocity of the crust at the epicenter of three earthquakes with M≥6 (documented since the start of earthquake records) and six earthquakes with M4.5−6.0 (recorded following the implementation of seismometer observations in 1958) in Hubei Province. The results indicate that for the 2006 Suizhou ML4.7 earthquake, the strike, dip angle, and rake were 126°, 78° and −30°, respectively, the strike direction was NW, and the focal depth was 8 km. The seismogenic fault was related to the northwest trending Xiangfan-Guangji fault zone and its subfaults (Zaoshi fault or Qianbei fault). For the 2018 Zigui MS4.5 earthquake, the strike, dip angle, and rake were 61°, 58° and 173°, the strike was NNE and NE, and the focal depth is ML4.75 km. The seismogenic fault was related to the Xinhua-Longwangchong fault zone and Gaoqiao fault zone. Based on the source mechanism solutions of the 2013 Badong MS5.1, 2014 Zigui MS4.6, and 2019 Yingcheng MS4.9 earthquakes obtained by previous researches using CAP and other methods, as well as the crustal S-wave velocity obtained by the joint inversion of receiver function and surface wave in this paper, it was found that the seismogenic faults of medium and strong earthquakes are mainly of strike-slip, which is corresponding to the distribution of fault structures. For the 2013 Badong MS5.1 earthquake and the 2014 Zigui MS4.6 earthquake, their S-wave velocities vary from low to high, with velocity percentage changes of 4% and 7%, respectively. In contrast, for the 2018 Zigui MS4.5, 2006 Suizhou ML4.7, and 2019 Yingcheng MS4.9 earthquakes, the S-wave velocities vary from high to low, with velocity variations percentage of −4%, −1%, and −2%, respectively. The five moderate-strong earthquakes, for which the focal mechanism solutions were obtained, occurred in vertical high-low velocity transition zones with different velocity characteristics. Additionally the four moderate to strong earthquakes with unknown focal depths also exhibited significant vertical high-low velocity interlayer variations within the traditional depth range of the seismogenic layer. The risk of moderate to strong earthquakes in Hubei Province has increased. Seismic activity is significantly higher in the western part of the province compared to the eastern part, with a concentration in Zigui and its adjacent areas. Small and medium-sized earthquakes are also clustered in the source area and its adjacent areas of Zigui, which needs to be monitored specially. The paper suggests that the 2006 Suizhou ML4.7, the 2014 Zigui MS4.6, and the 2019 Yingcheng MS4.9 earthquakes may be structural earthquakes, which are speculated to be related to the reverse compression of the northwest Yangtze Plate, the relative compression and impact of the southwest Indian Plate, and the activation of preexisting faults under the dual effects of subduction of the Pacific Plate and rock asthenosphere system. The 2013 Badong MS5.1 earthquake and the 2018 Zigui MS4.5 earthquake occurred in the vicinity of the Three Gorges Reservoir, with shallow epicentral depth. It is speculated that the reservoir’s water impoundment and subsequent downward infiltration altered the local seismic environment, potentially rendering these events reservoir-triggered earthquakes.

    In summary, it is necessary to persistently focus on and strengthen the research on earthquake trends, geological characteristics of earthquakes, and monitoring of earthquake activities in Hubei Province. This is crucial for averting the earthquake-related disasters risk and reducing the huge losses caused by earthquakes. The study of the seismogenic environment and focal mechanism of moderate to strong earthquakes can provide reference for understanding earthquake characteristics and earthquake prevention and disaster reduction in Hubei Province.

  • 随着我国地震观测台站数量的不断增加,区域地震监测能力的逐渐增强,可监测震级的下限不断降低。密集地震观测台网产出高质量地震观测数据的同时,也对现有业务系统提出了更多的新需求,其中从实时产出的地震观测数据中准确判别和拾取不同类型的震相是最基础的、最迫切的需求之一。这些震相信息为更好地认识地壳介质结构、了解发震断层、获取震源信息、进行地震预警服务等提供数据支持。

    为了更快更准确地从连续地震记录波形中判别和拾取出地震震相,许多学者都开展了系列研究,并提出了很多实用的算法。这些震相拾取算法可归纳为能量准则(Allen,1982Baer,Kradolfer,1987Lomax et al,2012马强等,2013)、极化分析(Vidale,1986Ruud,Husebye,1992Amoroso et al,2012)、模糊分析(Chu,Mendel,1994)、人工神经网络(Dai,MacBeth,1995)、高阶统计量(Saragiotis et al,2002Küperkoch et al,2012)、小波变换(Anant,Dowla,1997刘希强等,19982000)及基于机器学习(Kong et al,2019Perol et al,2018Ross et al,2018abZhu et al,2018李安等,2020)等几大类相关算法。

    相较于初动清晰、信噪比较高的P波震相,S波震相由于受到P波尾波和(或)其它转换波震相的干扰,信噪比通常较P波要低得多,因此S波震相拾取结果的准确性普遍低于P波震相。即使是有经验的分析人员,仍无法保证S波震相拾取的准确性。现有的S波震相自动拾取算法大都是基于极化特征分析的方法(Flinn,1965Vidale,1986Jurkevics,1988Cichowicz,1993),这些算法利用三分向地震波形记录,基于P波震相与S波震相的不同偏振特征,通过计算质点运动的偏振度、线性度等参数,寻找特征函数突变发生的点,进而判定S波震相到时的位置。此类方法大都适用于单台记录,算法有效性依赖于其有效剥离多种震相的能力,如将剪切波与面波分离等。Lois等(2013)即利用一个基于特征值分析的特征函数,提出了一种S波自动拾取时域算法,该算法对于P波、S波的极化方向不作任何假设,是一种近乎“零参数”的时域实时算法。本文则在该算法的基础上,进一步优化相关参数,并利用福建地震台网2015—2018年期间的9 855条三分向波形记录分析进行验证。

    在实时地震数据处理中,通常采用滑动窗的方式将连续观测数据离散为固定长度的数据,而后再采用相应离线数据处理算法进行分析。同样,对于一段已知P波到时位置的波形记录,本文在P波到时后采用滑动窗将记录划分,并根据一定的滑动步长进行滑动处理,然后对各小窗的三分向波形记录求取特征值,进而可获得特征值时程,本文将该特征值时程作为S波识别特征函数。其中,由三分向波形求取特征值可采用数学分析中协方差矩阵分解的方式得到,特征值时程的物理含义是确定质点运动偏振方向。假定由三分向波形数据计算得到的协方差矩阵为

    $${\boldsymbol{C}} {\text{=}} \left[ {\begin{array}{*{20}{c}} {{\rm{cov}} {\text{(}}x{\text{,}}x{\text{)}}}&{{\rm{cov}} {\text{(}}x{\text{,}}y{\text{)}}}&{{\rm{cov}} {\text{(}}x{\text{,}}z{\text{)}}} \\ {{\rm{cov}} {\text{(}}y{\text{,}}x{\text{)}}}&{{\rm{cov}} {\text{(}}y{\text{,}}y{\text{)}}}&{{\rm{cov}} {\text{(}}y{\text{,}}z{\text{)}}} \\ {{\rm{cov}} {\text{(}}z{\text{,}}x{\text{)}}}&{{\rm{cov}} {\text{(}}z{\text{,}}y{\text{)}}}&{{\rm{cov}} {\text{(}}z{\text{,}}z{\text{)}}} \end{array}} \right]{\text{,}}$$ (1)

    式中,${\rm{cov}} {\text{(}}x{\text{,}}y{\text{)}} = \Big[\sum\limits_{i {\text{=}} 1}^L {{\text{(}}{x_i} {\text{-}} \overline x{\text{)}}{\text{(}}{y_i} {\text{-}} \overline y{\text{)}}}\Big]\Big/ L$L为滑动窗长度,且${\rm{cov}} {\text{(}}x{\text{,}}y{\text{)}} {\text{=}} {\rm{cov}} {\text{(}}y{\text{,}}x{\text{)}}$${\rm{cov}} {\text{(}}x{\text{,}}z{\text{)}} {\text{=}} $$ {\rm{cov}} {\text{(}}z{\text{,}}x{\text{)}}$${\rm{cov}} {\text{(}}y{\text{,}}z{\text{)}} {\text{=}} {\rm{cov}} {\text{(}}z{\text{,}}y{\text{)}}$。将式(1)分解即可分别得到三个特征值${\lambda _1}{\text{,}}{\lambda _2}{\text{,}}{\lambda _3}$${\lambda _1} {\text{>}} {\lambda _2} {\text{>}} {\lambda _3}$)及相应的三个特征向量${ {\boldsymbol{u}}_{{1}}}{\text{,}}{ {\boldsymbol{u}}_{{2}}}{\text{,}}{ {\boldsymbol{u}}_{{3}}}$。对于连续波形记录,即可得到特征值时程${\lambda _1}{\text{(}}t{\text{)}}{\text{,}}{\lambda _2}{\text{(}}t{\text{)}}{\text{,}} $$ {\lambda _3}{\text{(}}t{\text{)}}$。据此也可分别计算得到信号偏振线性度、质点运动平面度、P波传播方位角、线性运动入射角等参数(Jurkevics,1988马强,2008)。

    由于${\lambda _1}{\text{(}}t{\text{)}}$ 对信号传播方向上的能量突变更为敏感(图1d),因此本文仅选择其作为特征函数。为了更好地体现信号中能量的微弱变化并突显信号突变位置,本文求取${\lambda _1}{\text{(}}t{\text{)}}$ 的平方根$f{\text{(}}t{\text{)}} {\text{=}} \sqrt {{\lambda _1}{\text{(}}t{\text{)}}}$图1e),放大${\lambda _1}{\text{(}}t{\text{)}}$中低值成分的同时压低${\lambda _1}{\text{(}}t{\text{)}}$中高值成分进而减小其动态范围,实现对特征函数的压缩。尤其对于信噪比较低的事件波形,采用此方式的特征函数凸显信号中的能量突变位置更为有效。随后,选取P波初至到S尾波段对$f{\text{(}}t{\text{)}}$求取峰度系数$K{\text{(}}t{\text{)}} {\text{=}} $$ kur[f{\text{(}}t{\text{)}}]$,即可从特征函数中将S波到时位置进一步凸显出来(图1f)。应用该时间窗是为了避免将后续事件的初至震相错误识别为本次事件S波震相,但对于密集事件序列,该时间窗的选取比较困难。由图1f可见,在S波到时附近$K{\text{(}}t{\text{)}}$呈现一个显著的陡坎,但S波到时点位于陡坎起始最低处,因此在实际应用中很难准确拾取,需要进一步处理,即对$K{\text{(}}t{\text{)}}$求取一阶差分$\Delta K{\text{(}}t{\text{)}}$,此时S波到时与$\Delta K{\text{(}}t{\text{)}}$峰值位置相一致,S波到时位置将更容易判别,据此即可对S波粗到时进行拾取。最后,应用自回归赤池信息准则(Akaike information criteria,缩写为AIC)(Akaike,1974)在所拾取S波粗到时位置附近精确判别(前后各取0.3 s),即可获得准确可靠的S波到时信息。

    图  1  本文S波拾取方法算例示意图
    事件发震时刻为2015-01-02 00:33:56.89,震中距为3.8 km的GTSK台站记录,窗长为0.2 s。图(a−c)为三分向波形记录;图(d)为特征值时程;图(e)为特征函数f t);图(f)为峰度系数时程Kt);图(g)为求取差分后特征函数ΔKt
    Figure  1.  An example of S phase picking by using the algorithm of this study
    The origin time of the event is 00:33:56.89 on 2 January 2015. The wavforms were recorded by the station GTSK with epicentral distance 3.8 km,and window length is taken as 0.2 s. Figs. (a) to (c) are three-component seismic records;Fig. (d) shows the history of three eigenvalues;Fig. (e) is the characteristic function ft);Fig. (f) shows time history of Kurtosis coefficient Kt),and Fig. (g) shows the differential characteristic function ΔKt

    滑动时窗长度是本文算法中需要确定的重要参数。若选择较短的时窗,该算法对于特征函数中微小的改变过于敏感,拾取到的S波到时位置将超前;若选择过长的时窗,算法将缺乏必要的敏感度,拾取到的S波到时位置将显著滞后。实时地震数据处理中,算法的鲁棒性是一个重要的指标,选择某一固定时间窗长度显然无法满足所有事件的需求。为此,本文采用多窗口综合加权方法,窗口长度为0.2—1.4 s,间隔0.2 s,共7个。首先在各窗口中拾取S波到时Si,并计算S震相信噪比Ri,然后依据信噪比综合加权给出S波到时位置,即

    $${S_{\rm{f}}} {\text{=}} \dfrac{{\displaystyle\sum\limits_{i {\text{=}} 1}^7 {{S_i}{R_i}} }}{{\displaystyle\sum\limits_{i {\text{=}} 1}^7 {{R_i}} }}{\text{.}}$$ (2)

    本文研究中收集了福建台网2015—2018年记录的1 862次地方震事件,震级范围为ML−0.5—4.2,仅挑选其中震中距小于100 km的9 855条三分向地震动记录计算分析,在此震中距范围内,初至S波震相均为Sg。本文以人工地震编目提供的Sg震相拾取结果为参考,对比采用本文方法的拾取震相到时拾取位置,以验证本文算法的准确性及实用性。本研究中使用的台站观测记录以仙游震群和台湾海峡南部震群为主,这两个震群的观测数据量约占所有分析记录1/3左右,各台站记录数量空间分布如图2所示。本文所用台站记录在震中距100 km内基本呈均匀分布,震中距分布如图3所示。

    图  2  本文所用台站记录随震中距和震级分布
    Figure  2.  Epicentral distance and magnitude distribution for earthquake records used in this study
    图  3  本文研究所用台站空间分布
    Figure  3.  Spatial distribution of records used in this study

    应用本文方法得到的S波到时拾取结果与人工编目S震相拾取结果间的偏差统计情况如图4所示。结果显示,相较于人工拾取结果,本文方法的S波震相到时拾取平均偏差为(−0.003±1.34) s,其中拾取偏差小于0.2 s的记录所占比例为63.9%,拾取偏差小于0.5 s的记录所占比例为79.6%,即应用本文方法能够较准确地对大部分S波震相到时进行拾取。但从图3中也可以明显看出,应用本文方法的S波震相到时拾取结果有超前于人工拾取结果的趋势,因而造成图4b中统计直方图的偏态分布。本文将测试数据进一步划分为仙游震群、台湾海峡震群及其它事件三类,每类分别包括1 276条、2 330条和6 249条记录,并分析不同类别的S波到时拾取结果精度,结果如图5所示。由该图可见,不同的类别事件应用本文方法的S波拾取结果偏差分布较为一致,均表现出超前于人工拾取结果的趋势,三类事件的S波拾取偏差分别为(−0.018±1.68) s,(−0.053±1.56) s和(0.011±1.17) s。综上可见,本文所研究的相关算法具有较好的适用性,应用于不同区域的事件时均表现稳定。

    图  4  应用本文方法的S波震相到时拾取偏差统计
    图(a)为各记录S震相拾取偏差散点图,图(b)和(c)为S震相拾取偏差统计直方图
    Figure  4.  Statistics of S phase arrival time pick errors by using our method
    Fig. (a) gives S phase picking error for each record,Figs. (b) and (c) show the histogram of the phase picking error
    图  5  分区域S波震相到时拾取偏差结果统计
    (a) 仙游震群;(b) 台湾海峡南部震群;(c) 其它事件
    Figure  5.  Statistics of S phase arrival time picking error in different regions
    (a) Xianyou sequence;(b) Southern Taiwan Strait sequence;(c) Other events

    此外,由图4还可以看出,仍有约11.2%的记录的S波震相到时拾取偏差超过±1.0 s,其中约4.1%的记录的S波震相到时拾取偏差超过±2.0 s,图6分别列举出三个拾取偏差较大的记录情况。进一步分析后,可将引起拾取偏差过大的原因归纳为三个方面。首先,信噪比较低是造成S波震相拾取偏差较大的显著原因。如图6a中所示波形记录,由于S波震相受到前序P波尾波的污染,信噪比较低,即使对于有经验的分析人员仍较难准确拾取,这也是通用S波震相到时拾取算法准确度不高的主要困难所在。本文采用式(3)截取人工拾取S波到时前后各2 s窗长内的波形记录并计算均方根进而得到各记录的信噪比,对于采样率为100 的记录:

    图  6  S波震相到时拾取偏差较大的波形记录
    (a) 低信噪比记录结果;(b) 图(a)中记录1—20 Hz带通滤波后的结果;(c) 多事件叠加记录结果;(d) EW向异常记录结果
    Figure  6.  Waveforms with large S phase arrival time picking error
    (a) The result for a low SNR record;(b) The result for the record in Fig. (a) after 1−20 Hz band-pass filtering;(c) The result for a multi-event record;(d) The result for an abnormal record in EW component
    $${\rm{SNR}} {\text{=}} {\dfrac{{\sqrt {\dfrac{1}{n}\displaystyle\sum\limits_{i {\text{=}} s}^{s {\text{+}} n} {{x_i}} } } }{ {\sqrt {\dfrac{1}{n}\displaystyle\sum\limits_{i {\text{=}} s {\text{-}} n}^s {{x_i}} } }}}{\text{,}}$$ (3)

    式中s为人工拾取S波到时位置,n为数据长度(取200).

    随后,对406条S波到时拾取偏差超过±2.0 s的记录的信噪比进行统计,并与其它记录的信噪比情况进行对比,如图7所示。可以直观地看出低信噪比(<2.0)记录在拾取偏差超过±2.0 s的记录中占有最大比例(图7a),与之相应,对于其余拾取误差较小的记录,高信噪比记录所占的比例较高(图7b)。图7以信噪比2.0为界,分别给出了低信噪比和高信噪比情况下S波震相拾取误差分布情况。由该结果可见:对于低信噪比波形记录,S波震相拾取误差超过1.0 s的比例为19%,显著多于高信噪比波形记录中的比例(9%);且高信噪比波形记录中S波震相拾取误差小于0.2 s的比例(70%)更明显高于低信噪比波形记录中的比例(52%)。由此,作者认为观测记录信噪比是显著影响S波震相拾取精度的最重要因素。表1分别列出了针对不同信噪比记录,应用本文方法统计得到的S波震相拾取精度结果。可见,随着记录信噪比的提高,S波拾取残差呈平均值减小、标准差降低的趋势,与图7图8所示结果一致。此外,从应用本文方法拾取的S-P到时差与人工拾取S-P到时差的对比(图9a)中也可以看出,偏差较大(如>±2.0 s)记录的信噪比大多较低,而且随着震中距增加(S-P到时差增大),S波拾取结果的偏差分布也随之更为离散,显然这也与记录信噪比逐渐降低有关。同时,本文也对比了不同震群事件的S波拾取精度(图9b-d),本文算法在不同震群中的表现也较为一致,其中:仙游震群(图9b)中震中距较小的记录占比较高,算法对于此部分记录(<5.0 s)也显示了更佳的性能,显然其信噪比也更高;同理海峡震群(图9c)和其它事件(图9d)中大震中距记录占比也相对更高,S波拾取残差随信噪比降低也变得更为离散,再次说明了记录的信噪比在应用本文S波拾取算法中的重要性。

    图  7  地震记录信噪比的分布
    (a) 拾取偏差大于2.0 s的406条记录;(b) 拾取偏差小于2.0 s的9449条记录
    Figure  7.  SNR distribution of seismic records
    (a) 406 records with S phase picking errors larger than ±2.0 s;(b) 9449 records with S phase picking errors less than ±2.0 s
    表  1  不同信噪比记录的S波到时拾取偏差统计
    Table  1.  Statistic on S phase picking error for different SNR records
    SNR记录数量偏差均值/s偏差中值/s偏差标准差/s
    <22 9530.1350.0401.92
    2—56 416−0.0510.0500.99
    ≥5486−0.2020.0400.96
    下载: 导出CSV 
    | 显示表格
    图  8  不同信噪比记录S波震相拾取偏差分布
    (a) 信噪比小于2.0的记录;(b) 信噪比大于2.0的记录
    Figure  8.  Pi chart of S phase detection error for different SNR records
    (a) Records with SNR less than 2.0;(b) Records with SNR larger than 2.0
    图  9  应用本文方法所得的S-P到时差与人工拾取结果对比及其信噪比分布
    (a) 所有记录;(b) 仙游震群;(c) 台湾海峡震群;(d) 其它事件
    Figure  9.  Comparison of the arrival time differences for S−P by our method with those by manual picking and SNR distributions
    (a) All records;(b) Xianyou sequence;(c) Taiwan Strait sequence;(d) Other events

    若对事件波形进行带通滤波(如1—20 Hz),则可在一定程度上提高记录质量,也将有利于提高S波震相的拾取精度。图6b展示了图6a所示波形记录经1—20 Hz零相移带通滤波后再次应用本文方法的S波震相拾取结果。图10则分别为该记录滤波前后应用本文方法的具体识别效果,其中各子图所展示内容与图1一致。如前文已提及,不同滑动窗长下,S波到时拾取位置也会有所差异,因而本文采用式(2)对不同窗长下的S波到到时拾取位置进行加权综合,而图1图10仅为某一窗长(分别为0.2 s和1.0 s)下的拾取结果,与图6中所示S波到时综合加权判别结果(虚线)会有所差异。对比可见,由于波形记录质量显著提高,S波震相拾取也更为准确,相较于人工拾取结果的偏差仅为0.36 s。需要说明的是,本文图4中所示震相拾取偏差均基于原始波形,未经带通滤波。鉴于上述分析,可推测出,若能够通过带通滤波提高部分低信噪比记录的信噪比水平,则震相拾取的偏差将得以改善。作者也将收集相关资料,继续深化该部分的研究。

    图  10  图6a中信噪比较低记录带通滤波前(a)、后(b)的S波到时拾取
    各子图意思同图1,事件发震时间为2015-01-08 05:48:44.56,台站ZPCH的震中距为99.8 km,窗长为1.0 s
    Figure  10.  S phase picking for a low SNR record in Fig. 6a before (a) and after (b) band-pass filtering
    Each subfigure has the same meaning as Fig. 1. The event occurred at 05:48:44.56 on 8 January 2015,which was recorded by the station ZPCH with epicentral distance 99.8 km. And time window length is taken as 1.0 s

    针对地震序列(尤其是大震后的密集余震序列)的处理能力也是考验震相拾取算法实用性的一个重要指标。鉴于序列震事件记录的复杂性及多样性,现有常规处理算法(如STA/LTA,AR-AIC,Z-detect等)均不能较为有效地处理和应对,本研究所涉及相关算法本质上也属于这类算法范畴。如前文所述,该算法不仅依赖于P波到时位置,而且仅能在P波到时之后的一段时间窗内识别唯一一个S波到时位置。显然,该算法基本不具备处理更为复杂的情况下序列地震的能力。图6c展示了一个密集序列的波形记录,在30 s内记录了多个小震事件,由于记录过于复杂,人工分析也仅标注了其中主要的S波震相到时(图6c中所标识Sg震相),而本文方法则只拾取到了序列中的一个可能的S波震相。由于本文方法尚不具备连续拾取后续震相的功能,因此本文方法在此类序列地震记录中的处理结果欠佳。在实际业务系统应用中,可适当提高S波尾波段阈值(即缩短事件持续时间),部分程度上可弥补在序列事件处理中的不足。

    此外,由于波形记录本身存在的质量缺陷也是造成S波震相拾取偏差过大的显著影响因素。本文中所讨论相关算法的有效性和可靠性均依赖特征值分析结果,而一旦所分析的波形存在异常,则将直接影响特征值的分解结果,进而造成S波到时拾取结果的较大偏差。由图6d可见,由于EW向分量波形显著异常(该分向无输出),特征值计算错误,最终导致S波拾取结果出现较大偏差。尽管此类问题在实际业务应用中无法完全避免,但通过对记录波形质量的分析监控,能够有效地避免将异常波形纳入处理,从而提高S波到时拾取结果的准确性。

    本文基于特征值分解算法,研究了一种可用于地方震S波震相实时提取的实用化算法。该算法对P、S波偏振方向不作任何假设,通过应用多个滑动时间窗即可较准确地拾取出S波震相到时,避免由于窗口长度选择不合理而造成的拾取偏差,满足地震信号的实时处理需求。应用福建地震台网地震观测的数据测试结果表明,该算法S波震相拾取精度高,适用于实时地震信息处理系统,但尚不具备密集序列连续处理能力。此外,由于应用该算法前需要首先已知P波到时信息,因此S波震相到时拾取的可靠性一定程度上也依赖于P波震相到时拾取的准确程度。但相较于S波震相,P波震相初动更为明显,因而更易于拾取,拾取精度更有保障。本文仅以福建地震台网100 km范围内的地方震事件为主,所拾取震相也主要为Sg震相,重点对该算法的适用性展开分析讨论,因而所得相关结论也可能不够全面。作者将继续收集相关波形数据,以更充分地论证该算法的适用性及其在实际数据处理系统中应用的可靠性。

    随着地震观测台站数量的不断增加及观测数据质量的逐步提升,近年来深度学习等人工智能算法在地震数据处理领域内的应用也越来越多。尤其是在震相拾取方面,已经有多个学者提出了高性能、高可信的相关震相拾取算法,如GPD算法(Ross et al,2018a)、U-net算法(赵明等,2019)、PhaseNet算法(Zhu,Beroza,2018)等。作者也将应用这类算法开展相关研究,并将其与传统方法进行整合,以期更快、更准、更全地产出震相到时信息。

    审稿专家为本文提出了建设性的修改意见,作者在此表示感谢。

  • 图  4   基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演随州ML4.7地震事件的震源机制解结果和理论合成波形(红线)与实际观测波形(黑线)的拟合结果

    波形左侧字母为台站名、震中距(单位:km)、方位角,波形下方数字表示时移(单位:s)以及互相关系数,震源球上的小红叉表示台站方位角,下图同

    Figure  4.   Inversion results of the focal mechanism solution of the Suizhou ML4.7 earthquake event by using the CAP method based on Crust1.0 (a),Shen et al2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)

    The letters on the left side of the waveform represent different station names, the number represents the epicenter distance (in km),and the numbers below the azimuth waveform show the time-shift values (in s) and correlation coefficients. The small red crosses on the source ball show the azimuths of the station. The same below

    图  1   湖北省构造背景以及中强地震和台站的分布

    断层数据引自邓起东等(2003),黑色实线为秦岭—大别造山带和扬子克拉通分界线

    Figure  1.   Tectonic settings and distribution of moderate-strong earthquakes and stations of Hubei Province

    The fault data refer to Deng et al2003). The black solid line is the boundary between the Qinling-Dabie orogenic belt and the Yangtze craton

    图  2   随州ML4.7 (a)和秭归MS4.5 (b)地震震源参数反演所用的P波和S波速度模型

    红、绿线代表Crust1.0模型,黑、灰线代表Shen等(2016)模型,蓝、棕线代表本文联合反演模型

    Figure  2.   The P and S wave velocity models used for inversion of source parameters of Suizhou ML4.7 (a) and Zigui MS4.5 (b) earthquakes

    The red and green lines represent the Crust1.0 model,the black and gray lines represent the model from Shen et al2016),while the blue and brown lines represent the joint inversion model in this study

    图  3   初始反演S波模型以及接收函数与面波联合反演示意图

    S波模型图中,绿色和蓝色虚线为初始反演S波模型,红色实线为最终反演结果;接收函数反演图中,蓝色、红色实线分别为观测、理论接收函数;面波反演图中黑点和红线分别代表观测值和理论值。 (a) 保康MS4.8;(b) 巴东MS5.1;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0

    Figure  3.   Initial inversion S-wave models and schematic diagrams of receiving function and surface wave joint inversion

    In the shear wave model subfigures,the green and blue dashed lines represent the initial S-wave models,while the red solid line represent the final inversion result. In the receiving function inversion subfigures,the blue and red solid lines represent the observed and theoretical receiver functions. In the surface wave inversion subfigures,the black dots and red lines represent observed and theoretical values. (a) Baokang MS4.8;(b) Badong MS5.1;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.0

    图  5   基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演2018年秭归MS4.5地震事件的震源机制解结果以及理论合成波形(红线)与实际观测波形(黑线)的拟合结果

    Figure  5.   Inversion results of the focal mechanism solution of the Zigui earthquake event by using the CAP method based on Crust1.0 (a),Shen et al2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)

    图  6   随州ML4.7和秭归MS4.5地震CAP反演误差随震源深度的分布

    Figure  6.   Distribution of CAP inversion error with focal depth for Suizhou ML4.7 and Zigui MS4.5 earthquakes

    图  7   中强地震震中区下方S波速度与震源机制(黑色方框为该地震的震源深度)

    (a) 巴东MS5.1;(b) 保康MS4.8;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0

    Figure  7.   S-wave velocities beneath the epicentral areas of the moderate-strong earthquakes where the black boxes show the source depths of the earthquake,and the focal mechanism are also given

    (a) Badong MS5.1;(b) Baokang MS4.8;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.0

    表  1   使用CAP方法求解的湖北省中强地震震源参数

    Table  1   Focal parameters of moderate-strong earthquakes of Hubei Province estimated by the CAP method

    地震事件震中位置 MW深度
    /km
    节面Ⅰ节面Ⅱ震源参数来源
    东经/°北纬/°走向/ o倾向/ o滑动角/ o走向/ o倾向/ o滑动角/ o
    2 006年随州地震113.1031.50 4.148.012678−3022361−166本文研究
    2 013年巴东地震110.4031.09 4.94.673581681698032Huang等(2 018
    2 014年秭归地震110.7730.92 4.6 (MS7.5331714022653156王秋良等(2 016
    2 018年秭归地震110.4731.03 4.375.015584326158173本文研究
    2 019年应城地震113.4030.87 4.677.514968155376157赵凌云等(2 022
    下载: 导出CSV
  • 邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊):66–73.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).

    邓世广. 2022. 中国大陆中强地震复发间隔的概率分布研究[J]. 地震科学进展,52(4):161–167.

    Deng S G. 2022. Distribution research of recurrence interval for moderate-strong earthquake in the mainland of China[J]. Progress in Earthquake Sciences,52(4):161–167 (in Chinese).

    甘家思,袁金荣,申重阳. 2000. 神农架断块西缘北北西向板桥断裂带新活动调查研究[J]. 地壳形变与地震,20(1):79–85.

    Gan J S,Yuan J R,Shen C Y. 2000. Investigation of neotectonic activity of NNW-strike Banqiao fault zone in western boundary of the Shennongjia block[J]. Journal of Geodesy and Geodynamics,20(1):79–85 (in Chinese).

    高红亮,姚运生,张丽芬. 2015. 2013年湖北巴东MS5.1地震成因机制探讨[J]. 防灾科技学院学报,17(3):17–23. doi: 10.3969/j.issn.1673-8047.2015.03.003

    Gao H L,Yao Y S,Zhang L F. 2015. Focal mechanism of Badong MS5.1 earthquake in 2013[J]. Journal of Institute of Disaster Prevention,17(3):17–23 (in Chinese).

    何钰铭,彭正华,石长柏,谢迪,赵振洋,黄宁. 2024. 湖北省三峡库区砂泥岩互层岩体劣化特征与劣化机理分析[J]. 中国资源综合利用,42(1):34–37. doi: 10.3969/j.issn.1008-9500.2024.010

    He Y M,Peng Z H,Shi C B,Xie D,Zhao Z Y,Huang N. 2024. Analysis of the deterioration characteristics and mechanism of sandstone-mudstone interbedded rock mass in the Three Gorges Reservoir area of Hubei Province[J]. China Resources Comprehensive Utilization,42(1):34–37 (in Chinese).

    胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013

    Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the West Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750

    冷崇标,张辉,曾智辉,安一凡. 2023. 湖北及周边地区地震活动分形特征与R/S分析[J]. 科学技术创新,(14):89–92. doi: 10.3969/j.issn.1673-1328.2023.14.023

    Leng C B,Zhang H,Zeng Z H,An Y F. 2023. Fractal characteristics and R/S analysis of seismic activity in Hubei and its surrounding areas[J]. Scientific and Technological Innovation,(14):89–92 (in Chinese).

    李峰,李垠,薛军蓉,陈俊华. 2007. 湖北随州ML4.7地震序列基础资料分析[J]. 大地测量与地球动力学,27(增刊):56–61.

    Li F,Li Y,Xue J R,Chen J H. 2007. Analysis on basic data of ML4.7 earthquake sequence in Suizhou,Hubei[J]. Journal of Geodesy and Geodynamics,27(S1):56–61 (in Chinese).

    梁姗姗,徐志国,黄小宁,张广伟,邹立晔,周元泽. 2024. 新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境[J]. 地球科学,49(2):451–468.

    Liang S S,Xu Z G,Huang X N,Zhang G W,Zou L Y,Zhou Y Z. 2024. Regional seismogenic environment revealed by the 3D crustal velocity structure and focal mechanism of moderate and strong earthquakes in Jiashi area,Xinjiang,China[J]. Earth Science,49(2):451–468 (in Chinese).

    刘冠男,柳存喜,王志. 2021. 青藏高原东南缘深部多参数属性变化与中强震孕育响应关系[J]. 地球物理学报,64(11):3948–3969. doi: 10.6038/cjg2021P0061

    Liu G N,Liu C X,Wang Z. 2021. The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,64(11):3948–3969 (in Chinese).

    邱瑞照,邓晋福,周肃,李金发,肖庆辉,吴宗絮,刘翠. 2004. 华北地区岩石圈类型:地质与地球物理证据[J]. 中国科学:D辑,34(8):698–711.

    Qiu R Z,Deng J F,Zhou S,Li J F,Xiao Q H,Wu Z X,Liu C. 2005. Lithosphere types in North China:Evidence from geology and geophysics[J]. Science in China:Series D,48(11):1809–1827. doi: 10.1360/03yd0380

    申重阳,李安然,王清云,张飞飞. 1994. 麻城1932年6.0级地震区地球物理场与深部环境研究[J]. 地壳形变与地震,14(3):65–73.

    Sheng C Y,Li A R,Wang Q Y,Zhang F F. 1994. Study on geophysical field and deep seismogenic environment of the Macheng earthquake (MS=6.0) in 1932[J]. Crustal Deformation and Earthquake,14(3):65–73 (in Chinese).

    王力伟,吴国瑞,黄柳芳. 2018. CAP方法反演新丰江锡场地区ML4.0级以上地震震源机制解[J]. 华南地震,38(3):1–8.

    Wang L W,Wu G R,Huang L F. 2018. Focal mechanism inversion of ML≥4.0 earthquakes in Xichang,Xinfengjiang reservoir by CAP method[J]. South China Journal of Seismology,38(3):1–8 (in Chinese).

    王秋良,张丽芬,廖武林,李井冈. 2016. 2014年3月湖北省秭归县M4.2、M4.5地震成因分析[J]. 地震地质,38(1):121–130. doi: 10.3969/j.issn.0253-4967.2016.01.009

    Wang Q L,Zhang L F,Liao W L,Li J G. 2016. Research on genesis of M4.2 and M4.5 earthquake sequences in March 2014 in Zigui county,Hubei Province[J]. Seismology and Geology,38(1):121–130 (in Chinese).

    王未来,吴建平,房立华. 2009. 唐海—商都地震台阵剖面下方的地壳上地幔S波速度结构研究[J]. 地球物理学报,52(1):81–89.

    Wang W L,Wu J P,Fang L H. 2009. Crust and upper mantle S-wave velocity structure beneath Tanghai-Shangdu seismic array profile[J]. Chinese Journal of Geophysics,52(1):81–89 (in Chinese).

    王小亚,朱文耀,符养,游新兆,王琪,程宗颐,任金卫. 2002. GPS监测的中国及其周边现时地壳形变[J]. 地球物理学报,45(2):198–209. doi: 10.3321/j.issn:0001-5733.2002.02.006

    Wang X Y,Zhu W Y,Fu Y,You X Z,Wang Q,Cheng Z Y,Ren J W. 2002. Present-time crustal deformation in China and its surrounding regions by GPS[J]. Chinese Journal of Geophysics,45(2):198–209 (in Chinese).

    翁骋,李俊超. 2017. 利用sPL震相测定湖北秭归MS4.7地震震源深度及研究方法展望[J]. 科学技术创新,(33):61–62. doi: 10.3969/j.issn.1673-1328.2017.33.037

    Weng C,Li J C. 2017. Outlook on using sPL seismic phase to determine the depth of the MS4.7 earthquake source in Zigui,Hubei and research methods[J]. Scientific and Technological Innovation,(33):61–62 (in Chinese).

    吴海波,姚运生,薛军蓉. 2009. 汶川地震对湖北地震活动趋势的影响[J]. 大地测量与地球动力学,29(增刊):59–65.

    Wu H B,Yao Y S,Xue J R. 2009. Effect of Wenchuan earthquake on seismic activity in Hubei[J]. Journal of Geodesy and Geodynamics,29(S1):59–65 (in Chinese).

    吴海波,申学林,王杰,赵凌云,陈俊华. 2018. 三峡库区上地壳三维速度结构的双差层析成像研究[J]. 地球物理学报,61(7):2802–2814. doi: 10.6038/cjg2018L0345

    Wu H B,Shen X L,Wang J,Zhao L Y,Chen J H. 2018. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography[J]. Chinese Journal of Geophysics,61(7):2802–2814 (in Chinese).

    吴海波,王杰,邹正波,陈俊华. 2021. 三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究[J]. 地球物理学报,64(2):484–497. doi: 10.6038/cjg2021N0281

    Wu H B,Wang J,Zou Z B,Chen J H. 2021. Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong,Three Gorges Reservoir[J]. Chinese Journal of Geophysics,64(2):484–497 (in Chinese).

    吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010

    Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).

    谢祖军,郑勇,倪四道,熊熊,王行舟,张炳. 2012. 2011年1月19日安庆ML4.8地震的震源机制解和深度研究[J]. 地球物理学报,55(5):1624–1634. doi: 10.6038/j.issn.0001-5733.2012.05.020

    Xie Z J,Zheng Y,Ni S D,Xiong X,Wang X Z,Zhang B. 2012. Focal mechanism and focal depth of the 19 January 2011 Anqing earthquake[J]. Chinese Journal of Geophysics,55(5):1624–1634 (in Chinese).

    徐嘉炜. 1995. 论走滑断层作用的几个主要问题[J]. 地学前缘,2(1/2):125–136. doi: 10.3321/j.issn:1005-2321.1995.01.015

    Xu J W. 1995. Some major problems on strike-slip faulting[J]. Earth Science Frontiers,2(1/2):125–136 (in Chinese).

    严尊国. 2002. 2002年湖北省地震趋势估计[C]//2002年湖北省减轻自然灾害白皮书:湖北省2002年重大自然灾害合趋势分析会商会论文集. 武汉:湖北省灾害防御协会:36−39.

    Yan Z G. 2002. Estimation of earthquake trends in Hubei Province in 2002[C]//2002 Hubei Province White Paper on Reducing Natural Disasters:Collected Papers of the Chamber of Commerce for the Analysis of Major Natural Disasters in Hubei Province in 2002. Wuhan:Hubei Provincial Disaster Prevention Association:36−39 (in Chinese).

    易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. doi: 10.6038/cjg20171033

    Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).

    詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报,64(7):2232–2252. doi: 10.6038/cjg2021O0521

    Zhan Y,Liang M J,Sun X Y,Huang F P,Zhao L Q,Gong Y,Han J,Li C X,Zhang P Z,Zhang H P. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics,64(7):2232-2252 (in Chinese).

    张杰,黄禄渊,贾晋,徐鑫,刘卓岩. 2017. 关于水库“触发地震”和“诱发地震”的思考与探讨[G]//地壳构造与地壳应力文集. 北京:中国地震局地壳应力研究所:74–82.

    Zhang J,Huang L Y,Jia J,Xu X,Liu Z Y. 2017. Thinking and discussion about reservoir “triggered seismicity” and “induced seismicity”[G]//Bulletin of the Institute of Crustal Dynamics. Beijing:Institute of Crustal Dynamics,China Earthquake Administration:74−82 (in Chinese).

    张丽芬,姚运生,廖武林,李井冈,王秋良,王墩. 2011. 湖北地区上地幔各向异性及其动力学意义[J]. 地球物理学报,54(1):35–43. doi: 10.3969/j.issn.0001-5733.2011.01.005

    Zhang L F,Yao Y S,Liao W L,Li J G,Wang Q L,Wang D. 2011. Research on the upper mantle seismic anisotropy beneath Hubei and its geodynamic implication[J]. Chinese Journal of Geophysics,54(1):35–43 (in Chinese). doi: 10.1002/cjg2.1584

    赵凌云,丁文秀,周舟,周本伟,何凯,申学林,魏贵春. 2022. 基于CAP方法的2019年湖北应城MS 4.9地震震源机制与发震构造研究[J]. 四川地震,(3):20–23.

    Zhao L Y,Ding W X,Zhou Z,Zhou B W,He K,Shen X L,Wei G C. 2022. Focal mechanism solution and seismogenic structure of the MS4.9 Yingcheng earthquake in 2019 from the CAP method[J]. Earthquake Research in Sichuan,(3):20–23 (in Chinese).

    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031

    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).

    郑勇,马宏生,吕坚,倪四道,李迎春,韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学:D辑,39(4):413–426.

    Zheng Y,Ma H S,Lü J,Ni S D,Li Y C,Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China:Series D,52(6):739–753. doi: 10.1007/s11430-009-0074-3

    郑勇,葛粲,谢祖军,Yang Y J,熊熊,许厚泽. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境[J]. 中国科学:地球科学,43(6):1027–1037.

    Zheng Y,Ge C,Xie Z J,Yang Y J,Xiong X,Hsu H T. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake[J]. Science China Earth Sciences,56(7):1158–1168. doi: 10.1007/s11430-013-4641-2

    Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303

    Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos,120(1/2):96–115.

    Cheng S H,Xiao X,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2022. Crustal thickness and vP/vS variation beneath continental China revealed by receiver function analysis[J]. Geophys J Int,228(3):1731–1749.

    He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365

    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096

    Huang R,Zhu L P,Encarnacion J,Xu Y X,Tang C C,Luo S,Jiang X H. 2018. Seismic and geologic evidence of water-induced earthquakes in the Three Gorges Reservoir region of China[J]. Geophys Res Lett,45(12):5929–5936. doi: 10.1029/2018GL077639

    Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x

    Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x

    Langston C A. 1977. Corvallis,oregon,crustal and upper mantle receiver structure from teleseismic P and S waves[J]. Bull Seismol Soc Am,67(3):713–724. doi: 10.1785/BSSA0670030713

    Laske G,Ma Z T,Masters G,Pasyanos M. 2013. A new global crustal model at 1×1 degrees [EB/OL]. [2024-02-12]. https://igppweb.ucsd.edu/~gabi/crust1.html.

    Li L L,Huang X L,Yao H J,Miao P,Wang X L,Bao Z W,Ni H Y,Li C,Yang Y,Luo S,Hu S Q,Yang Y Y. 2020. Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment[J]. Chinese Journal of Geophysics,63(9):3307–3323.

    Li S L,Mooney W D,Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics,420(1/2):239–252.

    Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365. doi: 10.1038/ngeo2130

    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419

    Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614.

    Shen W S,Ritzwoller M H,Kang D,Kim Y,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    Tape C,West M,Silwal V,Ruppert N. 2013. Earthquake nucleation and triggering on an optimally oriented fault[J]. Earth Planet Sci Lett,363:231–241. doi: 10.1016/j.jpgl.2012.11.060

    Wu Y,Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth Planet Phys,3(5):425–434. doi: 10.26464/epp2019044

    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634

    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x

  • 期刊类型引用(6)

    1. 刘文玉,程正璞,年秀清,陈闫,胡钰铃,覃祖建,邵明正. 基于三维剩余密度结构的松原地震成因. 地震地质. 2024(02): 462-476 . 百度学术
    2. 张仁鹏,雷焕珍,陈聪,陈琳荣,冯靖乔. 2019年松原M_S5.1地震烈度评定及震害特征简析. 防灾减灾学报. 2023(01): 34-40 . 百度学术
    3. 于晨,卢军,解滔,刘长生. 2017—2019年松原地区4次中强地震前绥化台地电阻率异常分析. 中国地震. 2023(02): 314-324 . 百度学术
    4. 张仁鹏,冯靖乔,雷焕珍,于宏伟,马飞,王佳蕾. 松原市5.7级和5.1级地震房屋震害特征分析与启示. 防灾科技学院学报. 2022(03): 80-87 . 百度学术
    5. 李梦莹,张志宏,焦明若,方禹心. 2018-05-28松原M_S5.7地震地电场变化特征研究. 大地测量与地球动力学. 2022(12): 1276-1280+1299 . 百度学术
    6. 李梦莹,杨士超,张志宏,孔祥瑞,孙庆山. 2018年松原M_S 5.7地震地电场变化特征. 地震地磁观测与研究. 2022(S1): 120-122 . 百度学术

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  25
  • PDF下载量:  15
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-08-01
  • 刊出日期:  2025-05-14

目录

/

返回文章
返回