The detection of the electrical Moho in the Capital Circle region and its vicinity
-
摘要:
使用首都圈地区电磁台网部分台站的长周期大地电磁数据,反演得到了首都圈地区的深部电性结构,该结果与前人使用地震、电磁、重力等资料得到的研究区地下结构具有较好的一致性。研究表明首都圈地区的地震学莫霍面附近也存在着电阻率变化特征,为了解首都圈地区eMoho分布情况,本文采用对反演所得的电阻率曲线求取一阶导数的方式来刻画测点下方的电性莫霍面的深度位置,通过建立三类地层模型验证了该方法的可行性,并对实测资料反演结果求取一阶导数,结果凸显了电性莫霍面的分布,所得电性莫霍面与地震、重力等资料得到的莫霍面在深度分布上整体基本一致。结合前人的研究,推测在华北部分地区出现的高导薄层可能归结于下地壳物质部分熔融后发生重新结晶分异所导致的硫化物富集。大连台、无棣台下方壳-幔电阻率变化有别于理论模型,这可能是由于临海地区的特殊岩石圈结构,无棣台下方的低阻特征推测可能是该台站下方存在一个软流圈物质上涌通道。
Abstract:The Moho discontinuity, also known as the Mohorovičić discontinuity, represents a critical boundary within the Earth’s lithosphere and plays a significant role in the processes of lithospheric formation and evolution. As a key parameter for describing both the thickness and structural characteristics of the Earth’s crust, variations in the depth and thickness of the Moho are direct manifestations of the long-term dynamic processes that the crust has experienced. Therefore, accurately determining the depth of the Moho is of great importance for understanding the global processes of crustal formation and evolution. One of the most distinct features of the Moho is the pronounced change in seismic wave velocities as seismic waves cross this boundary, making seismic methods become the most widely used approach in Moho-related research. Over the years, numerous researchers have employed a range of seismological techniques to carry out extensive studies on the global distribution of Moho depths. Although the Moho is universally recognized as a continuous first-order discontinuity at the global scale, its structure in tectonically complex regions remains highly intricate and variable. Since the early 21st century, the focus of scientific inquiry has increasingly expanded beyond seismic characteristics to the electrical properties of the crust-mantle boundary. With the ongoing accumulation of long-period magnetotelluric (MT) data and the deepening of global research on the Moho, particularly following the introduction of the concept of the electrical Moho (eMoho) and breakthroughs in its study, there has been growing recognition of the potential of magnetotelluric methods for probing the electrical properties of the Moho. The application of MT methods in this context has demonstrated significant scientific potential and feasibility for revealing the electrical characteristics of the crust-mantle interface. This study, based on long-period broadband MT data from four stations in the North China region, investigates the depth distribution of the electrical Moho in the region. It aims to provide a solid foundation of electrical evidence for gaining a comprehensive understanding of the depth distribution of the Moho across North China, elucidating the mechanisms behind the destruction of the North China Craton, and contributing to the understanding of the seismogenic processes in the Capital Circle region. In this research, long-period MT data from several stations within the electromagnetic network of the Capital Circle region were utilized to invert the deep electrical structure of the area. The results exhibit a high degree of consistency with previous studies that used seismic, electromagnetic, and gravity data to determine subsurface structures at the same stations. The findings indicate that significant resistivity variations are present near the seismologically determined Moho within the Capital Circle region. To further investigate this, the study developed three stratigraphic models, validating the feasibility of employing the first derivative of the inverted resistivity curve as a method for delineating the depth of the electrical Moho beneath individual measurement points. After applying this method to the inversion results, the distribution of the electrical Moho became clearly evident. The results demonstrated that the derived electrical Moho is generally consistent with the Moho depth obtained from seismic, gravity, and other geophysical data, indicating a robust agreement across multiple methods. By integrating findings from previous studies, the research hypothesizes that the high-conductivity thin layer observed in some parts of North China may result from the partial melting and subsequent recrystallization of lower crustal materials, leading to the accumulation of sulfides. In particular, the resistivity variations observed beneath the Dalian and Wudi stations deviate from theoretical expectations, likely due to the unique lithospheric structure associated with the coastal regions. Specifically, the low-resistivity anomaly detected beneath the Wudi station may suggest the presence of an asthenospheric upwelling channel, which could provide a pathway for the movement of deeper mantle materials toward the surface. The findings of this study not only enhance our understanding of the distribution and characteristics of the electrical Moho in the Capital Circle region but also provide a valuable reference for the study of Moho-related processes in other regions with similar geological contexts. The research contributes important insights into the geodynamic mechanisms governing lithospheric evolution, particularly in tectonically active regions, and underscores the complementary nature of seismic and magnetotelluric methods for investigating complex subsurface structures. Through continued accumulation of MT data and further development of interpretative models, magnetotelluric methods are poised to offer increasingly refined insights into the nature of the crust-mantle boundary and its role in broader geophysical processes. These results are not only significant for understanding regional tectonics but also for advancing global studies of the Earth’s lithospheric dynamics.
-
Keywords:
- Capital Circle region /
- North China /
- Moho /
- electrical Moho /
- magnetotelluric sounding
-
-
表 1 三个地层模型的详细参数(修改自Jones,2013)
Table 1 Detailed parameters of three stratigraphic models (modified from Jones,2013)
地层
模型上地壳 下地壳 岩石圈地幔 软流圈 电阻率/(Ω·m) 厚度/km 电阻率/(Ω·m) 厚度/km 电阻率/(Ω·m) 厚度/km 电阻率/(Ω·m) 太古宙 40 000 20 10 000 20 50 000,5 000,500 40,70,75 10 元古宙 10 000 20 1 000 20 50 000,5 000,500 40,50,45 10 显生宙 1 000 17.5 87.5 17.5 5 000,500 35,25 10 -
陈小斌,赵国泽,汤吉,詹艳,王继军. 2005. 大地电磁自适应正则化反演算法[J]. 地球物理学报,48(4):937–946. doi: 10.3321/j.issn:0001-5733.2005.04.029 Chen X B,Zhao G Z,Tang J,Jan Y,Wang J J. 2005. Adaptive regularization inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics,48(4):937–946 (in Chinese).
陈学忠,李艳娥,陈丽娟. 2021. 唐山MS7.8地震前b值异常特征[J]. 地球物理学报,64(10):3612–3618. doi: 10.6038/cjg2021O0476 Chen X Z,Li Y E,Chen L J. 2021. Abnormal characteristics of b-value before the MS7.8 Tangshan earthquake[J]. Chinese Journal of Geophysics,64(10):3612–3618 (in Chinese).
董泽义,汤吉,赵国泽,陈小斌,崔腾发,韩冰,姜峰,王立凤. 2022. 首都圈极低频电磁台网区地下电性结构探测[J]. 地震地质,44(3):649–668. doi: 10.3969/j.issn.0253-4967.2022.03.006 Dong Z Y,Tang J,Zhao G Z,Chen X B,Cui T F,Han B,Jiang F,Wang L F. 2022. Detection of subsurface electrical structures in the Capital Region using very low frequency electromagnetic array[J]. Seismology and Geology,44(3):649–668 (in Chinese).
冯锐. 1985. 中国地壳厚度及上地幔密度分布(三维重力反演结果)[J]. 地震学报,7(2):143–157. Feng R. 1985. Distribution of crustal thickness and upper mantle density in China (results of 3D gravity inversion)[J]. Acta Seismologica Sinica,7(2):143–157 (in Chinese).
何丽娟,胡圣标,汪集旸. 2001. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展,11(9):72–75. He L J,Hu S B,Wang J Y. 2001. Thermal structure characteristics of the lithosphere in the eastern continental area of China[J]. Progress in Natural Science,11(9):72–75 (in Chinese).
侯爵,潘佳铁,李永华,武振波,俞贵平,徐涛. 2023. 华北克拉通中西部地壳S波速度结构及其地质意义[J]. 地球物理学报,66(5):1960–1975. doi: 10.6038/cjg2022Q0287 Hou J,Pan J T,Li Y H,Wu Z B,Yu G P,Xu T. 2023. Crustal S-wave velocity structure and its geological significance in the central-western part of the North China Craton[J]. Chinese Journal of Geophysics,66(5):1960–1975 (in Chinese).
胡祥云,林武乐,杨文采,杨博. 2020. 克拉通岩石圈电性结构研究进展[J]. 中国科学:地球科学,50(11):1533–1554. Hu X Y,Lin W L,Yang W C,Yang B. 2020. Research progress on electrical structure of the cratonic lithosphere[J]. Science China:Earth Sciences,50(11):1533–1554 (in Chinese).
黄金莉,赵大鹏. 2005. 首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境[J]. 科学通报,50(4):348–355. doi: 10.3321/j.issn:0023-074X.2005.04.009 Huang J L,Zhao D P. 2005. Three-dimensional P-wave velocity fine structure of the crust and the deep structural environment for strong earthquake generation in the capital region[J]. Chinese Science Bulletin,50(4):348–355 (in Chinese). doi: 10.1360/csb2005-50-4-348
黄翔,丁志峰,宁杰远,徐小明. 2022. 基于背景噪声和地震面波联合反演华北克拉通中部岩石圈结构[J]. 地震学报,44(4):539–554. doi: 10.11939/jass.20210042 Huang X,Ding Z F,Ning J Y,Xu X M. 2022. Joint inversion of background noise and seismic surface waves for lithospheric structure in the Central North China Craton[J]. Acta Seismologica Sinica,44(4):539–554 (in Chinese).
嘉世旭,齐诚,王夫运,陈棋福,张先康,陈顒. 2005. 首都圈地壳网格化三维结构[J]. 地球物理学报,48(6):1316–1324. doi: 10.3321/j.issn:0001-5733.2005.06.014 Jia S X,Qi C,Wang F Y,Chen Q F,Zhang X K,Chen Y. 2005. Three-dimensional crustal grid structure in the Capital Region[J]. Chinese Journal of Geophysics,48(6):1316–1324 (in Chinese). doi: 10.1002/cjg2.779
姜文亮,张景发. 2012. 首都圈地区精细地壳结构——基于重力场的反演[J]. 地球物理学报,55(5):1646–1661. doi: 10.6038/j.issn.0001-5733.2012.05.022 Jiang W L,Zhang J F. 2012. Fine crustal structure in the Capital Region based on gravity field inversion[J]. Chinese Journal of Geophysics,55(5):1646–1661 (in Chinese).
李志伟,胥颐,郝天珧,刘劲松,张岭. 2006. 环渤海地区的地震层析成像与地壳上地幔结构[J]. 地球物理学报,49(3):797–804. doi: 10.3321/j.issn:0001-5733.2006.03.023 Li Z W,Xu Y,Hao T Y,Liu J S,Zhang L. 2006. Seismic tomography and crustal-upper mantle structure in the Circum-Bohai Sea Region[J]. Chinese Journal of Geophysics,49(3):797–804 (in Chinese).
卢造勋,蒋秀琴,潘科,白云,姜德录,肖立萍,刘建华,刘福田,陈辉,何建坤. 2002. 中朝地台东北缘地区的地震层析成像[J]. 地球物理学报,45(3):338–351,446−448. doi: 10.3321/j.issn:0001-5733.2002.03.006 Lu Z X,Jiang X Q,Pan K,Bai Y,Jiang D L,Xiao L P,Liu J H,Liu F T,Chen H,He J K. 2002. Seismic tomography imaging in the northeastern margin of the Sino-Korean Plate[J]. Chinese Journal of Geophysics,45(3):338–351,446−448 (in Chinese).
毛翔,罗璐,汪新伟,国殿斌. 2020. 渤海湾盆地新生代火山岩分布特征及其地热勘探潜力[J]. 现代地质,34(4):858–864. Mao X,Luo L,Wang X W,Guo D B. 2020. Distribution characteristics of Neogene volcanic rocks in the Bohai Bay Basin and their geothermal exploration potential[J]. Geological Bulletin of China,34(4):858–864 (in Chinese).
唐新功,陈永顺,唐哲. 2006. 应用布格重力异常研究郯庐断裂构造[J]. 地震学报,28(6):603–610,679. doi: 10.3321/j.issn:0253-3782.2006.06.005 Tang X G,Chen Y S,Tang Z. 2006. Study on the Tanlu Fault structure using Bouguer gravity anomaly[J]. Acta Seismologica Sinica,28(6):603–610,679 (in Chinese).
滕吉文,白登海,杨辉,闫雅芬,张洪双,张永谦,阮小敏. 2008. 2008汶川MS8.0地震发生的深层过程和动力学响应[J]. 地球物理学报,51(5):1385–1402. doi: 10.3321/j.issn:0001-5733.2008.05.012 Teng J W,Bai D H,Yang H,Yan Y F,Zhang H S,Zhang Y Q,Ruan X M. 2008. Deep processes and dynamic response of the 2008 Wenchuan MS 8.0 earthquake[J]. Chinese Journal of Geophysics,51(5):1385–1402 (in Chinese).
滕吉文,闫雅芬,王光杰,熊熊. 2006. 大别造山带与郯庐断裂带壳、幔结构和陆内“俯冲”的耦合效应[J]. 地球物理学报,49(2):449–457. doi: 10.3321/j.issn:0001-5733.2006.02.018 Teng J W,Yan Y F,Wang G J,Xiong X. 2006. Coupling effects of crustal and mantle structure and inland "subduction" in the Dabie Orogenic Belt and the Tanlu Fault Zone[J]. Chinese Journal of Geophysics,49(2):449–457 (in Chinese).
滕吉文,闫雅芬,张慧,曾融生. 2002. 东亚大陆及周边海域Moho界面深度分布和基本构造格局[J]. 中国科学(D辑:地球科学),32(2):89–100. Teng J W,Yan Y F,Zhang H,Zeng R S. 2002. Depth distribution of the Moho interface and basic tectonic pattern in East Asia and adjacent seas[J]. Science in China (Series D:Earth Sciences),32(2):89–100 (in Chinese).
王椿镛,段永红,吴庆举,王志铄. 2016. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,38(4):511–549. Wang C Y,Duan Y H,Wu Q J,Wang Z S. 2016. Detection and study of deep structural environment of strong earthquakes in North China[J]. Acta Seismologica Sinica,38(4):511–549 (in Chinese).
魏文博,叶高峰,金胜,邓明,景建恩,彭志强,林昕,宋石磊,唐宝山,屈栓柱,陈凯,杨宏伟,李国强. 2008. 华北地区东部岩石圈导电性结构研究——减薄的华北岩石圈特点[J]. 地学前缘,15(4):204–216. doi: 10.3321/j.issn:1005-2321.2008.04.024 Wei W B,Ye G F,Jin S,Deng M,Jing J E,Peng Z Q,Lin X,Song S L,Tang B S,Qu S Z,Chen K,Yang H W,Li G Q. 2008. Study on the electrical structure of the lithosphere in Eastern North China:characteristics of thinning lithosphere in North China[J]. Earth Science Frontiers,15(4):204–216 (in Chinese). doi: 10.1016/S1872-5791(08)60055-X
吴福元,徐义刚,朱日祥,张国伟. 2014. 克拉通岩石圈减薄与破坏[J]. 中国科学:地球科学,44(11):2358–2372. Wu F Y,Xu Y G,Zhu R X,Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere[J]. Science China:Earth Sciences,44(11):2358–2372 (in Chinese).
熊治涛,唐新功,张连群,李丹丹,余俊虎. 2023. 线源三维井地电法异常边界增强及地形校正技术[J]. 地震学报,45(1):46–61. doi: 10.11939/jass.20220074 Xiong Z T,Tang X G,Zhang L Q,Li D D,Yu J H. 2023. Enhancement of anomalous boundaries in 3D induced polarization logging and terrain correction techniques[J]. Acta Seismologica Sinica,45(1):46–61 (in Chinese).
杨文采,方慧,程振炎,徐宝利,白金. 1999. 苏鲁超高压变质带北部地球物理调查(Ⅱ)──非地震方法[J]. 地球物理学报,42(4):508–519. doi: 10.3321/j.issn:0001-5733.1999.04.009 Yang W C,Fang H,Cheng Z Y,Xu B L,Bai J. 1999. Geophysical survey in the northern part of the Sulu UHP metamorphic belt (Ⅱ) ── Non-seismic methods[J]. Chinese Journal of Geophysics,42(4):508–519 (in Chinese).
叶高峰,魏文博,金胜,景建恩. 2009. 郯庐断裂带中段电性结构及其地学意义研究[J]. 地球物理学报,52(11):2818–2825. Ye G F,Wei W B,Jin S,Jing J E. 2009. Study on the electrical structure and geological significance of the middle segment of the Tanlu Fault Zone[J]. Chinese Journal of Geophysics,52(11):2818–2825 (in Chinese).
尹京苑,梅世蓉,薛艳. 1999. 邢台地震区地壳速度结构特征与强震孕育发生的关系[J]. 地球物理学报,42(05):629–639. doi: 10.3321/j.issn:0001-5733.1999.05.006 Yin J Y,Mei S R,Xue Y. 1999. Relationship between crustal velocity structure characteristics and the generation of strong earthquakes in the Xingtai seismic zone[J]. Chinese Journal of Geophysics,42(05):629–639 (in Chinese).
张帆,魏文博,金胜,叶高峰,景建恩,张乐天,董浩,谢成良,王辉. 2012. 海岸效应对近海地区大地电磁测深数据畸变作用研究[J]. 地球物理学报,55(12):4023–4035. doi: 10.6038/j.issn.0001-5733.2012.12.014 Zhang F,Wei W B,Jin S,Ye G F,Jing J E,Zhang L T,Dong H,Xie C L,Wang H. 2012. Study on the distortion effect of coastal effect on magnetotelluric sounding data in offshore areas[J]. Chinese Journal of Geophysics,55(12):4023–4035 (in Chinese).
张继红,赵国泽,董泽义,王立凤,韩冰,王庆林,唐廷梅,王梅. 2019. 郯庐断裂带安丘、莒县电磁台地壳电性结构研究[J]. 地震地质,41(5):1239–1253. doi: 10.3969/j.issn.0253-4967.2019.05.011 Zhang J H,Zhao G Z,Dong Z Y,Wang L F,Han B,Wang Q L,Tang T M,Wang M. 2019. Study on crustal electrical structure in Anqiu and Juxian by electromagnetic stations along the Tanlu fault zone[J]. Seismology and Geology,41(5):1239–1253 (in Chinese).
张继红,赵国泽,肖骑彬,汤吉. 2010. 郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境[J]. 地球物理学报,53(3):605–611. Zhang J H,Zhao G Z,Xiao Q B,Tang J. 2010. Study on electrical structure and seismic environment of the middle segment (Yishu fault zone) of the Tanlu Fault Zone[J]. Chinese Journal of Geophysics,53(3):605–611 (in Chinese).
曾融生. 1964. 莫霍界面的性质[J]. 地球物理学报,13(2):180–188. Zeng R S. 1964. The nature of the Moho interface[J]. Chinese Journal of Geophysics,13(2):180–188 (in Chinese).
曾融生,孙为国,毛桐恩,林中洋,胡鸿翔,陈光英,1995. 中国大陆莫霍界面深度图[J]. 地震学报, 17 (3):322-327. Zeng R S,Sun W G,Mao T E,Lin Z Y,Hu H X,Chen G Y. 1995. Depth map of the Moho interface in Mainland China[J]. Acta Seismologica Sinica,17(3):322–327 (in Chinese).
朱日祥,陈凌,吴福元,刘俊来. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学,41(5):583–592. Zhu R X,Chen L,Wu F Y,Liu J L. 2011. Timing,scope,and mechanism of destruction of the North China Craton[J]. Science China:Earth Sciences,41(5):583–592 (in Chinese).
朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135–1159. Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China:Earth Sciences,42(8):1135–1159 (in Chinese).
Audet P,Schutt D L,Schaeffer A J,Estève C,Aster R C,Cubley J F. 2020. Moho variations across the northern Canadian Cordillera[J]. Seismol Res Lett,91(6):3076–3085. doi: 10.1785/0220200166
Auken E,Christiansen A V. 2004. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics,69(3):752–761. doi: 10.1190/1.1759461
Berdichevsky M,Dmitriev V,Pozdnjakova E. 1998. On two-dimensional interpretation of magnetotelluric soundings[J]. Geophys J Int,133(3):585–606. doi: 10.1046/j.1365-246X.1998.01333.x
Boudier F,Nicolas A. 1995. Nature of the Moho transition zone in the Oman ophiolite[J]. J Petrol,36(3):777–796. doi: 10.1093/petrology/36.3.777
Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S-and P-receiver function migration[J]. Phys Earth Planet In,173(3-4):216–227. doi: 10.1016/j.pepi.2008.11.011
Chen Y,Saygin E,Kennett B,Qashqai M T,Hauser J,Lumley D,Sandiford M. 2023. Next-generation seismic model of the Australian crust from synchronous and asynchronous ambient noise imaging[J]. Nat Commun,14(1):1192. doi: 10.1038/s41467-023-36514-z
Dunn R A,Watts A B,Xu C,Shillington D J. 2024. A seismic tomography,gravity,and flexure study of the crust and upper mantle structure across the Hawaiian Ridge:2. Ka’ena[J]. J Geophys Res-Sol Ea,129(2):e2023JB028118. doi: 10.1029/2023JB028118
Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet In,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7
Guo Z,Afonso J C,Qashqai M T,Yang Y J,Chen Y J. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion:Extent and causes of cratonic lithosphere modification[J]. Gondwana Res,37:252–265. doi: 10.1016/j.gr.2016.07.002
Hyndman R,Shearer P. 1989. Water in the lower continental crust:modelling magnetotelluric and seismic reflection results[J]. Geophys J Int,98(2):343–365. doi: 10.1111/j.1365-246X.1989.tb03357.x
Johansen S E,Panzner M,Mittet R,Amundsen H,Lim A. 2019. Deep electrical imaging of the ultraslow-spreading Mohns Ridge[J]. Nature,567(7748):379–383. doi: 10.1038/s41586-019-1010-0
Jones A G. 1992. Electrical conductivity of the continental lower crust[J]. Cont Lower Crust:81-143.
Jones A G. 2013. Imaging and observing the electrical Moho[J]. Tectonophysics,609:423–436. doi: 10.1016/j.tecto.2013.02.025
Jones A G,Ferguson I J. 2001. The electric Moho[J]. Nature,409(6818):331–333. doi: 10.1038/35053053
Kariya K A,Shankland T J. 1983. Electrical conductivity of dry lower crustal rocks[J]. Geophysics,48(1):52–61. doi: 10.1190/1.1441407
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res-Sol Ea,117:B06313.
Menzies M A,Xu Y G. 1998. Geodynamics of the North China Craton[M]. in Mantle dynamics and plate interactions in East Asia. American Geophysical Union (AGU):155-165.
Mohorovičić A. 1910. Godišnje izvješče Zagrebačkog Meteorološkog Opservatorija:za godinu 1909[M]. Albrechts.
Moisio K,Kaikkonen P. 2001. Geodynamics and rheology of the lithosphere along the DSS profile SVEKA in the central Fennoscandian Shield[J]. Tectonophysics,340(1):61–77.
Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
O’Reilly S Y,Griffin W L. 2013. Moho vs crust–mantle boundary:Evolution of an idea[J]. Tectonophysics,609:535–546. doi: 10.1016/j.tecto.2012.12.031
Parker R L,Booker J R. 1996. Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements[J]. Phys Earth Planet Int,98(3-4):269–282. doi: 10.1016/S0031-9201(96)03191-3
Suresh M,Manglik A,Thiagarajan S. 2023. Basement and lithospheric structure of the central Ganga Basin between the Bundelkhand craton and the Sharda Deep by magnetotellurics[J]. Tectonophysics,863:229991. doi: 10.1016/j.tecto.2023.229991
Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Sol Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978
Wei W B,Ye G F,Jin S,Deng M,Jing J E. 2008. Geoelectric structure of lithosphere beneath Eastern North China:Features of thinned lithosphere from magnetotelluric soundings[J]. Earth Sci Front,15(4):204–216. doi: 10.1016/S1872-5791(08)60055-X
Xiong L,Zhao X F,Wei J H,Jin X Y,Fu L B,Lin Z W. 2020. Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton:Evidence from Pb isotope systematics[J]. Chem Geol,533:119440. doi: 10.1016/j.chemgeo.2019.119440
Xu Y,Zeyen H,Hao T Y,Santosh M,Li Z W,Huang S,Xing J. 2016. Lithospheric structure of the North China Craton:integrated gravity,geoid and topography data[J]. Gondwana Res,34:315–323. doi: 10.1016/j.gr.2015.03.010
Yang X. 2011. Origin of high electrical conductivity in the lower continental crust:A review[J]. Surv Geophys,32(6):875–903. doi: 10.1007/s10712-011-9145-z
Ye T,Chen X B,Huang Q H,Zhao L,Zhang Y,Uyeshima M. 2020. Bifurcated crustal channel flow and seismogenic structures of intraplate earthquakes in Western Yunnan,China as revealed by three-dimensional magnetotelluric imaging[J]. J Geophys Res:Solid Earth,125(9):e2019JB018991. doi: 10.1029/2019JB018991
Ye T,Huang Q H,Chen X B,Zhang H Q,Chen Y J,Zhao L,Zhang Y. 2018. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau [J]. J Geophys Res:Solid Earth, 123 (12):11,112-11 126.
Zhang H Q,Huang Q H,Zhao G Z,Guo Z,Chen Y J. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen:Evidence for a mantle source of Datong volcanoes[J]. Earth Planet Sci Lett,453:182–192. doi: 10.1016/j.jpgl.2016.08.025
Zheng T Y,Chen L,Zhao L,Zhu R X. 2007. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Phys Earth Planet Inter,161(1):36–49.
Zheng T Y,Zhao L,He Y M,Zhu R X. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China[J]. Geophys J Int,196(2):656–670. doi: 10.1093/gji/ggt420
Zheng T Y,Zhao L,Xu W W,Zhu R X. 2008. Insight into modification of North China Craton from seismological study in the Shandong Province[J]. Geophys Res Lett,35(22):L17306.
Zheng T Y,Zhao L,Zhu R X. 2009. New evidence from seismic imaging for subduction during assembly of the North China craton[J]. Geology,37(5):395–398. doi: 10.1130/G25600A.1