用逐步代价最小决策法识别地震与爆破

张博, 边银菊, 王婷婷

张博, 边银菊, 王婷婷. 2014: 用逐步代价最小决策法识别地震与爆破. 地震学报, 36(2): 233-243. DOI: 10.3969/j.issn.0253-3782.2014.02.008
引用本文: 张博, 边银菊, 王婷婷. 2014: 用逐步代价最小决策法识别地震与爆破. 地震学报, 36(2): 233-243. DOI: 10.3969/j.issn.0253-3782.2014.02.008
Zhang Bo, Bian Yinju, Wang Tingting. 2014: Discrimination of earthquakes and explosions by SAMC decision method. Acta Seismologica Sinica, 36(2): 233-243. DOI: 10.3969/j.issn.0253-3782.2014.02.008
Citation: Zhang Bo, Bian Yinju, Wang Tingting. 2014: Discrimination of earthquakes and explosions by SAMC decision method. Acta Seismologica Sinica, 36(2): 233-243. DOI: 10.3969/j.issn.0253-3782.2014.02.008

用逐步代价最小决策法识别地震与爆破

基金项目: 地震行业科研专项基金(200808003)资助.
详细信息
    通讯作者:

    边银菊, E-mail: bianyinju@Yahoo.com.cn

  • 中图分类号: P315.3+1

Discrimination of earthquakes and explosions by SAMC decision method

  • 摘要: 在动态时间规整法的基础上, 建立了逐步代价最小决策法(SAMC). 该方法中的代价函数可以很好地反映特征归属, 对较差的特征具有一定的“容忍度”、 稳定性好, 还可用全程代价函数评判识别结果的可信度. 用SAMC方法对北京及其周边地区33次地震和29次爆破中提取的5个分类特征量进行识别, 识别率为90%; 从该5个特征量中选择较好的3个特征量进行识别, 识别率为92%; 在上述地区另选13次事件作为检验样本进行U检验, 5个分类特征量和3个分类特征量的识别率分别为92%和100%, 识别效果很好. 这表明SAMC是识别地震与爆破的有效方法.
    Abstract: Based on dynamic time warping (DTW) algorithm, this paper proposes a novel recognition algorithm, stepwise accumulating minimal cost (SAMC) decision method. By this method, each cost function can well reflect the tendency of event’s features; moreover, SAMC is unsusceptible to the quality of features. The absolute value of overall cost function can be also served as the reliability of the results. Five features were extracted for recognition from 62 events of earthquakes (33) and explosions (29) which occurred in Beijing and its peripheral regions. The result respectively reached 90% recognition rate for five features and 92% for three features which are better features from the five ones. In another testing by U-test, another 13 events (eight earthquakes and five explosions) were randomly chosen from the same area, and the recognition rate was 92% for five features and 100% for three ones. These suggest that SAMC method can be useful to discriminate earthquakes and explosions effectively.
  • 图  1   选取事件的位置分布图

    Figure  1.   Location of events and stations

    图  2   人工爆破与天然地震识别量的阈值分析

    (a) P波初动方向; (b) AP1/ASmax ; (c) APmax/ASmax; (d) APmax/tme; (e) ASmax/tme 红色圆圈和叉号分别表示学习样本集中的爆破与地震事件; 正方形和棱形分别表示学习样本集中爆破与 地震各项特征的重心; 蓝色圆圈和六角星表示检验样本集中的爆破与地震事件

    Figure  2.   Thresholds for discriminating the explosions and earthquakes

    (a) P-wave first motion; (b) The ratio of P-wave first motion amplitude to the maximum amplitude of S-wave; (c) P/S maximum amplitude ratios; (d) The ratio of P-wave maximum amplitude to duration; (d) The ratio of S-wave maximum amplitude to their duration. The red circles and crosses represent explosions and earthquakes for learning, respectively; the squares and the diamonds represent template of each feature belonging to explosions and earthquakes, respectively; the blue circles and the hexagrams separately represent explosions and earthquakes for testing

    图  3   5次爆破的3个分类特征量测试模板的最优代价路径

    图中非垂直虚线表示局部约束, 实线表示选择的最优路径

    Figure  3.   Overall optimal cost paths of five explosive test samples with three features

    Non-perpendicular dashed lines represent local constraint, and solid lines represent optimal path

    图  4   8次地震的3个分类特征量测试模板的最优代价路径

    Figure  4.   Overall optimal cost paths of eight seismic test samples with three features

    表  1   每一步权重值σ

    Table  1   Weight σ at each step

    下载: 导出CSV

    表  2   3个分类特征量的C检验结果

    Table  2   Results of C-test on learning sample set with three features

    下载: 导出CSV

    表  3   5个分类特征量的C检验结果

    Table  3   Results of C-test on learning sample set with five features

    下载: 导出CSV

    表  4   测试事件的U检验结果

    Table  4   Results of U-test on all test sample set

    下载: 导出CSV
  • 毕明霞, 黄汉明, 边银菊, 李锐, 陈银燕, 赵静. 2011. 天然地震与人工爆破波形信号HHT特征提取和SVM识别研究[J]. 地球物理学进展, 26(4): 1157-1164.

    Bi M X, Huang H M, Bian Y J, Li R, Chen Y Y, Zhao J. 2011. A study on seismic signal HHT features extraction and SVM recognition of earthquake and explosion[J]. Progress in Geophysics, 26(4): 1157-1164 (in Chinese).

    边银菊, 邹立晔. 2002. 学习向量化(LVQ)在地震和爆破识别中的应用[J]. 地震地磁观测与研究, 23(1): 10-15.

    Bian Y J, Zou L Y. 2002. Application of learning vector quantization (LVQ) to discriminating earthquakes and explosions[J]. Seismological and Geomagnetic Observation and Research, 23(1): 10-15 (in Chinese).

    边银菊. 2002. 遗传BP网络在地震和爆破识别中的应用[J]. 地震学报, 24(3): 516-524.

    Bian Y J. 2002. Application of genetic BP network to discriminating earthquakes and explosions[J]. Acta Seismologica Sinica, 24(3): 516-524 (in Chinese).

    边银菊. 2005. Fisher方法在震级比mb/MS判据识别爆炸中的应用研究[J]. 地震学报, 27(4): 414-422.

    Bian Y J. 2005. Application of Fisher method to discriminating earthquakes and explosions using criterion mb/MS[J]. Acta Seismologica Sinica, 27(4): 414-422 (in Chinese).

    边银菊, 王婷婷, 郭永霞. 2012. 用决策方法识别地震与爆破[J]. 地震学报, 34(3): 397-407.

    Bian Y J, Wang T T, Guo Y X. 2012. Discrimination between earthquakes and explosions based on decision-making algorithm[J]. Acta Seismologica Sinica, 34(3): 397-407 (in Chinese).

    韩绍卿, 李夕海, 安跃文, 刘代志. 2010. 核爆、 化爆、 地震识别研究综述[J]. 地球物理进展, 25(4): 1206-1218.

    Han S Q, Li X H, An Y W, Liu D Z. 2010. A review on the identification of nuclear explosions, chemical explosions and natural earthquakes[J]. Progress in Geophysics, 25(4): 1206-1218 (in Chinese).

    黄汉明, 边银菊, 卢世军, 李锐, 蒋正锋. 2010. ν-SVC算法在地震与爆破识别及窗长度选取中的应用[J]. 地震地磁观测与研究, 31(3): 24-31.

    Huang H M, Bian Y J, Lu S J, Li R, Jiang Z F. 2010. ν-SVC algorithm applied in earthquake and explosion recognition and the choice of window length[J]. Seismological and Geomagnetic Observation and Research, 31(3): 24-31 (in Chinese).

    李夕海, 刘刚, 刘代志, 秦庆强. 2009. 基于最近邻支撑向量特征线融合算法的核爆地震识别[J]. 地球物理学报, 52(7): 1816-1824.

    Li X H, Liu G, Liu D Z, Qin Q Q. 2009. Discrimination of nuclear explosions and earthquakes using the support vector feature line fusion classification algorithm[J]. Chinese Journal of Geophysics, 52(7): 1816-1824 (in Chinese).

    王婷婷, 边银菊. 2011. 识别天然地震和人工爆破的判据选择[J]. 地震地磁观测与研究, 32(6): 62-67.

    Wang T T, Bian Y J. 2011. Criterion selection of earthquake and explosion recognition[J]. Seismological and Geomagnetic Observation and Research, 32(6): 62-67 (in Chinese).

    Bellman R E. 1957. Dynamic Programming[M]. New Jersey: Princeton University Press: 83-86.

    Kuyuk H S, Yildirim E, Dogan E, Horasan G. 2011. An unsupervised learning algorithm: Application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul[J]. Nat Hazards Earth Syst Sci, 11(1): 93-100.

    Sammis C G, Biegel R L, Rosakis A J. 2008. An experimental study of S wave generation by fracture damage in underground nuclear explosions[C]//Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. California: University of Southern California and California Institute of Technology. 1: 666-671.

    Theodoridis S, Koutroumbas K. 2009. Pattern Recognition[M]. London: Academic Press: 482-486.

    Taylor S R. 2011. Statistical discriminants from two-dimensional grids of regional P/S spectral ratios[J]. Bull Seismol Soc Am, 101(4): 1584-1589.

  • 期刊类型引用(3)

    1. Jian Ma,Katsuichiro Goda,Han-Ping Hong,Kai Liu,Weijin Xu,Jia Cheng,Ming Wang. Probabilistic Seismic Hazard Assessment for the North China Plain Earthquake Belt: Sensitivity of Seismic Source Models and Ground Motion Prediction Equations. International Journal of Disaster Risk Science. 2024(06): 954-971 . 必应学术
    2. 陈鲲,高孟潭. 中国大陆地区一般建设工程抗地震倒塌风险研究. 建筑结构学报. 2015(01): 23-29 . 百度学术
    3. 李敏,陈永新,迟明杰,李小军. 地震危险性分析的不确定性对核电厂抗震裕度影响研究. 地震工程与工程振动. 2014(S1): 87-92 . 百度学术

    其他类型引用(5)

图(4)  /  表(4)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  266
  • PDF下载量:  28
  • 被引次数: 8
出版历程
  • 收稿日期:  2012-12-16
  • 修回日期:  2013-11-14
  • 发布日期:  2014-02-28

目录

    /

    返回文章
    返回