Postseismic deformation and its association with lithospheric rheological structure
-
摘要: 岩石圈流变学结构是控制不同构造环境下岩石圈形变的关键因素之一. 随着空间大地测量观测技术的发展, 基于空间大地测量数据的震后形变研究对揭示断裂带内的力学性质和区域性岩石圈流变学结构已成为可能. 该文首先基于岩石力学的摩擦和流变学实验, 对余滑和分布式韧性流的构造物理背景进行了分别阐述, 并介绍了震后形变数值模拟中本构关系和数值模型的发展. 数值模型主要有解析、 半解析和纯数值3类, 涉及的本构关系包括基于速率-状态摩擦准则的余滑以及分布式韧性流中常用的线性流变学模型(麦克斯韦尔体和标准线性固体)和瞬态流变学模型(宏观经验性的伯格斯(Burgers)体和微观幂律流变律). 然后以美国南加州1992年Landers MW7.3地震和1999年Hector Mine MW7.1地震震后形变研究为例, 介绍了震后形变的研究进展. 最后回顾了大陆岩石圈流变学结构的研究进展, 并以震后形变研究中的流变学结构(“三明治模型”和“焦糖布丁模型”)存在的争议为例, 说明了岩石圈流变学结构研究所具有的挑战性.Abstract: Lithospheric rheological structure is a key factor in controlling lithosphere deformation in different tectonic environments. With the development of space geodetic observation techniques in recent years, postseismic deformation studies based on space geodetic observations have been used to infer mechanical properties of fault zones and lithospheric rheological structure. Firstly, we introduce the tectonophysical background of afterslip and distributed ductile flow from the associated friction and rheological experiments, respectively, and summarize the developments of numerical models and constitutive laws for postseismic deformation studies. The numerical models include analytical, semi-analytical, and purely numerical models, whose constitutive laws involve rate-and-state friction afterslip, standard linear rheological models (e.g., Maxwell body and standard linear solid) and transient rheological models (e.g., macroscopic and empirically derived Burgers body and microscopic power-law flow) of distributed ductile flow. Then, we review the development of postseismic deformation studies from case studies associated with the 1992 MW7.3 Landers and 1999 MW7.1 Hector Mine earthquakes in southern California, USA. Finally, we review recent advances on the lithospheric rheological structure studies and show how challenging the studies on the lithospheric rheological structure are by the controversial Jelly Sandwich and Crème Br?léé rheological models in postseismic deformation studies.
-
Keywords:
- postseismic deformation /
- rock mechanics /
- friction /
- rheology /
- lithospheric rheology structure
-
-
图 1 多晶黄铁矿(颗粒尺寸100 μm)变形机制图(引自Barrie et al,2007)
横坐标为温度,纵坐标为差应力(σ)的对数值,灰色等值线上的数字表示加载 应变率的常数对数负值,其数字4表示10-4 s-1
Figure 1. Deformation mechanism map for polycrystalline pyrite with grain size of 100 μm(after Barrie et al,2007)
The abscissa axis and ordinate axis indicate the temperature and constant logarithmic of the differential stress(σ),respectively. The numbers on the gray contours indicate negative constant logarithmic of the loading strain rates,for example,4 is the loading at strain rate of 10-4 s-1
-
Afonso J C, Ranalli G,2004. Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete?[J]. Tectonophysics , 2004 , 394 (3/4) :221-232
Barbot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. J Geophys Res, 114(B7): B07405. doi:10.1029/2008JB005748.
Barbot S, Lapusta N, Avouac J P. 2012. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle[J]. Science, 336(6082): 707-710.
Barrie C D, Boyle A P, Prior D J. 2007. An analysis of the microstructures developed in experimentally deformed polycrystalline pyrite and minor sulphide phases using electron backscatter diffraction[J]. J Struct Geol, 29(9): 1494-1511.
Bodine J H, Steckler M S, Watts A B. 1981. Observations of flexure and the rheology of the oceanic lithosphere[J]. J Geophys Res, 86(B5): 3695-3707.
Brace W F, Byerlee J D. 1966. Stick-slip as a mechanism for earthquakes[J]. Science, 153(3739): 990-992.
Brace W F, Kohlstedt D L. 1980. Limits on lithospheric stress imposed by laboratory experiments[J]. J Geophys Res, 85(B11): 6248-6252.
Buck W R. 1991. Modes of continental lithospheric extension[J]. J Geophys Res, 96(B12): 20161-20178.
Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations[J]. Ann Rev Earth Planet Soc, 36(1): 531-567.
Burov E B, Watts A B. 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brȗlée"?[J]. GSA Today, 16(1): 4-10.
Byerlee J. 1978. Friction of rocks[J]. Pure Appl Geophys, 116(4): 615-626.
Chen W P, Molnar P. 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere[J]. J Geophys Res, 88(B5): 4183-4214.
Coble R L. 1963. A model for boundary diffusion controlled creep in polycrystalline materials[J]. J Appl Phys, 34(6): 1679-1682.
Deng J, Gurnis M, Kanamori H, Hauksson E. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282(5394): 1689-1692.
Dieterich J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res, 99(B2): 2601-2618.
Dieterich J H. 1972. Time-dependent friction in rocks[J]. J Geophys Res, 77(20): 3690-3697.
Dieterich J H. 1978. Time-dependent friction and the mechanics of stick-slip[J]. Pure Appl Geophys, 116(4): 790-806.
Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res, 84(B5): 2161-2168.
Feigl K L, Thatcher W. 2006. Geodetic observations of post-seismic transients in the context of the earthquake deformation cycle[J]. C R Geosci, 338(14/15): 1012-1028.
Fialko Y. 2004. Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 MW7.3 Landers earthquake[J]. J Geophys Res, 109(B8): B08401.
Flemings P B, Jordan T E. 1990. Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology[J]. Geology, 18(5): 430-434.
Freed A M, Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature, 430(6999): 548-551.
Freed A M, Bürgmann R, Calais E, Freymueller J. 2006a. Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake[J]. Earth Planet Sci Lett, 252(3/4): 481-489.
Freed A M, Bürgmann R, Calais E, Freymueller J, Hreinsdóttir S. 2006b. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology[J]. J Geophys Res, 111(B1): B01401. doi:10.1029/2005JB003894.
Freed A M, Bürgmann R, Herring T. 2007. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust[J]. Geophys Res Lett, 34(19): L19302. doi:10.1029/2007GL030959.
Freed A M, Herring T, Bürgmann R. 2010. Steady-state laboratory flow laws alone fail to explain postseismic observations[J]. Earth Planet Sci Lett, 300(1/2): 1-10.
Freed A M, Hirth G, Behn M D. 2012. Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle[J]. J Geophys Res, 117(B1): B01409. doi:10.1029/2011JB008562.
Frost H J, Ashby M F.1982. Deformation Mechanism Maps[M]. Oxford: Pergamon Press: 3-5.
Fukahata Y, Matsu'ura M. 2006. Quasi-static internal deformation due to a dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem[J]. Geophys J Int, 166(1): 418-434.
Goetze C, Evans B. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics[J]. Geophys J R astr Soc, 59(3): 463-478.
Gourmelen N, Amelung F. 2005. Postseismic mantle relaxation in the central Nevada seismic belt[J]. Science, 310(5753): 1473-1476.
Green H W. 1970. Diffusional flow in polycrystalline materials[J]. J Appl Phys, 41(9): 3899-3902.
Hearn E H, Bürgmann R, Reilinger R E. 2002. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter[J]. Bull Seismol Soc Am, 92(1): 172-193.
Hearn E H. 2003. What can GPS data tell us about the dynamics of post-seismic deformation?[J]. Geophys J Int, 155(3): 753-777.
Hearn E H, McClusky S, Ergintav S, Reilinger R E. 2009. Izmit earthquake postseismic deformation and dynamics of the North Anatolian fault zone[J]. J Geophys Res, 114(B8): B08405. doi:10.1029/2008JB006026.
Hsu Y J, Simons M, Avouac J P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra[J]. Science, 312(5782): 1921-1926.
Ismail W B, Mainprice D. 1998. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics, 296(1/2): 145-157.
Jackson J. 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich?[J]. GSA Today, 12(9): 4-10.
Jacobs A, Sandwell D, Fialko Y, Sichoix L. 2002. The 1999 (MW7.1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry[J]. Bull Seismol Soc Am, 92(4): 1433-1442.
Johnson K M, Bürgmann R, Larson K. 2006. Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake[J]. Bull Seismol Soc Am, 96(4B): S321-S338.
Johnson K M, Bürgmann R, Freymueller J T. 2009. Coupled afterslip and viscoelastic flow following the 2002 Denali fault, Alaska earthquake[J]. Geophys J Int, 176(3): 670-682.
Johnson K M, Fukuda J. 2010. New methods for estimating the spatial distribution of locked asperities and stress-driven interseismic creep on faults with application to the San Francisco Bay area, California[J]. J Geophys Res, 115(B12): B12408. doi:10.1029/2010JB007703.
Karato S. 2008. Deformation of Earth Materials: An Introduction to the Theology of Solid Earth[M]. Cambridge: Cambridge Univ Press: 34-44.
Khazaradze G, Wang K, Klotz J, Hu Y, He J. 2002. Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology[J]. Geophys Res Lett, 29(22): 7-1-7-4.
Kirby S H, Kronenberg A K. 1987. Rheology of the lithosphere: Selected topics[J]. Rev Geophys, 25(6): 1219-1244.
Kohlstedt D L, Evans B, Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments[J]. J Geophys Res, 100(B9): 17587-17602.
Kreemer C, Blewitt G, Maerten F. 2006. Co- and postseismic deformation of the 28 March 2005 Nias MW8.7 earthquake from continuous GPS data[J]. Geophys Res Lett, 33(7): L07307. doi:10.1029/2005GL025566.
Lowry A R, Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation[J]. Nature, 471(7338): 353-357.
Marone C J, Scholz C H, Bilham R. 1991. On the mechanics of earthquake afterslip[J]. J Geophys Res, 96(B5): 8441-8452.
Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Ann Rev Earth Planet Soc, 26(1): 643-696.
Massonnet D, Thatcher W, Vadon H. 1996. Detection of postseismic fault-zone collapse following the Landers earthquake[J]. Nature, 382(6592): 612-616.
Masterlark T, Wang H F. 2002. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes[J]. Bull Seismol Soc Am, 92(4): 1470-1486.
Nabarro F R N. 1948. Deformation of crystals by motion of a single ions: In strength of solids[C]//Report of a Conference on the Strength of Solids Bristol 7th-9th July 1947 Physical Society. London: Physical Society: 75-90.
Niemeijer A R, Spiers C J. 2007. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges[J]. J Geophys Res, 112(B10): B10405. doi:10.1029/2007JB005008.
Nur A, Mavko G. 1974. Postseismic viscoelastic rebound[J]. Science, 183(4121): 204-206.
Owen S, Anderson G, Agnew D C, Johnson H, Hurst K, Reilinger R, Shen Z K, Svarc J, Baker T. 2002. Early post-seismic deformation from the 16 October 1999 MW7.1 Hector Mine, California, earthquake as measured by survey-mode GPS[J]. Bull Seismol Soc Am, 92(4): 1423-1432.
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 475(7356): 373-376.
Paul J, Lowry A R, Bilham R, Sen S, Smalley R Jr. 2007. Postseismic deformation of the Andaman Islands following the 26 December, 2004 Great Sumatra-Andaman earthquake[J]. Geophys Res Lett, 34(19): L19309. doi:10.1029/2007GL031024.
Peltzer G, Rosen P, Rogez F, Hudnut K. 1998. Poroelastic rebound along the Landers 1992 earthquake surface rupture[J]. J Geophys Res, 103(B12): 30131-30145.
Perfettini H, Avouac J P. 2004. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan[J]. J Geophys Res, 109(B2): B02304. doi:10.1029/2003JB002488.
Perfettini H, Avouac J P. 2007. Modeling afterslip and aftershocks following the 1992 Landers earthquake[J]. J Geophys Res, 112(B7): B07409. doi:10.1029/2006JB004399.
Pollitz F, Banerjee P, Grijalva K, Nagarajan B, Bürgmann R. 2008. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M=9.2 Sumatra earthquake[J]. Geophys J Int, 173(1): 189-204.
Pollitz F F. 1992. Postseismic relaxation theory on the spherical earth[J]. Bull Seismol Soc Am, 82(1): 422-453.
Pollitz F F. 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical earth[J]. J Geophys Res, 102(B8): 17921-17941.
Pollitz F F, Peltzer G, Bürgmann R. 2000. Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake[J]. J Geophys Res, 105(B4): 8035-8054.
Pollitz F F, Wicks C, Thatcher W. 2001. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake[J]. Science, 293(5536): 1814-1818.
Pollitz F F. 2003a. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model[J]. Geophys J Int, 155(1): 57-78.
Pollitz F F. 2003b. Transient rheology of the uppermost mantle beneath the Mojave desert, California[J]. Earth Planet Sci Lett, 215(1/2): 89-104.
Pollitz F F. 2005. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake[J]. J Geophys Res, 110(B8): B08407. doi:10.1029/2005JB003672.
Pollitz F F, Thatcher W. 2010. On the resolution of shallow mantle viscosity structure using postearthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake[J]. J Geophys Res, 115(B10): B10412. doi:10.1029/2010JB007405.
Royden L H, Burchfiel B C, King R W, Wang E, Chen Z L, Shen F, Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790.
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Rev Geophys, 33(3): 267-309.
Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res, 88(B12): 10359-10370.
Rundle J B. 1978. Viscoelastic crustal deformation by finite quasi-static sources[J]. J Geophys Res, 83(B12): 5937-5945.
Rundle J B. 1980. Static elastic-gravitational deformation of a layered half space by point couple sources[J]. J Geophys Res, 85(B10): 5355-5363.
Rutter E H, Elliott D. 1976. The kinetics of rock deformation by pressure solution: Discussion[J]. Philos T Roy Soc A, 283(1312): 203-219.
Rutter E H. 1983. Pressure solution in nature, theory and experiment[J]. J Geol Soc London, 140(5): 725-740.
Rybicki K. 1971. The elastic residual field of a very long strike-slip fault in the presence of a discontinuity[J]. Bull Seismol Soc Am, 61(1): 79-92.
Ryder I, Bürgmann R, Pollitz F. 2011. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake[J]. Geophys J Int, 187(2): 613-630.
Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res, 78(5): 832-845.
Savage J C, Prescott W H. 1978. Asthenosphere readjustment and the earthquake cycle[J]. J Geophys Res, 83(B7): 3369-3376.
Savage J C. 1990. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models[J]. J Geophys Res, 95(B4): 4873-4879.
Savage J C, Svarc J L. 1997. Postseismic deformation associated with the 1992 MW=7.3 Landers earthquake, southern California[J]. J Geophys Res, 102(B4): 7565-7577.
Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37-42.
Shen Z K, Jackson D D, Feng Y, Cline M, Kim M, Fang P, Bock Y. 1994. Postseismic deformation following the Landers earthquake, California, 28 June 1992[J]. Bull Seismol Soc Am, 84(3): 780-791.
Shimamoto T. 1986. Transition between frictional slip and ductile flow for halite shear zones at room temperature[J]. Science, 231(4739): 711-714.
Thatcher W. 1983. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault[J]. J Geophys Res, 88(B7): 5893-5902.
Thatcher W, Pollitz F F. 2008. Temporal evolution of continental lithospheric strength in actively deforming regions[J]. GSA Today, 18(4): 4-11.
Tse S T, Rice J R. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. J Geophys Res, 91(B9): 9452-9472.
Vergnolle M, Pollitz F, Calais E. 2003. Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia[J]. J Geophys Res, 108(B10): 1-15.
Wang K, Hu Y, He J. 2012. Deformation cycles of subduction earthquakes in a viscoelastic earth[J]. Nature, 484(7394): 327-332.
Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci, 32(4): 527-541.
Weertman J. 1955. Theory of steady-state creep based on dislocation climb[J]. J Appl Phys, 26(10): 1213-1217.
Weertman J. 1970. The creep strength of the earth's mantle[J]. Rev Geophys, 8(1): 145-168.