The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province
-
摘要:
通过CAP技术反演了湖北省2018年秭归MS4.5和2006年随州ML4.7地震的震源参数,并采用接收函数与面波相速度频散曲线联合方法揭示了湖北省有地震记录以来的三次M6以上强震和1958年地震仪观测以来的六次M4.5—6.0地震震中处的地壳剪切波速度。结果显示:随州地震走向呈NW向,震源深度为8 km,发震断层与襄樊—广济断裂带以及皂市断裂或潜北断裂有关;秭归地震走向为NNE和NE向,震源深度为5 km,发震断层与新华—龙王冲断裂带和高桥断裂带有关。基于前人采用CAP等方法得到的2013年巴东MS5.1、2014年秭归MS4.6和2019年应城MS4.9地震的震源机制解以及本文接收函数与面波联合反演所得的地壳S波速度对孕震环境和震源机制进行研究,结果显示:湖北地区中等地震的发震断层都以走滑为主,与断裂构造分布状况相对应;获得震源机制解的五次中强地震分别发生在不同速度特征的垂向高低速转换区域,四次震源深度未知的中强震在传统发震层深度范围内也呈现明显的垂向高低速互层变化特征;2006年随州ML4.7、2014年秭归MS4.6和2019年应城MS4.9地震可能为构造型地震,2013年巴东MS5.1和2018年秭归MS4.5地震可能为水库触发型地震。
Abstract:Research on earthquake trends, investigations of seismo-geological characteristics, and studies of seismic activity in Hubei Province shows that Hubei and its neighboring regions exhibit a background conducive of moderate to strong earthquakes. In the Yangtze craton of Hubei Province, which is structurally stable and characterized by low heat flow and strong rigidity, moderate to strong earthquakes occurred one after another in recent years. The seismogenic background and seismogenic structure have drawn considerable attention, but systematic research in this regard remains relatively scarce.
In this paper we uses CAP (cut and paste) technology to invert the source parameters of the 2018 Zigui MS4.5 earthquake and the 2006 Suizhou ML4.7 earthquake. And then we have employed a joint method of receiver function and surface wave phase velocity dispersion curve to reveal the shear wave velocity of the crust at the epicenter of three earthquakes with M≥6 (documented since the start of earthquake records) and six earthquakes with M4.5−6.0 (recorded following the implementation of seismometer observations in 1958) in Hubei Province. The results indicate that for the 2006 Suizhou ML4.7 earthquake, the strike, dip angle, and rake were 126°, 78° and −30°, respectively, the strike direction was NW, and the focal depth was 8 km. The seismogenic fault was related to the northwest trending Xiangfan-Guangji fault zone and its subfaults (Zaoshi fault or Qianbei fault). For the 2018 Zigui MS4.5 earthquake, the strike, dip angle, and rake were 61°, 58° and 173°, the strike was NNE and NE, and the focal depth is ML4.75 km. The seismogenic fault was related to the Xinhua-Longwangchong fault zone and Gaoqiao fault zone. Based on the source mechanism solutions of the 2013 Badong MS5.1, 2014 Zigui MS4.6, and 2019 Yingcheng MS4.9 earthquakes obtained by previous researches using CAP and other methods, as well as the crustal S-wave velocity obtained by the joint inversion of receiver function and surface wave in this paper, it was found that the seismogenic faults of medium and strong earthquakes are mainly of strike-slip, which is corresponding to the distribution of fault structures. For the 2013 Badong MS5.1 earthquake and the 2014 Zigui MS4.6 earthquake, their S-wave velocities vary from low to high, with velocity percentage changes of 4% and 7%, respectively. In contrast, for the 2018 Zigui MS4.5, 2006 Suizhou ML4.7, and 2019 Yingcheng MS4.9 earthquakes, the S-wave velocities vary from high to low, with velocity variations percentage of −4%, −1%, and −2%, respectively. The five moderate-strong earthquakes, for which the focal mechanism solutions were obtained, occurred in vertical high-low velocity transition zones with different velocity characteristics. Additionally the four moderate to strong earthquakes with unknown focal depths also exhibited significant vertical high-low velocity interlayer variations within the traditional depth range of the seismogenic layer. The risk of moderate to strong earthquakes in Hubei Province has increased. Seismic activity is significantly higher in the western part of the province compared to the eastern part, with a concentration in Zigui and its adjacent areas. Small and medium-sized earthquakes are also clustered in the source area and its adjacent areas of Zigui, which needs to be monitored specially. The paper suggests that the 2006 Suizhou ML4.7, the 2014 Zigui MS4.6, and the 2019 Yingcheng MS4.9 earthquakes may be structural earthquakes, which are speculated to be related to the reverse compression of the northwest Yangtze Plate, the relative compression and impact of the southwest Indian Plate, and the activation of preexisting faults under the dual effects of subduction of the Pacific Plate and rock asthenosphere system. The 2013 Badong MS5.1 earthquake and the 2018 Zigui MS4.5 earthquake occurred in the vicinity of the Three Gorges Reservoir, with shallow epicentral depth. It is speculated that the reservoir’s water impoundment and subsequent downward infiltration altered the local seismic environment, potentially rendering these events reservoir-triggered earthquakes.
In summary, it is necessary to persistently focus on and strengthen the research on earthquake trends, geological characteristics of earthquakes, and monitoring of earthquake activities in Hubei Province. This is crucial for averting the earthquake-related disasters risk and reducing the huge losses caused by earthquakes. The study of the seismogenic environment and focal mechanism of moderate to strong earthquakes can provide reference for understanding earthquake characteristics and earthquake prevention and disaster reduction in Hubei Province.
-
引言
湖北省地处长江中下游地区,被青峰—襄樊—广济断裂分为两部分,北部大部分区域处于中央造山带,南部则坐落于相对稳定的扬子克拉通地块上(图1)。从地震活动情况来看,湖北省发生强震和破坏性地震的概率相对较低,其地震构造背景融合了上述两大构造单元的特点(张丽芬等,2011)。据统计,湖北省历史上共发生过三次M6.0以上强震,分别为公元788年竹山M6½地震、1856年6月10号咸丰M6¼地震,以及1932年麻城M6.0地震。自1958年开启地震仪观测以来,湖北省共计发生六次M≥4.5中强地震,分别为1969年襄阳保康MS4.8地震、2006年随州ML4.7地震、2013年巴东MS5.1地震、2014年秭归MS4.6地震、2018年秭归MS4.5地震以及2019年应城MS4.9地震。上述地震除麻城M6.0和随州ML4.7发生在中央造山带及其附近之外,其它七次地震都发生在较为稳定的扬子克拉通内(图1)。湖北省2006—2019年发生的中强地震中,三次地震发生在三峡大坝库区附近,且2019年应城MS4.9地震震中距武汉市仅95 km左右。值得注意的是,这两大地区均位于两湖盆地,区域经济繁荣、人口稠密,如果在该地区发生浅震,必将严重威胁到人员的生命并导致财产的重大损失。因此有必要准确获取上述中强地震的速度结构和震源参数,这可为研究克拉通地区的地震孕震特征和发震机制、水库蓄水对地震触发的影响提供参考,也可为湖北省地震特征和防震减灾、监测应急等提供科学支持。
图 1 湖北省构造背景以及中强地震和台站的分布断层数据引自邓起东等(2003),黑色实线为秦岭—大别造山带和扬子克拉通分界线Figure 1. Tectonic settings and distribution of moderate-strong earthquakes and stations of Hubei ProvinceThe fault data refer to Deng et al (2003). The black solid line is the boundary between the Qinling-Dabie orogenic belt and the Yangtze craton关于湖北省上述中强地震的发震构造及其孕震环境,前人已就震源区下方的精细速度结构和震源信息进行了深入研究(郑勇等,2009;易桂喜等,2017;梁姗姗等,2024)。例如:申重阳等(1994)采用对数功率谱、谱域矩量法和快速位场算法,对1932年M6.0麻城地震震区的深部孕震条件进行分析,结果显示该震源区具有特定的孕震构造及应力条件;李峰等(2007)结合三里岗数字台的监测记录和现场调查资料对2006年随州ML4.7地震序列的时空强特征及地震成因机理进行了分析,发现地震序列波形P波初动可能与震中相对集中分布有关;高红亮等(2015)利用velest程序和小震丛集性理论对2013年MS5.1巴东地震序列进行重定位并且反演了发震断层的断层面参数,结果显示该地震序列呈近EW向分布;翁骋和李俊超(2017)运用f-κ法模拟了2014年湖北秭归地震不同深度的三分量理论震相,通过将SPL震相与实际波形进行拟合比对确定了震源深度,进而探讨了SPL震相用于确定震源深度的准确度及其不足;Huang等(2018)利用CAP (cut and paste)方法(Zhu,Helmberger,1996)反演了2013年MS5.1巴东地震的震源深度和震源机制解,揭示了水文地质与断层之间的相关性;吴海波等(2018)在双差定位基础上反演了三峡库区和邻区的上地壳P波三维速度结构,并讨论了库水渗透、速度结构与库区地震活动的关系;赵凌云等(2022)利用CAP法反演了2019年MS4.9湖北应城地震的震源机制解,分析结果表明该地震的发生是含逆冲成分的走滑型断层错动所致,与皂市断裂有关。以上研究多侧重部分地震的震源机制或孕震背景,缺乏对地震特征和震中下方精细地壳结构的综合对比分析。
鉴于此,本文拟采用目前常用的CAP方法反演2006年随州ML4.7地震和2018年秭归MS4.5地震的震源参数信息,并采用接收函数与面波联合反演方法(Julià et al,2000)获得上述九次中强震震中下方的地壳S波速度,进而结合已有结果对湖北省中强地震的震源机制和发震构造分析对比,以探讨扬子克拉通内中强震的孕震环境。
1. 数据与方法
1.1 数据
本研究所用数据包括三部分:① 2018年秭归MS4.5地震震中及邻区3°以内固定台站记录的波形事件,由中国地震局地球物理研究所国家测震台网数据备份中心提供(郑秀芬等,2009),以及重庆黔江台和湖北竹溪台两个固定台站2012—2014年记录的远震资料;② 2006年随州ML4.7地震周边固定地震台站记录的波形事件,由国家地震科学数据中心提供;③ 2021年6月至2022年4月布设于湖北省中强地震震中处的宽频带流动地震台(图1)记录到的波形数据。
依据M>5.5、震中距居于30°—90°范围的标准,从上述事件中筛选出远震事件。随后截取直达P波到时前20 s和后80 s的波形数据,并采用时间域迭代反褶积方法(Herrmann,2013)提取高斯系数为2.0的P波径向接收函数。在此过程中,人工剔除接收函数中Ps震相不清晰的波形,保留地震反方位角主要分布在110°—220°的接收函数,以便开展下一步的成像工作。8—70 s相速度频散曲线来自噪声或面波成像结果(Shen et al,2016)。
1.2 CAP波形拟合反演方法
鉴于CAP波形拟合反演方法(Zhao,Helmberger,1994;Zhu,Helmberger,1996)能够显著降低近台记录偏差以及地下速度结构不确定性所造成的影响,且过往研究(Zhu,Helmberger,1996;谢祖军等,2012;Tape et al,2013;王力伟等,2018)均表明利用该方法所获得的震源机制解和地震质心深度具有较高的可靠性,因此本文采用该方法获取湖北2006年随州ML4.7和2018年秭归MS4.5地震的震源机制解和震源深度。
首先,去除原始数据的仪器响应,以获得相应波形的位移记录;然后,手动删除质量较差的数据波形;接着,将波形分量旋转至径向和切向,并对旋转后的数据减采样,将采样率降至20 Hz,以便提高后续计算速度。在进行震源参数反演时,震源区采用Shen等(2016)、Crust1.0 (Laske et al,2013)和联合反演得出的P波和S波速度模型(图2),并利用f-κ方法(Zhu,Rivera,2002)计算不同深度下的格林函数。CAP反演时,将体波权重设置为面波的两倍,相应的时窗长度分别设为40 s和75 s。针对震级不同的地震,采用不同的频带进行滤波。之后将理论波形与Pnl和面波部分的波形进行拟合,最后利用网格搜索法筛选出拟合误差最小的波形,此即为最优拟合结果。
图 2 随州ML4.7 (a)和秭归MS4.5 (b)地震震源参数反演所用的P波和S波速度模型红、绿线代表Crust1.0模型,黑、灰线代表Shen等(2016)模型,蓝、棕线代表本文联合反演模型Figure 2. The P and S wave velocity models used for inversion of source parameters of Suizhou ML4.7 (a) and Zigui MS4.5 (b) earthquakesThe red and green lines represent the Crust1.0 model,the black and gray lines represent the model from Shen et al (2016),while the blue and brown lines represent the joint inversion model in this study1.3 接收函数与面波联合反演
接收函数和面波频散被广泛用来研究地壳、上地幔结构特征(Langston,1977;吴庆举,曾融生,1998;Shapiro,Campillo,2004;Chen,2010;Li et al,2020)。接收函数对速度间断面辨别力强,然而依赖初始模型和非唯一性的反演结果(Ammon et al,1990)。面波虽然对速度间断面不敏感,然而其特有的频散特征能较好地约束S波的绝对速度值。拟合接收函数与面波频散联合反演,能有效利用其各自优势,取长补短,减小结果的非唯一性,从而让结果更加合理可靠,该方法目前已被用来反演全球多个地区台站下方的地壳S波速度(胡家富等,2005;王未来等,2009;Liu et al,2014)。
本文采用CPS程序中的接收函数和面波联合反演方法(Herrmann,2013),得到湖北省九次中强震震中下方的地壳S波速度。在设定初始S波速度模型时,参考Kennett等(1995)的成果将地壳速度和地幔速度分别设为3.617 km/s和4.48 km/s;P波速度与莫霍面深度则参考Li等(2006)关于湖北省地区P波速度与莫霍面深度的结果。模型分层设置方面,0—10 km范围内每层厚度设为1 km,10—60 km范围内每层厚度设为2 km,在6 km深度处设置一渐变壳幔过渡带,以减少不稳定性对结果的干扰。基于上述初始模型(图3中绿虚线)进行接收函数与面波联合反演。反演过程分为两步:第一步,只拟合频散曲线,获得一阶反演速度,将其作为下一步联合反演的初始模型(图3中蓝虚线);第二步,拟合接收函数和面波频散曲线,反演得到台站下方最终的S波速度。反演过程中,首先选取接收函数时窗为−5—25 s,相速度频散曲线范围为8—70 s;然后分别为接收函数和面波频散曲线赋予0.7和0.3的加权值,同时将拟合度低于65%的接收函数波形删除。从图3可见,接收函数的波形拟合度都高达80%以上,面波频散曲线匹配较好,表明本文的反演结果具有较高的可靠性。
图 3 初始反演S波模型以及接收函数与面波联合反演示意图S波模型图中,绿色和蓝色虚线为初始反演S波模型,红色实线为最终反演结果;接收函数反演图中,蓝色、红色实线分别为观测、理论接收函数;面波反演图中黑点和红线分别代表观测值和理论值。 (a) 保康MS4.8;(b) 巴东MS5.1;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0Figure 3. Initial inversion S-wave models and schematic diagrams of receiving function and surface wave joint inversionIn the shear wave model subfigures,the green and blue dashed lines represent the initial S-wave models,while the red solid line represent the final inversion result. In the receiving function inversion subfigures,the blue and red solid lines represent the observed and theoretical receiver functions. In the surface wave inversion subfigures,the black dots and red lines represent observed and theoretical values. (a) Baokang MS4.8;(b) Badong MS5.1;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.02. 结果
基于Crust1.0模型、Shen等(2016)模型和联合反演模型,使用图1中所示近震台站的地震波形数据,本文采用CAP方法进行反演,得到了湖北随州ML4.7和秭归MS4.5中强地震的矩震级、震源机制解(图4a,5a)和矩心深度(图6)。从图4a所示的随州地震事件的结果可知,节面Ⅰ的走向、倾向和滑动角分别为126°,78和−30°;节面Ⅱ的为223°,61°和−166°,最佳矩震级为MW4.14。从图5a可见:秭归地震节面Ⅰ和Ⅱ的走向、倾向、滑动角分别为155°,84°,32°和61°,58°,173°,最佳矩震级为MW4.37。根据图4和图5可见,从三个不同模型得到的震源机制解和深度最优结果基本相同,且地震波形拟合得也较好,进一步证明本研究得到的反演结果较稳定可靠。从图6也可以清晰看到,当两次中强震的反演结果拟合误差最小时,波形的匹配度达到最高,震源机制解结果也较为可靠,基于此,可确定最佳矩心深度分别为8 km和5 km。对于秭归MS4.5和随州ML4.7地震,我们从最终反演所采用的台站中随机挑选80%的台站,利用Crust1.0速度模型进行50组抽样反演。结果显示,随州地震的矩心深度分别为7 km,8 km和9 km,秭归地震的矩心深度分别5 km和6 km,其中8 km出现的比例为72%,5 km出现的比例为86%,这进一步表明所确定的最佳矩心深度8 km和5 km是稳定可靠的。
图 4 基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演随州ML4.7地震事件的震源机制解结果和理论合成波形(红线)与实际观测波形(黑线)的拟合结果波形左侧字母为台站名、震中距(单位:km)、方位角,波形下方数字表示时移(单位:s)以及互相关系数,震源球上的小红叉表示台站方位角,下图同Figure 4. Inversion results of the focal mechanism solution of the Suizhou ML4.7 earthquake event by using the CAP method based on Crust1.0 (a),Shen et al (2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)The letters on the left side of the waveform represent different station names, the number represents the epicenter distance (in km),and the numbers below the azimuth waveform show the time-shift values (in s) and correlation coefficients. The small red crosses on the source ball show the azimuths of the station. The same below图 5 基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演2018年秭归MS4.5地震事件的震源机制解结果以及理论合成波形(红线)与实际观测波形(黑线)的拟合结果Figure 5. Inversion results of the focal mechanism solution of the Zigui earthquake event by using the CAP method based on Crust1.0 (a),Shen et al (2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)如图3所示,一方面,在表层2 km深度时,重庆黔江台的S波速度小于2.4 km/s,应城MS4.9地震震源处台站下方的速度小于2 km/s,其余中强震震中处台站下方的浅表层S波速度都超过2.7 km/s;在0—7 km深度时,湖北竹溪台以及麻城M6.0、巴东MS5.1、保康MS4.8、随州ML4.7和秭归MS4.5地震震中处台站的下方都存在低速层,而应城MS4.9和秭归MS4.6地震震中处台站和重庆黔江台下方的S波速度普遍呈增大的趋势。另一方面,重庆黔江台、湖北竹溪台以及保康MS4.8、随州ML4.7、秭归MS4.5和应城MS4.9地震震中处台站下方的中下地壳S波速度整体呈现与深度变化相对应的趋势。然而,其余三次中强地震震中处台站下方的中下地壳的S波速度变化起伏较小,高速与低速异常情况发生。本文得到的整体高速的中下地壳结构与前人采用接收函数和层析成像得到的湖北省地壳结构结果(He et al,2014;Cheng et al,2022)一致,表明了本文联合反演结果的可靠性。
3. 讨论
3.1 随州ML4.7和秭归MS4.5地震的震源机制解分析
按上述方法反演得到了2006年随州ML4.7和2018年秭归MS4.5地震的矩震级、最佳震源深度以及节理面产状,详列于表1。根据表1中随州地震的节理面产状并结合当地地质资料,推测2006年随州地震的走向为NW向,与NW向襄广断裂带以及皂市或潜北断裂破裂有关,这与李峰等(2007)对随州地震的构造应力研究结果一致。表1中2018年秭归地震的断面走向为NNE和NE向,这与吴海波等(2021)的矩张量反演结果一致,推测该地震的实际断层面很可能为走向61°、倾向58°、滑动角173°,与高桥断裂带和新华—龙王冲断裂带有关。地震的孕育、发震机理与走滑断层的枢纽运动密切相关(徐嘉炜,1995),从表1所示的节面产状看,五次中强地震都具有走滑性质,其震中所处位置均与大地断裂构造分布对应(图1),表明其孕育发生可能与断裂新构造运动变形存在特定的联系,这与甘家思等(2000)关于断裂带新活动调查的研究一致。
表 1 使用CAP方法求解的湖北省中强地震震源参数Table 1. Focal parameters of moderate-strong earthquakes of Hubei Province estimated by the CAP method地震事件 震中位置 MW 深度
/km节面Ⅰ 节面Ⅱ 震源参数来源 东经/° 北纬/° 走向/ o 倾向/ o 滑动角/ o 走向/ o 倾向/ o 滑动角/ o 2 006年随州地震 113.10 31.50 4.14 8.0 126 78 −30 223 61 −166 本文研究 2 013年巴东地震 110.40 31.09 4.9 4.6 73 58 168 169 80 32 Huang等(2 018) 2 014年秭归地震 110.77 30.92 4.6 (MS) 7.5 331 71 40 226 53 156 王秋良等(2 016) 2 018年秭归地震 110.47 31.03 4.37 5.0 155 84 32 61 58 173 本文研究 2 019年应城地震 113.40 30.87 4.67 7.5 149 68 15 53 76 157 赵凌云等(2 022) 3.2 速度结构与震源深度
大量研究已表明中强地震主要发生在壳内高低速交界区域(郑勇等,2013;Wu,Gao,2019;刘冠男等,2021;詹艳等,2021)。在高低速互层结构中,高速区虽然具备积累充足能量的条件,但其物质强度高,难以发生破裂;与之相反,低速区域的物质强度较低,不利于能量的有效积累。因此高低速交界区往往是容易发生中强地震的地区。
在研究区域的九次中强地震中,保康MS4.8、咸丰M6¼、竹山M6½和麻城M6.0地震由于时间久远无地震波形记录而无法获得震源深度信息,仅对其余五次中强地震的震源深度和震中下方的S波速度进行对比分析,结果如图7所示。可以看到:尽管这些地震震中下方存在多个垂向高低速变化的深度,然而CAP方法获得的这些地震震源深度处均呈现出显著的垂向速度变化特征,且高低速特征存在差异。巴东MS5.1、秭归MS4.6地震的S波速度变化幅度为4%和7%,呈低速向高速转变的趋势;而秭归MS4.5、应城MS4.9和随州ML4.7地震的变化幅度为−4%、−2%和−1%,呈高速向低速变化的趋势。此外,S波速度结果显示,在绝大多数陆内地震发生的深度范围内,保康MS4.8地震震中下方8—10 km深度、重庆黔江台记录的咸丰M6¼地震震中下方6—8 km深度、湖北竹溪台记录的竹山M6½地震震中下方6—8 km和12 km深度处以及麻城M6.0地震震中下方6—8 km深度处也存在明显的高低速变化。
图 7 中强地震震中区下方S波速度与震源机制(黑色方框为该地震的震源深度)(a) 巴东MS5.1;(b) 保康MS4.8;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0Figure 7. S-wave velocities beneath the epicentral areas of the moderate-strong earthquakes where the black boxes show the source depths of the earthquake,and the focal mechanism are also given(a) Badong MS5.1;(b) Baokang MS4.8;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.03.3 湖北省中强地震特征分析
地震地质特征调查以及地震活动情况研究表明,湖北省具备发生中强地震的构造条件(严尊国,2002)。湖北省西部的地震活动强度明显高于东部,且集中分布在秭归及其邻区(图1)。在秭归震源区及邻区中小地震也丛集分布,这使得湖北省发生中强地震危险性有所增加,这一结论与邓世广(2022)对中国大陆中强地震概率分布研究以及冷崇标等(2023)关于湖北及周边地区地震活动分形特征和变尺度(R/S)分析结果一致。
在长达数十亿年的构造演化中,湖北区域与周边不同地块都发生过强烈的运动,如扬子板块西北部逆冲挤压北部秦岭板块(吴海波等,2009),以及西南部印度板块相对挤压冲击(Molnar,Tapponnier,1975;王小亚等,2002),东部同时受太平洋板块俯冲、岩石-软流圈系统的双重作用(邱瑞照等,2004)。这些构造运动都破坏了扬子克拉通地块较为稳定的构造,并且2006年随州ML4.7、2014年秭归MS4.6和2019年应城MS4.9这三次中强震的发震断层下方存在垂向高低速互层,因此地震发生与上述构造运动有关。图1和表1数据显示,三次地震的震源深度分别为8 km,7.5 km,7.5 km,均不浅于7.5 km,此外,地表出露断层且震源都在断层附近,由此也可推测三次地震均为构造型地震。何钰铭等(2024)关于三峡库区岸坡岩体劣化的地质调查结果显示,砂岩和泥岩占较大比例且具有较强的代表性,这种岩石抗水性差、强度低,容易出现水渗流到地层深处的情况。与天然地震相比,水库触发地震的震源深度较浅,一般在5 km左右(张杰等,2017)。2018年秭归地震位于三峡水库附近,利用CAP法获得的震源深度为5 km,且2018年三峡大坝正在进行175 m试验性蓄水工作,因此推测三峡水库蓄水且水库水向下渗透至断层,从而触发了地震,这与2013年秭归地震的孕震环境相似(Huang et al,2018),因此推断两次地震都有可能为水库触发型地震。
4. 结论
本文采用接收函数与面波频散联合反演了湖北省历史上九次M4.5以上中强地震震中下方的地壳剪切波速度,采用CAP方法首次获得了2018年秭归MS4.5和2006年随州ML4.7地震的震源参数信息。结合该区已有的其它地震震源参数特征,系统分析对比了这些地震的深部孕震背景和震源机制。本文结果表明:湖北省中强震孕育发生可能与断裂新构造运动变形有着特定的联系;中强地震大都发生在高低速特征存在差异的垂向高低速交界区域;推测2013年巴东MS5.1和2018年秭归MS4.5地震可能为水库触发型地震;湖北省发生中强地震危险性有所增加,尤其要关注秭归及其邻区。
感谢中国科学院精密测量科学与技术创新研究院、中国地震局地球物理研究所国家测震台网数据备份中心和湖北省地震局地震科学中心分别提供了流动和固定台站数据资料,感谢评审专家为本文提出了宝贵的意见和建议。
-
图 4 基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演随州ML4.7地震事件的震源机制解结果和理论合成波形(红线)与实际观测波形(黑线)的拟合结果
波形左侧字母为台站名、震中距(单位:km)、方位角,波形下方数字表示时移(单位:s)以及互相关系数,震源球上的小红叉表示台站方位角,下图同
Figure 4. Inversion results of the focal mechanism solution of the Suizhou ML4.7 earthquake event by using the CAP method based on Crust1.0 (a),Shen et al (2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)
The letters on the left side of the waveform represent different station names, the number represents the epicenter distance (in km),and the numbers below the azimuth waveform show the time-shift values (in s) and correlation coefficients. The small red crosses on the source ball show the azimuths of the station. The same below
图 1 湖北省构造背景以及中强地震和台站的分布
断层数据引自邓起东等(2003),黑色实线为秦岭—大别造山带和扬子克拉通分界线
Figure 1. Tectonic settings and distribution of moderate-strong earthquakes and stations of Hubei Province
The fault data refer to Deng et al (2003). The black solid line is the boundary between the Qinling-Dabie orogenic belt and the Yangtze craton
图 2 随州ML4.7 (a)和秭归MS4.5 (b)地震震源参数反演所用的P波和S波速度模型
红、绿线代表Crust1.0模型,黑、灰线代表Shen等(2016)模型,蓝、棕线代表本文联合反演模型
Figure 2. The P and S wave velocity models used for inversion of source parameters of Suizhou ML4.7 (a) and Zigui MS4.5 (b) earthquakes
The red and green lines represent the Crust1.0 model,the black and gray lines represent the model from Shen et al (2016),while the blue and brown lines represent the joint inversion model in this study
图 3 初始反演S波模型以及接收函数与面波联合反演示意图
S波模型图中,绿色和蓝色虚线为初始反演S波模型,红色实线为最终反演结果;接收函数反演图中,蓝色、红色实线分别为观测、理论接收函数;面波反演图中黑点和红线分别代表观测值和理论值。 (a) 保康MS4.8;(b) 巴东MS5.1;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0
Figure 3. Initial inversion S-wave models and schematic diagrams of receiving function and surface wave joint inversion
In the shear wave model subfigures,the green and blue dashed lines represent the initial S-wave models,while the red solid line represent the final inversion result. In the receiving function inversion subfigures,the blue and red solid lines represent the observed and theoretical receiver functions. In the surface wave inversion subfigures,the black dots and red lines represent observed and theoretical values. (a) Baokang MS4.8;(b) Badong MS5.1;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.0
图 5 基于Crust1.0 (a)、Shen等(2016)模型(b)和联合反演模型(c)采用CAP方法反演2018年秭归MS4.5地震事件的震源机制解结果以及理论合成波形(红线)与实际观测波形(黑线)的拟合结果
Figure 5. Inversion results of the focal mechanism solution of the Zigui earthquake event by using the CAP method based on Crust1.0 (a),Shen et al (2016) model (b),and joint inversion model (c),and the fitting results between the theoretical synthesized waveforms (red lines) and the actual observed ones (black lines)
图 7 中强地震震中区下方S波速度与震源机制(黑色方框为该地震的震源深度)
(a) 巴东MS5.1;(b) 保康MS4.8;(c) 随州ML4.7;(d) 应城MS4.9;(e) 秭归MS4.6;(f) 秭归MS4.5;(g) 咸丰M6¼;(h) 竹山M6½;(i) 麻城M6.0
Figure 7. S-wave velocities beneath the epicentral areas of the moderate-strong earthquakes where the black boxes show the source depths of the earthquake,and the focal mechanism are also given
(a) Badong MS5.1;(b) Baokang MS4.8;(c) Suizhou ML4.7;(d) Yingcheng MS4.9;(e) Zigui MS4.6;(f) Zigui MS4.5;(g) Xianfeng M6¼;(h) Zhushan M6½;(i) Macheng M6.0
表 1 使用CAP方法求解的湖北省中强地震震源参数
Table 1 Focal parameters of moderate-strong earthquakes of Hubei Province estimated by the CAP method
地震事件 震中位置 MW 深度
/km节面Ⅰ 节面Ⅱ 震源参数来源 东经/° 北纬/° 走向/ o 倾向/ o 滑动角/ o 走向/ o 倾向/ o 滑动角/ o 2 006年随州地震 113.10 31.50 4.14 8.0 126 78 −30 223 61 −166 本文研究 2 013年巴东地震 110.40 31.09 4.9 4.6 73 58 168 169 80 32 Huang等(2 018) 2 014年秭归地震 110.77 30.92 4.6 (MS) 7.5 331 71 40 226 53 156 王秋良等(2 016) 2 018年秭归地震 110.47 31.03 4.37 5.0 155 84 32 61 58 173 本文研究 2 019年应城地震 113.40 30.87 4.67 7.5 149 68 15 53 76 157 赵凌云等(2 022) -
邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊):66–73. Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
邓世广. 2022. 中国大陆中强地震复发间隔的概率分布研究[J]. 地震科学进展,52(4):161–167. Deng S G. 2022. Distribution research of recurrence interval for moderate-strong earthquake in the mainland of China[J]. Progress in Earthquake Sciences,52(4):161–167 (in Chinese).
甘家思,袁金荣,申重阳. 2000. 神农架断块西缘北北西向板桥断裂带新活动调查研究[J]. 地壳形变与地震,20(1):79–85. Gan J S,Yuan J R,Shen C Y. 2000. Investigation of neotectonic activity of NNW-strike Banqiao fault zone in western boundary of the Shennongjia block[J]. Journal of Geodesy and Geodynamics,20(1):79–85 (in Chinese).
高红亮,姚运生,张丽芬. 2015. 2013年湖北巴东MS5.1地震成因机制探讨[J]. 防灾科技学院学报,17(3):17–23. doi: 10.3969/j.issn.1673-8047.2015.03.003 Gao H L,Yao Y S,Zhang L F. 2015. Focal mechanism of Badong MS5.1 earthquake in 2013[J]. Journal of Institute of Disaster Prevention,17(3):17–23 (in Chinese).
何钰铭,彭正华,石长柏,谢迪,赵振洋,黄宁. 2024. 湖北省三峡库区砂泥岩互层岩体劣化特征与劣化机理分析[J]. 中国资源综合利用,42(1):34–37. doi: 10.3969/j.issn.1008-9500.2024.010 He Y M,Peng Z H,Shi C B,Xie D,Zhao Z Y,Huang N. 2024. Analysis of the deterioration characteristics and mechanism of sandstone-mudstone interbedded rock mass in the Three Gorges Reservoir area of Hubei Province[J]. China Resources Comprehensive Utilization,42(1):34–37 (in Chinese).
胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013 Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the West Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750
冷崇标,张辉,曾智辉,安一凡. 2023. 湖北及周边地区地震活动分形特征与R/S分析[J]. 科学技术创新,(14):89–92. doi: 10.3969/j.issn.1673-1328.2023.14.023 Leng C B,Zhang H,Zeng Z H,An Y F. 2023. Fractal characteristics and R/S analysis of seismic activity in Hubei and its surrounding areas[J]. Scientific and Technological Innovation,(14):89–92 (in Chinese).
李峰,李垠,薛军蓉,陈俊华. 2007. 湖北随州ML4.7地震序列基础资料分析[J]. 大地测量与地球动力学,27(增刊):56–61. Li F,Li Y,Xue J R,Chen J H. 2007. Analysis on basic data of ML4.7 earthquake sequence in Suizhou,Hubei[J]. Journal of Geodesy and Geodynamics,27(S1):56–61 (in Chinese).
梁姗姗,徐志国,黄小宁,张广伟,邹立晔,周元泽. 2024. 新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境[J]. 地球科学,49(2):451–468. Liang S S,Xu Z G,Huang X N,Zhang G W,Zou L Y,Zhou Y Z. 2024. Regional seismogenic environment revealed by the 3D crustal velocity structure and focal mechanism of moderate and strong earthquakes in Jiashi area,Xinjiang,China[J]. Earth Science,49(2):451–468 (in Chinese).
刘冠男,柳存喜,王志. 2021. 青藏高原东南缘深部多参数属性变化与中强震孕育响应关系[J]. 地球物理学报,64(11):3948–3969. doi: 10.6038/cjg2021P0061 Liu G N,Liu C X,Wang Z. 2021. The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,64(11):3948–3969 (in Chinese).
邱瑞照,邓晋福,周肃,李金发,肖庆辉,吴宗絮,刘翠. 2004. 华北地区岩石圈类型:地质与地球物理证据[J]. 中国科学:D辑,34(8):698–711. Qiu R Z,Deng J F,Zhou S,Li J F,Xiao Q H,Wu Z X,Liu C. 2005. Lithosphere types in North China:Evidence from geology and geophysics[J]. Science in China:Series D,48(11):1809–1827. doi: 10.1360/03yd0380
申重阳,李安然,王清云,张飞飞. 1994. 麻城1932年6.0级地震区地球物理场与深部环境研究[J]. 地壳形变与地震,14(3):65–73. Sheng C Y,Li A R,Wang Q Y,Zhang F F. 1994. Study on geophysical field and deep seismogenic environment of the Macheng earthquake (MS=6.0) in 1932[J]. Crustal Deformation and Earthquake,14(3):65–73 (in Chinese).
王力伟,吴国瑞,黄柳芳. 2018. CAP方法反演新丰江锡场地区ML4.0级以上地震震源机制解[J]. 华南地震,38(3):1–8. Wang L W,Wu G R,Huang L F. 2018. Focal mechanism inversion of ML≥4.0 earthquakes in Xichang,Xinfengjiang reservoir by CAP method[J]. South China Journal of Seismology,38(3):1–8 (in Chinese).
王秋良,张丽芬,廖武林,李井冈. 2016. 2014年3月湖北省秭归县M4.2、M4.5地震成因分析[J]. 地震地质,38(1):121–130. doi: 10.3969/j.issn.0253-4967.2016.01.009 Wang Q L,Zhang L F,Liao W L,Li J G. 2016. Research on genesis of M4.2 and M4.5 earthquake sequences in March 2014 in Zigui county,Hubei Province[J]. Seismology and Geology,38(1):121–130 (in Chinese).
王未来,吴建平,房立华. 2009. 唐海—商都地震台阵剖面下方的地壳上地幔S波速度结构研究[J]. 地球物理学报,52(1):81–89. Wang W L,Wu J P,Fang L H. 2009. Crust and upper mantle S-wave velocity structure beneath Tanghai-Shangdu seismic array profile[J]. Chinese Journal of Geophysics,52(1):81–89 (in Chinese).
王小亚,朱文耀,符养,游新兆,王琪,程宗颐,任金卫. 2002. GPS监测的中国及其周边现时地壳形变[J]. 地球物理学报,45(2):198–209. doi: 10.3321/j.issn:0001-5733.2002.02.006 Wang X Y,Zhu W Y,Fu Y,You X Z,Wang Q,Cheng Z Y,Ren J W. 2002. Present-time crustal deformation in China and its surrounding regions by GPS[J]. Chinese Journal of Geophysics,45(2):198–209 (in Chinese).
翁骋,李俊超. 2017. 利用sPL震相测定湖北秭归MS4.7地震震源深度及研究方法展望[J]. 科学技术创新,(33):61–62. doi: 10.3969/j.issn.1673-1328.2017.33.037 Weng C,Li J C. 2017. Outlook on using sPL seismic phase to determine the depth of the MS4.7 earthquake source in Zigui,Hubei and research methods[J]. Scientific and Technological Innovation,(33):61–62 (in Chinese).
吴海波,姚运生,薛军蓉. 2009. 汶川地震对湖北地震活动趋势的影响[J]. 大地测量与地球动力学,29(增刊):59–65. Wu H B,Yao Y S,Xue J R. 2009. Effect of Wenchuan earthquake on seismic activity in Hubei[J]. Journal of Geodesy and Geodynamics,29(S1):59–65 (in Chinese).
吴海波,申学林,王杰,赵凌云,陈俊华. 2018. 三峡库区上地壳三维速度结构的双差层析成像研究[J]. 地球物理学报,61(7):2802–2814. doi: 10.6038/cjg2018L0345 Wu H B,Shen X L,Wang J,Zhao L Y,Chen J H. 2018. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography[J]. Chinese Journal of Geophysics,61(7):2802–2814 (in Chinese).
吴海波,王杰,邹正波,陈俊华. 2021. 三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究[J]. 地球物理学报,64(2):484–497. doi: 10.6038/cjg2021N0281 Wu H B,Wang J,Zou Z B,Chen J H. 2021. Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong,Three Gorges Reservoir[J]. Chinese Journal of Geophysics,64(2):484–497 (in Chinese).
吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010 Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).
谢祖军,郑勇,倪四道,熊熊,王行舟,张炳. 2012. 2011年1月19日安庆ML4.8地震的震源机制解和深度研究[J]. 地球物理学报,55(5):1624–1634. doi: 10.6038/j.issn.0001-5733.2012.05.020 Xie Z J,Zheng Y,Ni S D,Xiong X,Wang X Z,Zhang B. 2012. Focal mechanism and focal depth of the 19 January 2011 Anqing earthquake[J]. Chinese Journal of Geophysics,55(5):1624–1634 (in Chinese).
徐嘉炜. 1995. 论走滑断层作用的几个主要问题[J]. 地学前缘,2(1/2):125–136. doi: 10.3321/j.issn:1005-2321.1995.01.015 Xu J W. 1995. Some major problems on strike-slip faulting[J]. Earth Science Frontiers,2(1/2):125–136 (in Chinese).
严尊国. 2002. 2002年湖北省地震趋势估计[C]//2002年湖北省减轻自然灾害白皮书:湖北省2002年重大自然灾害合趋势分析会商会论文集. 武汉:湖北省灾害防御协会:36−39. Yan Z G. 2002. Estimation of earthquake trends in Hubei Province in 2002[C]//2002 Hubei Province White Paper on Reducing Natural Disasters:Collected Papers of the Chamber of Commerce for the Analysis of Major Natural Disasters in Hubei Province in 2002. Wuhan:Hubei Provincial Disaster Prevention Association:36−39 (in Chinese).
易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. doi: 10.6038/cjg20171033 Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).
詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报,64(7):2232–2252. doi: 10.6038/cjg2021O0521 Zhan Y,Liang M J,Sun X Y,Huang F P,Zhao L Q,Gong Y,Han J,Li C X,Zhang P Z,Zhang H P. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics,64(7):2232-2252 (in Chinese).
张杰,黄禄渊,贾晋,徐鑫,刘卓岩. 2017. 关于水库“触发地震”和“诱发地震”的思考与探讨[G]//地壳构造与地壳应力文集. 北京:中国地震局地壳应力研究所:74–82. Zhang J,Huang L Y,Jia J,Xu X,Liu Z Y. 2017. Thinking and discussion about reservoir “triggered seismicity” and “induced seismicity”[G]//Bulletin of the Institute of Crustal Dynamics. Beijing:Institute of Crustal Dynamics,China Earthquake Administration:74−82 (in Chinese).
张丽芬,姚运生,廖武林,李井冈,王秋良,王墩. 2011. 湖北地区上地幔各向异性及其动力学意义[J]. 地球物理学报,54(1):35–43. doi: 10.3969/j.issn.0001-5733.2011.01.005 Zhang L F,Yao Y S,Liao W L,Li J G,Wang Q L,Wang D. 2011. Research on the upper mantle seismic anisotropy beneath Hubei and its geodynamic implication[J]. Chinese Journal of Geophysics,54(1):35–43 (in Chinese). doi: 10.1002/cjg2.1584
赵凌云,丁文秀,周舟,周本伟,何凯,申学林,魏贵春. 2022. 基于CAP方法的2019年湖北应城MS 4.9地震震源机制与发震构造研究[J]. 四川地震,(3):20–23. Zhao L Y,Ding W X,Zhou Z,Zhou B W,He K,Shen X L,Wei G C. 2022. Focal mechanism solution and seismogenic structure of the MS4.9 Yingcheng earthquake in 2019 from the CAP method[J]. Earthquake Research in Sichuan,(3):20–23 (in Chinese).
郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
郑勇,马宏生,吕坚,倪四道,李迎春,韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学:D辑,39(4):413–426. Zheng Y,Ma H S,Lü J,Ni S D,Li Y C,Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China:Series D,52(6):739–753. doi: 10.1007/s11430-009-0074-3
郑勇,葛粲,谢祖军,Yang Y J,熊熊,许厚泽. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境[J]. 中国科学:地球科学,43(6):1027–1037. Zheng Y,Ge C,Xie Z J,Yang Y J,Xiong X,Hsu H T. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake[J]. Science China Earth Sciences,56(7):1158–1168. doi: 10.1007/s11430-013-4641-2
Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303
Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos,120(1/2):96–115.
Cheng S H,Xiao X,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2022. Crustal thickness and vP/vS variation beneath continental China revealed by receiver function analysis[J]. Geophys J Int,228(3):1731–1749.
He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365
Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
Huang R,Zhu L P,Encarnacion J,Xu Y X,Tang C C,Luo S,Jiang X H. 2018. Seismic and geologic evidence of water-induced earthquakes in the Three Gorges Reservoir region of China[J]. Geophys Res Lett,45(12):5929–5936. doi: 10.1029/2018GL077639
Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x
Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
Langston C A. 1977. Corvallis,oregon,crustal and upper mantle receiver structure from teleseismic P and S waves[J]. Bull Seismol Soc Am,67(3):713–724. doi: 10.1785/BSSA0670030713
Laske G,Ma Z T,Masters G,Pasyanos M. 2013. A new global crustal model at 1×1 degrees [EB/OL]. [2024-02-12]. https://igppweb.ucsd.edu/~gabi/crust1.html.
Li L L,Huang X L,Yao H J,Miao P,Wang X L,Bao Z W,Ni H Y,Li C,Yang Y,Luo S,Hu S Q,Yang Y Y. 2020. Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment[J]. Chinese Journal of Geophysics,63(9):3307–3323.
Li S L,Mooney W D,Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics,420(1/2):239–252.
Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365. doi: 10.1038/ngeo2130
Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614.
Shen W S,Ritzwoller M H,Kang D,Kim Y,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
Tape C,West M,Silwal V,Ruppert N. 2013. Earthquake nucleation and triggering on an optimally oriented fault[J]. Earth Planet Sci Lett,363:231–241. doi: 10.1016/j.jpgl.2012.11.060
Wu Y,Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth Planet Phys,3(5):425–434. doi: 10.26464/epp2019044
Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.
Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634
Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x