Segmentation of the Wenchuan earthquake fault derived from tectonic stress analysis
-
摘要: 采用构造应力场均匀性对断层或板块边界进行分段的方法, 利用ldquo;裁剪-粘贴rdquo;法给出的余震震源机制解资料, 进一步从应力场角度确定汶川地震发震断层南、 北段分界点位置及南、北段震后应力场. 研究结果表明, 发震断层南、北段分界点位于北川附近, 与先前的研究结果较为一致. 南、 北段震后应力场反演结果显示, 南、北段的最大主应力轴方位均呈北东东向, 且近水平. 南、北段应力场反演的平均拟合残差和置信区间均较大, 主要原因可能是因为南、北段内应力场不均匀性造成的. 因为本文仅由大余震给出了震源断层的一级分段, 南、北段内应做进一步的细分.
-
关键词:
- 汶川地震 震源机制解 应力场 断层分段
Abstract: This study determined the boundary between southern and northern segments of the Wenchuan earthquake fault based on the analysis of stress field after the main shock. The method of dividing fault or plate boundary into sections by means of stress field uniformity analysis is utilized. Aftershock focal mechanisms were obtained by using ldquo;cut and pasterdquo; (CAP) method, and used to infer the stress field. The results show that the boundary between the northern and southern segments of the seismogenic fault is located nearBeichuanCounty, similar to those from previous studies. The inverted aftershock stress results show that the orientation of maximum principal stress axes for both northern and southern segments is ENE-WSW, and nearly horizontal. The average misfit and confidence level range of stress inversion result are relatively large, probably due to the stress heterogeneity in the northern and southern segments. Since this research only gives a gross segmentation of the seismogenic fault based on focal mechanism determination of large aftershocks, a further division of the northern and southern segments should be studied in detail in future. -
引言
地热能是我国“十四五”规划确定的未来战略性接替能源,在国家加快构建现代能源体系、努力实现“双碳”目标进程中,高温地热资源的形成机制和赋存条件是地热学研究的重要课题。地热学研究(佟伟等,1990)表明地球表面最重要的高温地热资源均与岩浆活动有关,进入实质性商业发电的高温地热系统都位于晚新生代以来的活火山区或近代火山区,且均是与浅成、年轻酸性侵入体有关的高温水热系统,并均以频繁的水热爆炸、壮观的间歇喷泉、持续沸腾的沸泉群为主要活动类型。我国长白山天池火山是全新世以来有过喷发活动的板内活火山,直至现今火山构造地震事件不断(明跃红等,2006;吴建平等,2007;Xu et al,2012)、火山气体组份扰动强烈(高玲等,2006;Liu et al,2011)、深部岩浆仍间歇活动(Stone,2010;刘国明等,2011),具备形成高温水热系统所需的残余岩浆囊(汤吉等,2001;张先康等,2002;Choi et al,2013;仇根根等,2014;管彦武等,2020;阮帅等,2020)以及丰富的地表水与地下水。然而,地表却没有高温水热活动,温泉群泉口最高温度为82℃,未达到当地沸点。主要原因一是缺失年轻的酸性火山活动,二是板内火山规模较小(佟伟等,1990)。
长白山火山活动机制与大洋中脊、俯冲带等地段的火山机制不同,其火山活动区的上地幔地震波速异常低,可能积聚了大量的水(Yang,Faccenda,2020)。地壳-上地幔S波速度模型和地震背景噪声成像结果显示(Fan et al,2022),长白山下地壳存在部分熔融区,熔体分数在1.5%—3.5%之间。大地电磁数据反演的地壳—上地幔电阻率模型(Yang et al,2021)表明,长白山天池火山之下3—5 km,10—16 km和40—60 km分别存在三个高导异常区。其中:地幔高导异常区对应6%—8%的熔融分数,可能是软流圈上升流的减压熔融引起;中地壳高导异常区对应7%—30%熔体的岩浆室,岩浆可能来源于地幔顶部的部分熔融;地壳浅层高导异常区对应孔隙度约为2%的多孔盐带,上涌软流圈地幔的减压熔融和地幔顶部−中地壳的部分熔融,为该区深部岩浆生成提供了有利条件。
现代火山活动是地壳内存在高温上行岩浆的最直观证据,浅部滞留的岩浆囊是形成高温地热系统的理想热源。虽然,长白山天池火山在地表未能形成高温水热系统,但不排除在地下形成隐伏高温地热系统的可能性。在国家重点研发计划“变革性关键科学问题”重点项目的支持下,2022年8月,本课题组与北京大学、中国科学院地质与地球物理研究所、中国石油大学(北京)、中国石油化工股份有限公司、中国石化集团新星石油有限责任公司地热研究团队联合组团,开展了长白山野外地热地质考察。依据野外考察资料和前人的研究成果,本文拟对长白山天池火山地热系统可能存在的岩浆囊和隐伏高温地热系统开展地热学分析,揭示深层高温地热的热源成因与聚热机制,以期为该区高温地热资源勘探的突破提供理论依据和数据支撑。
1. 火山活动背景与地热地质条件
长白山火山属于板内火山(石耀霖,张健,2004;赵大鹏等,2004),由广袤的熔岩台地、众多的火山口、以及长白山天池火山、望天鹅火山、南胞台火山等三个喷发中心组成(图1a)。其中,长白山天池火山是我国最大的晚新生代中心喷发式复合型层状火山(李春锋等,2006;刘嘉麒等,2015)。新近纪以来,长白山天池火山经历了造盾、造锥、造伊格尼姆岩等三个阶段(刘若新等,1998)(图1b−d)。造盾阶段:上新世末—早更新世,长白山天池火山及相邻火山口喷出的玄武岩质岩浆呈放射状向四周溢流,形成盾状火山熔岩台地(图1b),其底座是形成于2.77—2.12 Ma的军舰山玄武岩,以天池为中心向四周缓慢降低;中层是形成于1.66—1.59 Ma的白山期玄武岩;上层是形成于1.48 Ma的广坪期玄武岩(刘嘉麒,王松山,1982;李春锋等,2006)。造锥阶段:中、晚更新世,距今1—0.02 Ma,多次喷发生成的粗面岩质熔岩自天池火山口中心式溢流,堆积在火山盾状玄武岩之上,形成天池火山锥体(图1c)。造伊格尼姆岩阶段:全新世以来,0.01 Ma至今,天池火山活动再次进入高潮,其中心发生爆炸式喷发,公元前4105年和公元1199年(刘若新等,1997,1998)两次大爆发的火山碎屑流堆积固结后生成伊格尼姆岩(熔结凝灰岩,融积岩),并呈席状覆盖在火山锥体上(图1d)。
全新世以来,长白山天池火山喷发活动间隔越来越短、规模越来越小(许东满等,1993)。最近一次火山扰动发生在2002—2005年,此次扰动源自2002年6月29日汪清M7.2深源地震,先前阻塞的岩浆通道被深源地震打开,深部岩浆顺通道上升到地壳浅层(10 km),挤入早期残留岩浆囊中,导致顶部围岩应力增大产生微破裂(刘东阳等,2020)、火山锥体抬升、火山地震事件增多(刘国明等,2011),其中,与地热流体有关的长周期火山地震、频谱型火山地震事件的震源深度均在5 km之内(明跃红等,2006;吴建平等,2007;Xu et al,2012),表明长白山天池火山区地表温泉水热循环深度不超过5 km。人工地震测深表明(张先康等,2002),长白山天池火山岩浆系统纵向可分三层:9 km以浅,岩浆喷发通道和岩浆活动“残留”物;9—15 km处于“软化”状态的岩浆储存和活动区;15 km之下,岩浆活动区逐渐缩小。大地电磁测深表明(汤吉等,2001;仇根根等,2014;阮帅等,2020),长白山天池火山口附近,地表温泉相关的地下流体在5 km以浅形成低阻体,其下被高电阻率基底隔离,天池火山口下方,低电阻率特征的岩浆通道在5 km深度关闭,岩浆通道之下是一个中心埋深约12 km的低阻岩浆囊,岩浆囊向下延伸与深部岩浆低阻带连为一体。重力反演表明(Choi et al,2013;管彦武等,2020)长白山天池火山区布格重力异常与浅层岩浆囊、地表低密度火山岩分布有关,长白山天池下方存在深度7—15 km、富含气体的低密度岩浆囊。地震、电法、重力研究结果均证实长白山天池火山之下存在浅层岩浆囊(陈棋福等,2019),因此,针对浅层岩浆囊的高温地热资源效应研究十分重要。
地壳浅层岩浆囊为地表水热活动提供了充分的热源条件。长白山天池火山口湖周边有三处与现代火山活动相关的温泉群(图1a),其中,湖内有湖滨温泉群(朝鲜一侧有白头温泉、甘泉温泉),湖外有聚龙温泉群和锦江温泉群。这三处温泉群的地热地质条件如表1所示(林元武等,1999;闫佰忠,2016)。
表 1 天池火山周边温泉地热地质条件Table 1. Geothermal geological conditions of hot springs around Tianchi volcano温泉群 出露地段 东经
/°北纬
/°泉口温度
/℃热储温度/℃ 热储深度
/km热水循环深度
/km范围 平均 湖外 聚龙温泉群 天池瀑布北侧第四纪
粗面岩中128°03′30″ 42°02′47″ 40—82 134.9—157.9 146.4 4.15—4.17 4.53—4.56 锦江温泉群 长白山西坡锦江峡谷
第四纪粗面岩中127°59′33″ 41°56′22″ 58—60 118.5—162.0 125.8 3.68—4.30 4.06—4.36 湖内 湖滨温泉群 第四纪粗面岩中 128°03′45″ 42°01′12″ 42—73 天池火山区三个温泉群的成因均与岩浆囊高温岩浆气体有关,地下水在深处被高温岩浆气体(CO2)烘烤加热,然后在地层压力下沿断裂上升,在地表形成温泉(林元武等,1999)。天池周边的地下水主要是玄武岩孔洞裂隙水。环天池附近,孔洞裂隙水主要赋存在晚更新世玄武岩中,含水层厚、连通性好、透水性强,单泉流量大于10 L/s,水量丰富;天池外围,玄武岩厚度向周缘减薄,气孔率与裂隙发育不均,地下水从天池火山锥向外围径流过程中受周边基岩阻水作用,在天池周边、山前洼地形成环带状地下水溢出带,单泉流量1.0—10 L/s,水量中等(闫佰忠,2016)。
总体上,长白山天池火山区地热地质条件和水文地质条件均较好,尽管地处晚新生代火山活动区,且具备有利的浅层岩浆囊热源,但地表仍缺乏高温水热活动(表1)。针对此,我们利用地热学方法,计算该区地壳热结构、上行岩浆热状态,分析地下可能存在的隐伏浅层高温地热系统。
2. 计算方法
2.1 浅层(5 km以浅)热结构计算方法
$$ \left\{\begin{gathered}T_{\text{z}}=T_{\mathrm{s}}+\sum\limits_{i=1}^n\frac{2 ( Q_{\mathrm{s}}-A_{i-1}Z_{i-1} ) ( Z_i-Z_{i-1} ) -A_i ( Z_i-Z_{i-1} ) ^2}{2K_i}\mathrm{\text{,}} \\ Q_{\text{z}}=Q_{\mathrm{s}}-\sum\limits_{i=1}^nA_iZ_i\text{,} \\ \end{gathered}\right. $$ (1) 式中,如果已知地壳结构和第i深度层热导率Ki和生热率Ai,则由地表温度Ts及热流Qs可以计算不同深度Zi处的地温Tz和热流Qz。
计算时,以研究区两口地热井CR1,CR2 (图1a)的热物性参数(姜光政等,2016)为依据,详细信息列于表2。
表 2 天池火山区地层热物性参数表Table 2. Geothermal physical parameters of stratum around Tianchi volcano地热井 东经/° 北纬/° 井深/m 井中水温/℃ 大地热流
/(mW·m−2)热导率
W/(m·K)地温梯度
/(℃·km−1)生热率
/(μW·m−3)CR1 127.6 41.9 2500 31—34 79.9 2.72 29.38 1.26 CR2 127.5 42.1 2300 30—31 70.9 2.80 25.33 1.26 2.2 中、深层(5 km<深度≤DC)热结构计算方法
1) 利用航磁异常计算居里点深度DC (Curie point depth)。DC是表征铁磁性矿物消磁温度 TC(居里温度,Curie temperature)所对应的深度。本文利用磁异常谱分析方法计算居里面(张健等,2023),设磁异常ΔT的功率谱径向平均为θΔT,则
$$\begin{aligned} & {\theta }_{\Delta T}=A{{\mathrm{e}}}^{-2\lambda {Z}_{{\mathrm{t}}}} [ 1-{{\mathrm{e}}}^{-\lambda ( {Z}_{{\mathrm{b}}}-{Z}_{{\mathrm{t}}} ) }{ ] }^{2}\text{,} \\ & \mathrm{ln}\sqrt{{\theta }_{\Delta T}}=\mathrm{ln}B-\lambda {Z}_{{\mathrm{t}}}\qquad \text{高频谱段}\text{,} \\ &\ln \dfrac{{\sqrt {\theta_{ \Delta T}} }}{\lambda }=\mathrm{ln}C-\lambda {Z}_{0} \qquad \text{低频谱段} \text{,} \end{aligned} $$ (2) 式中,A,B,C为可选常数,λ为波数,Zt和Zb分别为磁性体顶、底界面,Z0是磁性层的中间深度。在短波谱段(波长小于两倍磁性层厚度),由磁异常功率谱的斜率可以估算Zt。在长波谱段,Z0可以根据拟合曲线的斜率求出。则磁性体底界面深度Zb (=DC)为
$$ D\mathrm{_C}=Z_{\mathrm{b}}=2Z_0-Z_{\mathrm{t}}\text{,} $$ (3) 计算时,磁异常径向功率谱的“滑动窗口”为0.2º×0.2º,为保证重叠50%,滑动距离为窗口宽度的1/2。
② 利用大地热流约束居里面温度TC。实验室中,各类铁磁矿物的消磁温度大致为:磁黄铁矿300—350℃,磁铁矿575—585℃,镍铁矿760—800℃。但是,实际地壳内居里温度随岩石中磁性矿物成分及含量的变化而变化,并不是确定值,而是统计平均值。利用大地热流值与地温梯度之间的关系,可以约束居里温度的分布范围。稳态热传导条件下,大地热流Q在数值上等于地温梯度dT/dZ与岩石热导率K的乘积。居里等温面的温度TC等于深度(磁性层厚度) DC与地温梯度dT/dZ的乘积。即,
$$ \begin{array}{l}Q=K\dfrac{{\mathrm{d}}T}{{\mathrm{d}}\text{Z}}\qquad {T}_{{\mathrm{C}}}={D}_{{\mathrm{C}}}\dfrac{{\mathrm{d}}T}{{\mathrm{d}}Z}\qquad Q{D}_{{\mathrm{C}}}=K{T}_{{\mathrm{C}}}\end{array} .$$ (4) 通过式(4),可以由居里点深度DC和热导率K得到Q约束下的TC。进一步,利用居里深度DC和居里温度TC计算地温梯度dT/dZ,结合式(1)计算的5 km深度的温度T5,可以得到5 km至居里点深度DC之间任意深度的温度。
2.3 火山区浅层密度结构反演(深度≤5 km)计算方法
利用重力异常遗传—有限单元方法反演地层界面密度差,可以获取浅层密度结构。泊松(Poisson)位场方程与稳态傅里叶(Fourier)热传导方程具有形式上的相似性,通过热参数与密度参数的参量代换,可由求解热传导方程的有限单元法求解重力位正演问题(Zhang et al,2004),计算方法为:
$$ \left\{ \begin{array}{l}{\nabla }^{2}U=-4\text{π} G\Delta \rho \text{,} \\ {\nabla }^{2}T=-\dfrac{A}{K} \text{,} \end{array} \right.$$ (5) 式中,Δρ为地层密度差,U为地层界面引起的扰动重力位,G为引力常数,T为温度,A为生热率,K为热导率。
计算时,运行遗传算法程序,调用有限单元刚度矩阵,反复计算不同地层模型Δρ的扰动重力位U,拟合U在上边界(地表)的梯度与布格重力剩余异常Δgb的差,求解最优地层界面模型。计算中,地层界面Δρ在±0.1 g/cm3之间编码随机分为2n组,交叉概率取90%,变异概率取2%,种群大小取128。
3. 计算结果与分析
长白山天池火山区两口地热井的测温曲线及根据傅里叶热传导方程(式1)计算出的井温曲线如图2所示。
在中国大陆地区大地热流数据汇编资料(姜光政等,2016)中,长白山天池火山周边区域的热流测点稀疏,在研究区内仅有两个地热井热流测点CR1和CR2,其中,长热1井(CR1)热流值为79.9 mW/m2,长热2井(CR2)热流值为70.9 mW/m2,二者平均值为75.4 mW/m2。利用地表热流值和岩石热物性(表2),可以由傅里叶热传导方程(式1)计算深部温度。图2是由式(1)计算的CR1和CR2井温度与实测井温曲线的对比,可以看出,二者具有很好的一致性。图2的结果表明,由式(1)计算出的浅层(深度≤5 km)热结构是合理的。
图3给出了由式(2)—式(4)计算的长白山天池火山区居里面深度和居里点温度。计算结果表明,该区居里深度在10.9—14.3 km之间,平均值为12.7 km。图3a中,居里面较浅,沿长白山火山喷发中心—望天鹅火山喷发中心形成一个北东—南西向的居里面上隆带。图3b将不同的居里面深度与地表热流进行吻合,可以看出,在CR1,CR2热流点约束下,研究区居里温度平均值为375℃。因此,本文确定长白山天池火山区居里温度为TC=375℃。
依据式(1)—(4)可以计算出长白山天池火山周边地壳浅层—中层的温度结构,结果如图4。
图4a和4b分别是2 km和12 km深度的温度等值线图。其中,2 km深度界面上,温度介于66—110℃之间,平均值为78℃;12 km深度界面上(接近居里面平均深度),温度介于313—417℃之间,平均值为372℃。可以看出,地壳浅层、中层的地温均以长白山火山、望天鹅火山为中心,形成连为一体的北东—南西向高温区域。图中AB,SN剖面结果如图5所示。
图 5 长白山天池火山地壳浅层温度剖面与岩浆囊结构特征Figure 5. Shallow crustal temperature profile and magmatic chamber structure of Changbaishan Tianchi volcano(a) Temperature profile of North-South direction (see Fig.4a for the location of profile AB,unit:℃);(b) The electrical structure of magma chamber in the shallow crust (Tang et al,2001;Ruan et al,2020) (see Fig.4a for the location of profile SN,unit:Ω·m)长白山天池火山喷发中心15 km以浅(居里面之上)温度剖面及岩浆囊分布特征如图5所示。
图5a是南北向剖面AB的温度分布,可以看出,长白山火山喷发中心之下存在深部壳幔热源,热量在由下向上传递的过程中,居里面由南向北缓慢抬升,在天池火山下方12—15 km深度形成低缓的高温隆升,不断向上为岩浆囊提供热量。图5b的剖面SN是前人(汤吉等,2001;阮帅等,2020)大地电磁测深资料反演结果,电磁特征表明,长白山天池火山浅部(h≤8 km)存在三个低阻体,其中,位于天池火山口南侧的浅层低阻体与地下水热活动相关,电阻率小于30 Ω·m,在5 km深度处消失;位于天池火山口北侧的浅层低阻体,也与地下水热活动相关,且水量丰富,电阻率最低达20 Ω·m,低阻体向北倾斜,随深度逐渐收缩,在5—8 km深度形成一细柱状通道,与深部岩浆囊低阻区相连;最北侧的浅层低阻体,形态近垂直,是一条被后期岩浆覆盖的隐伏断裂带。长白山天池火山深部(h≥12 km)存在1个大低阻区,该低阻区反映了地壳浅层岩浆囊的形态特征,宽约10—15 km,深约12—20 km,最低电阻率为10 Ω·m。
为研究浅层岩浆囊、岩浆与高温水气通道,我们计算了与浅层岩浆囊相关的剩余布格重力异常,其分布形态如图6所示。
图 6 长白山天池火山周边剩余布格重力异常图(a)反演区剩余布格重力异常;(b)剖面CD自由空气异常本文与前人观测对比;(c)剖面CD剩余布格重力异常特征Figure 6. Residual Bouguer gravity anomaly around Changbaishan Tianchi volcano(a) Residual bouguer gravity anomaly map of inversion area;(b) Comparison of free air anomalies in profile CD between this article and previous observations;(c) Residual bouguer gravity anomaly characteristic of profile CD剩余布格重力异常与长白山天池火山区浅层岩浆囊、地表低密度火山岩分布有关(Choi et al,2013;管彦武等,2020)。剩余布格重力异常是地壳浅层地质构造剩余密度产生的重力效应,若地质体的密度小于四周围岩的密度,则剩余密度为负值,剩余布格重力异常也为负值,反之亦然。图6a中,研究区外部,北、西为正异常区,南、东为负异常区;研究区内部,正、负异常围绕天池火山喷发中心相间分布。图6b剖面CD是本文重力资料与前人观测剖面自由空气异常(管彦武等,2020)的对比,图中白色圆圈为前人重力观测剖面(管彦武等,2020),黑色实线AB为本文对比剖面(图6c),二者一致。图6c是剩余布格异常沿剖面CD的形态特征。图6a,6c是在图6b自由空气重力异常基础上,通过地形校正、布格校正、剩余校正之后得到的剩余布格重力异常。剩余布格重力异常消去了大地水准面以上多余的物质以及大地水准面以下正常密度分布的物质,是各种地质体与构造界面剩余密度所产生的引力在重力方向的分量,可以用于反演火山区浅层结构。
在主动源地震探测资料(张先康等,2002)和基底速度结构(段永红等,2003)的约束下,我们利用地壳vP-ρ经验公式(Rybach,Buntebarth,1982)建立初始密度模型,由式(5)开展重力遗传−有限单元反演,得到研究区浅层剩余密度结果,如图7所示。
图7剩余密度反演结果表明,环绕天池火山喷发中心,各深度层剩余密度正、负相间,表明各地层地质体与围岩在横向上具有互相穿插的结构形态。在1—4 km由浅至深的各平面上,各地层剩余密度分别为−0.024—0.038,−0.033—0.044,−0.028—0.042,−0.061—0.052 g/cm3。基底速度结构(段永红等,2003)分析认为,长白山天池火山区的基底结晶深度在2.0—3.0 km之间,最深处位于天池火山口下约4.0 km,在火山口附近形成大的低速凹陷区,堆积大量火山碎屑岩。研究区地表vP速度在3.22—3.55 km/s之间,向下至结晶基底,速度横向变化不大,成层性较好(段永红等,2003)。依据反演三维速度截取的Z=1,2,3,4 km平面速度结构(段永红等,2003),由vP−ρ经验公式(Rybach,Buntebarth,1982)换算,可得地表密度ρ的平均值为1.90 g/cm3,与地表覆盖多次喷发形成的火山碎屑流堆积岩低密度特征一致,地下各深度层密度ρ的平均值分别为1.96,2.21,2.63,2.66 g/cm3。与重力反演结果结合可知,第二、三层之间密度存在较大的跳跃,是一个重要的密度梯级高压带。
重力反演的密度结构剖面EF特征以及大地电磁测深SSW−NNE浅层剖面反演结果如图8所示。由剩余布格重力异常反演得到的剩余密度Δρ和波速vP转换得到的各层平均密度ρ可得各深度层密度结构,在剖面上的分布特征如图8a,8b所示。图8a中,火山喷发中心之下(含地表高程) 3.5—5.5 km深度存在明显的密度跳跃,上、下两地层密度相差约0.42 g/cm3,形成密度梯级高压带地层,推测是火山喷发时快速沉积所致。图8b中,剩余密度在天池火山喷发中心下部形成下凹、在南北两侧形成凸起,推测凸起的地质体是残余岩浆体,密度高于周围火山喷发堆积岩。图8c是大地电磁测深SSW−NNE剖面浅部(≤5 km)的二维反演结果(汤吉等,2001),其电阻率分布特征与剩余密度特征对应,图中,2 km以浅的低阻体与地表出露的锦江温泉、聚龙温泉的地下水和热状态有关。由低阻体形态推测,地表温泉的地下热水没有经过长距离的运移(汤吉等,2001),是围岩和底部微弱高温气液共同加热的结果。
图 8 地壳浅层密度剖面与电阻率剖面Figure 8. The profile of shallow density and resistivity(a) Density profile of shallow layer (unit:g/cm3);(b) Residual density profile of shallow layer (unit:g/cm3);(c) Electrical structure of shallow layer (Tang et al,2001);(See Fig.7a for the location of section EF and SSW−NNE section)4. 讨论与结论
4.1 浅层热结构
大地热流和居里面是确定地壳浅层地热结构最重要的两种独立的地球物理参量,本研究利用热流约束航磁异常反演居里面深度与居里点温度,得到的长白山天池火山区地壳浅层热结构是目前该区地热研究中可靠的温度结构。我们在野外考察中收集了该区漫江地热井(CR1)、松江河地热井(CR2)、松江河万达地热井(CR3)、二道白河地热井1 (CR4)和二道白河地热井2 (CR5)等五眼地热井的资料。这五眼地热井分布于三个地区,CR1井位于漫江镇西侧的河流谷地,为玄武岩台地北西向冲蚀谷地,谷地宽度600—800 m,谷底两侧为玄武岩台地,井深2 500 m,水温30—31℃ (表2)。CR2井、CR3井位于松江河镇,其中,CR2井位于果松山树林中的玄武岩台地上,井深2 300 m,水温30—31℃ (表2);CR3井位于松江河镇万达院内;CR4井、CR5井位于二道白河长白山天池北麓的火山熔岩覆盖区,CR4井深505.8 m,最高水温25.1℃,CR5井深723.4 m,最高水温19.1℃。CR1井和CR2井测温曲线(图2)接近稳态地温,其中:CR1井的上段(500—1 400 m)显示为对流传热特征、下段(>1 400 m)显示为传导传热特征;CR2井测温曲线显示为锯齿状,对流和传导共同传热,总体接近平衡温度曲线。五眼地热井中,CR1井和CR2井满足稳态地温测量和岩芯热物性测试数据质量要求,测温结果能够反映该区的区域热背景,因此,其热流值被汇编入最新的大地热流数据资料中(姜光政等,2016)。但是,仅以CR1井和CR2井的热流数据约束该区的居里面深度与温度还是不够的,今后需要更多的地热井测温,进一步提升浅层地温结构的精度。
地温结构是地热学研究的最直接对象,钻孔温度、水化学温度、居里面温度、地幔电阻率温度、流体包裹体平衡温度等是确定地温结构的重要参量。居里温度TC 自1903年被皮埃尔・居里发现后,目前被广泛应用于地热学研究领域。由居里点深度勾绘的居里等温面(Curie point isotherm surface)是控制地壳热结构的重要温度界面,但是,目前针对长白山天池火山区的居里面研究较少,且由于反演方法不同,对该区居里面深度的反演结果略有差异。最近的研究(苏晓轶等,2019)表明,利用传统的Parker-Oldenburg界面位场快速反演迭代算法得到长白山地区居里深度为12.8—15.8 km,居里面最浅处在长白山天池西南侧。这个结果与本文计算结果大致吻合。本文利用磁异常频率谱分析方法,计算的居里面深度在10.9—14.3 km之间,平均值为12.7 km,沿长白山火山喷发中心—望天鹅火山喷发中心形成一个北东—南西向的居里面上隆带。居里点深度DC是利用航磁数据反演计算地壳磁性层底面深度(magnetic layer bottom depth,缩写为MLBD)得到的,它与深部热源密切相关,热源浅则居里面浅,热源深则居里面深。由居里点深度、居里温度可以计算地壳浅层地温梯度,但由于地壳内部磁性矿物成分、含量、消磁温度等的不均一,反演得到的居里点深度、温度并不是确定值,而是统计平均值,因此,不同反演方法得到居里面深度只能是大致吻合,而不能完全一致。
我们认为,长白山天池火山区的居里面深度大致在12.7 km左右。理论上,如果地壳内磁铁矿居里温度介于575—585 ℃,稳定陆壳浅层地温梯度介于25—30 ℃/km,二者相除,则可以计算出陆壳居里点理论深度介于19.2—23.4 km。长白山天池火山区的居里面深度比全球陆壳平均深度浅约8.6 km,说明该区地幔热源较浅,或者热源位于地壳浅层,这与长白山天池地区是一个全新世以来有过喷发活动的活火山这一地质事实相符,也与大地电磁测深的反演结果(汤吉等,2001;阮帅等,2020)一致。除了整体较浅外,长白山天池火山区居里面还沿长白山、望天鹅两个火山喷发中心形成北东—南西向的居里面上隆带,这与局部的岩浆上涌、高温岩浆导致地层铁磁性矿物退磁作用密切相关,反映了深部地球动力学过程对浅部地壳热状态的控制。在长白山天池火山区热流测点稀缺的条件下,居里面是研究该区浅层热结构最重要的地热学参量,长白山天池火山区西南侧的居里面隆起带,不仅为研究长白山火山口地下岩浆源储存、运移的活动轨迹提供重要的理论依据,也为推测地壳热结构异常成因、高温地热资源远景区提供重要的应用价值。
4.2 岩浆囊与隐伏高温地热系统
长白山天池火山是现代活火山,全新世以来仍有火山喷发活动(许东满等,1993),地表水与地下水资源十分丰富(林元武等,1999;闫佰忠,2016),具备形成高温水热系统所需的残余岩浆囊(汤吉等,2001;张先康等,2002;Choi et al,2013;仇根根等,2014;管彦武等,2020;阮帅等,2020),但地表却没有发现高温水热活动。这说明,地表火山未必是地表高温水热资源的必要条件,而壳内局部熔融的岩浆囊才是地表浅层隐伏高温地热系统的重要热源条件。
针对地表火山活动与壳内岩浆囊热源,前人提出了几种不同的地热系统模型。基于火山活动历史及岩浆演化、喷发机制的长白山火山成因模式研究认为(樊祺诚等,2007),长白山天池火山具有地壳和地幔双层岩浆房互动喷发特点,来自地幔的钾质粗面玄武岩浆不经地壳岩浆房直接喷出地表,同时注入地壳岩浆房的钾质粗面玄武岩浆与碱流质岩浆混合触发天池火山的猛烈爆炸喷发。基于长白山火山岩浆上升作用过程的岩浆房系统几何模型研究认为(魏海泉,2010),天池火山的玄武岩来自地幔岩浆库,粗面岩类、流纹岩类来自地壳岩浆房。造盾阶段,玄武岩直接喷出地表,深地壳加热效率不高;造锥阶段,深地壳残余熔融带阻止了玄武岩的喷发,加热效率得到提高;造伊格尼姆岩阶段,大量的残余熔体因重力不稳定而侵入上地壳形成岩浆房,岩浆房内密度较轻的岩浆进一步上升,引发破火山口喷发。基于岩石热力学的模拟研究(郭文峰等,2015)认为,天池火山玄武岩浆来源于软流圈(60—80 km),侵入到下地壳、中地壳(18—27 km)岩浆存储区,驻留演化后喷出,而粗面岩和碱流岩只占据了上地壳。天池火山中、下地壳存在一个稳定的玄武质岩浆房,长期为上地壳粗面质岩浆提供物质和热量。
针对地表温泉与地下隐伏水热活动,前人也提出了几种不同的地热系统模型。依据地质和物探资料建立的长白山天池火山地区温泉地热系统概念模型(韩湘君,金旭,2002)认为,源自地下深处的岩浆热气在上升过程中与长白山天池及其邻区渗漏的冷水混合后,沿着山体向下流淌,到达断层发育的山腰处出露地表,形成温泉。依据温泉气体成分测定建立的长白山天池火山温泉的气体地球化学特征与成因模式认为(李婷等,2015),锦江温泉和聚龙温泉逸出的气体均来自幔壳混合源区,锦江温泉幔源物质含量相对较高,其下方不断得到幔源岩浆补给;聚龙温泉壳源物质含量较高,下方幔源物质补给减少,主要是壳源存储。依据长白山天池地区地热流体的地质特征建立的地热成因模式认为(单玄龙等,2019),长白山天池下方存在一个岩浆囊,岩浆囊及其释放的高温岩浆气体加热地下水,形成高温热储并发生气-液分离。滞留热水在重力作用下侧向运移,遇到排泄口时出露地表,形成温泉;高温蒸汽上升,加热浅部大气降水并补给火山岩热储,形成低密度型温泉,如锦江和聚龙温泉。
本文依据重磁反演计算结果,并结合前人大地电磁(汤吉等,2001;阮帅等,2020)、主动源深地震探测(张先康等,2002;段永红等,2003)、重力剖面观测(管彦武等,2020)以及火山气体地化分析(刘国明等,2011)成果,建立了长白山天池火山地壳浅层地热系统模式,如图9所示。
上地壳岩浆囊顶深10—12 km,岩浆囊通过高温气液通道与浅层高温高压热流体异常区相连。岩浆囊中的高温挥发气液组分沿通道上升,在密度梯级高压带的底界有利区域汇集,形成高温高压热流体异常区,以超临界热流体状态组成潜能巨大的隐伏高温地热系统。
图9中,地壳浅层岩浆囊和浅表层密度梯级高压带是形成隐伏高温地热系统的两个关键要素。长白山天池火山最后一次喷发后,来自深部的钾质粗面玄武岩浆在地壳12 km以下滞留、结晶分异,形成富含气、液流体的岩浆囊。随着岩浆不断冷却、减压,岩浆囊通过高温气、液通道释放挥发组分。与此同时,在地表火山物质喷发时,喷发中心深部压力和物质瞬间释放,火山颈失稳、坍塌,形成快速沉积构造条件,在3.5—5.5 km深度形成特殊的密度梯级高压带。在密度梯级高压带和高温气液通道之间,沉积层流体受上覆高压带的高压、下伏高温气液通道的高温共同作用,产生异常高的流体应力,导致高温高压热流体沿密度梯级高压带底边界有利区域汇集,形成隐伏高温地热系统。地表温泉的地下水热活动未与岩浆囊直接相连,而是通过密度梯级高压带顶界面与微弱的高温地热流体相接。浅表层地下水沿断裂带下渗,在密度梯级带之上受来自深处高温岩浆的微弱气液热流体烘烤加热,然后在地层压力下沿断裂上升(林元武等,1999),返回地表形成锦江、聚龙温泉群。
地下存在浅表层密度梯级高压带是本文的重要发现。异常高压带是形成沉积型地压地热资源的重要条件,地压型地热资源常赋存于具备超压条件的沉积盆地3—6 km深度处,比如莺歌海盆地(张键等,2000)。地压型地热资源的热流体具有非常高的压力梯度和地温梯度,部分区域甚至具备形成超临界高温流体的温压条件。超临界高温流体性质介于气、液体之间,在临界点附近(水的临界点TC=374.3℃,PC=22.1 MPa,ρC=0.32 g/cm3),地热流体的比热容、热导率达到最大,汽化热为零,是下一代高温发电的主要地热资源(Reinsch et al,2017;Watanabe et al,2017),也是当前地热学研究的前沿。
4.3 主要结论
本文基于地热井热流值约束,对长白山天池火山地区开展了居里面反演,结果表明,该区居里面埋深较浅,平均深度为12.7 km,沿长白山火山喷发中心—望天鹅火山喷发中心,形成北东—南西向的居里面上隆带。CR1,CR2热流点约束得到研究区居里温度平均值为375℃,为深入研究该区火山口下岩浆源储存、运移特征提供了重要的基础,也为研究该区高温地热资源形成机制、赋存条件提供了重要的参考依据。通过野外现场考察,我们认为长白山天池火山具有很好的地热地质、水文地质条件,虽然地表没有高温水热活动,但推测高温地热系统隐伏于地下。基于该区大地电磁、主动源深地震探测资料约束,本文对近地表浅层的密度结构开展了三维重力反演,结果表明,天池火山喷发中心周缘地区3.5—5.5 km深度存在明显的密度梯级高压带地层。此高压带地层与12 km深的岩浆囊之间是形成隐伏高温地热资源的有利区域。高压带是形成地压型地热资源的关键,只有快速沉积时,才可能出现异常高压带。长白山天池火山区在晚新生代中心喷发、形成复合型层状火山结构时,喷发中心深部压力和物质瞬间释放,火山颈失稳、坍塌,具备快速沉积的动力学条件。
长白山天池地壳浅层的密度梯级高压带以及深部的岩浆囊为形成隐伏高温地热系统提供了极大的可能性,但是,密度梯级高压带是否是除了“缺失年轻的酸性火山活动”、“板内火山规模较小”之外,导致长白山天池地表缺失高温水热活动的第三个原因,目前尚不能直接判断,需要通过数值模拟研究“密度梯级高压带”形成过程及对地表高温水热活动的控制机制。
此外,“密度梯级高压带”也为长白山火山发生较大规模爆炸式喷发埋下了“伏笔”。全新世以来,长白山天池火山喷发活动间隔越来越短、活动规模越来越小。同时,深部阻塞的岩浆不断沿通道上升、挤入地壳浅层早期残留岩浆囊内,导致其顶部应力不断增大、加速抬升膨胀。“密度梯级高压带”降低了岩浆囊顶部热量的传递效率,也制约了深部压力的向上释放。随着时间的推移,当热量及应力积累到临界值时,如果出现一个扰动源(例如深源地震),先前阻塞的岩浆就会冲破“密度梯级高压带”的薄弱点“喷薄而出”,产生大规模爆炸式喷发。不过,这只是定性的推理,具体的动力学过程需要通过数值模拟进一步定量研究。
-
陈国光, 计风桔, 周荣军, 徐杰, 周本刚, 黎小刚, 叶友青. 2007. 龙门山断裂带晚第四纪活动性分段的初步研究[J]. 地震地质, 29(3): 657——673.
杜义, 谢富仁, 张效亮, 荆振杰. 2009. 汶川MS8.0级地震断层滑动机制研究[J]. 地球物理学报, 52(2): 464——473.
胡幸平. 2010. 汶川地震序列震源机制及其动力学解释[D]. 北京: 中国地震局地壳应力研究所: 46——47.
胡幸平, 俞春泉, 陶开, 崔效锋, 宁杰远, 王艳华. 2008. 利用P波初动资料求解汶川地震及其强余震震源机制解[J]. 地球物理学报, 51(6): 1711——1718.
华卫, 陈章立, 郑斯华. 2009. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 52(2): 365——371.
李勇, 周荣军, Densmore A L, Ellis M A. 2006. 青藏高原东缘龙门山晚新生代走滑——逆冲作用的地貌标志[J]. 第四纪研究, 26(1): 40——51.
李智武, 刘树根, 陈洪德, 刘顺, 郭兵, 田小彬. 2008. 龙门山冲断带分段: 分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版), 35(4): 440——454.
李志雄, 邵志刚, 赵翠萍, 李圣强, 王慧敏, 吕梅梅, 和平, 刘桂平, 崔子键. 2009. 汶川8.0级地震序列活动的分段性研究[J]. 地震, 29(1): 26——32.
马寅生, 龙长兴, 谭成轩, 王涛, 张永双, 雷伟志, 李滨, 龚明权, 廖春庭, 吴满路. 2008. 四川汶川MS8.0级地震同震变形特征和分段性[J]. 地质通报, 27(12): 2076——2085.
石玉涛, 高原, 赵翠萍, 姚志祥, 太龄雪, 张永久. 2009. 汶川地震余震序列的地震各向异性[J]. 地球物理学报, 52(2): 398——407.
唐荣昌, 文德华, 黄祖智, 伍先国, 林伟凡, 陈国星, 吴刚. 1991. 松潘—龙门山地区主要活动断裂带第四纪活动特征[J]. 中国地震, 7(3): 64——71.
万永革, 吴忠良, 周公威, 黄静. 2000. 根据震源的两个节面的走向角和倾角求滑动角[J]. 地震地磁观测与研究, 21(5): 26——30.
万永革, 沈正康, 刁桂苓, 王福昌, 胡新亮, 盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报, 51(3): 793——804.
王敏. 2009. 基于GPS同震位移场约束反演2008年5·12汶川大地震破裂空间分布[J]. 地球物理学报, 52(10): 2519——2526.
王勤彩, 陈章立, 郑斯华. 2009. 汶川大地震余震序列震源机制的空间分段特征[J]. 科学通报, 54(16): 2348——2354.
徐锡伟, 闻学泽, 叶建青, 马保起, 陈杰, 周荣军, 何宏林, 田勤俭, 何玉林, 王志才, 孙昭民, 冯希杰, 于贵华, 陈立春, 陈桂华, 于慎鄂, 冉勇康, 李细光, 李陈侠, 安艳芬. 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597——629.
张勇, 许力生, 陈运泰. 2009. 2008年汶川大地震震源机制的时空变化[J]. 地球物理学报, 52(2): 379——389.
赵翠萍, 陈章立, 周连庆, 李志雄, 康英. 2009. 汶川MW8.0级地震震源破裂过程研究: 分段特征[J]. 科学通报, 54(22): 3475——3482.
郑勇, 马宏生, 吕坚, 倪四道, 李迎春, 韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学: D辑, 39(4): 413——426.
钟继茂, 程万正. 2006. 由多个地震震源机制解求川滇地区平均应力场方向[J]. 地震学报, 28(4): 337——346.
周荣军, 黄润秋, 雷建成, 何玉林, 黎小刚, 王世元, 叶友清, 刘玉法, 亢川川, 梁明剑, 戈天勇, 何强, 黄伟. 2008. 四川汶川8.0级地震地表破裂与震害特点[J]. 岩石力学与工程学报, 27(11): 2173——2183.
朱艾斓, 徐锡伟, 刁桂苓, 苏金蓉, 冯向东, 孙晴, 王亚丽. 2008. 汶川MS8.0地震部分余震重新定位及地震构造初步分析[J]. 地震地质, 30(3): 759——767.
Bokelmann G H R, Beroza G C. 2000. Depth——dependent earthquake focal mechanism orientation: Evidence for a weak zone in the lower crust[J]. J Geophys Res, 105(B9): 21683——21695.
Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. J Geophys Res, 89(B11): 9305——9320.
Gillard D, Wyss M, Nakata J S. 1992. A seismotectonic model for western Hawaii based on stress tensor inversion from fault plane solutions[J]. J Geophys Res, 97(B5): 6629——6641.
Gillard D, Wyss M. 1995. Comparison of strain and stress tensor orientation: Application to Iran and California[J]. J Geophys Res, 100(B11): 22197——22213.
Gillard D, Wyss M, Okubo P. 1996. Type of faulting and orientation of stress and strain as a function of space and time in Kilauea’s south flank, Hawaii[J]. J Geophys Res, 101(B7): 16025——16042.
Hardebeck J L, Nazareth J L, Hauksson E. 1998. The static stress change triggering model: Constraints from two southern California aftershock sequences[J]. J Geophys Res, 103(B10): 24427——24437.
Kao H, Angelier J. 2001. Stress tensor inversion for the Chi——Chi earthquake sequence and its implications on regional collision[J]. Bull Seism Soc Amer, 91(5): 1028——1040.
Lu Z, Wyss M. 1996. Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions[J]. J Geophys Res, 101(B1): 803——816.
Lu Z, Wyss M, Pulpan H. 1997. Details of stress directions in the Alaska subduction zone from fault plane solutions[J]. J Geophys Res, 102(B3): 5385——5402.
Polat O, Haessler H, Cisternas A, Philip H, Eyidogan H, Aktar M, Frogneux M, Comte D, Gürbüz C. 2002. The Izmit (Kocaeli), Turkey earthquake of 17 August 1999: Previous seismicity, aftershock, and seismotectonics[J]. Bull Seism Soc Amer, 92(1): 361——375.
Ratchkovski N A. 2003. Change in stress directions along the central Denali fault, Alaska after the 2002 earthquake sequence[J]. Geophys Res Lett, 30(19): 2017, doi:10.1029/2003GL017905.
Shen Z K, Sun J B, Zhang P Z, Wan Y G, Wang M, Bürgmann R, Zeng Y H, Gan W J, Liao H, Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718——724, doi:10.1038/NGEO636.
Wiemer S, Gerstenberger M, Hauksson E. 2002. Properties of the aftershock sequence of the 1999 MW7.1 Hector Mine earthquake: Implications for aftershock hazard[J]. Bull Seism Soc Amer, 92(4): 1227——1240.
Wyss M, Lu Z. 1995. Plate boundary segmentation by stress directions: Southern San Andreas Fault, California[J]. Geophys Res Lett, 22(5): 547——550.
陈国光, 计风桔, 周荣军, 徐杰, 周本刚, 黎小刚, 叶友青. 2007. 龙门山断裂带晚第四纪活动性分段的初步研究[J]. 地震地质, 29(3): 657——673.
杜义, 谢富仁, 张效亮, 荆振杰. 2009. 汶川MS8.0级地震断层滑动机制研究[J]. 地球物理学报, 52(2): 464——473.
胡幸平. 2010. 汶川地震序列震源机制及其动力学解释[D]. 北京: 中国地震局地壳应力研究所: 46——47.
胡幸平, 俞春泉, 陶开, 崔效锋, 宁杰远, 王艳华. 2008. 利用P波初动资料求解汶川地震及其强余震震源机制解[J]. 地球物理学报, 51(6): 1711——1718.
华卫, 陈章立, 郑斯华. 2009. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 52(2): 365——371.
李勇, 周荣军, Densmore A L, Ellis M A. 2006. 青藏高原东缘龙门山晚新生代走滑——逆冲作用的地貌标志[J]. 第四纪研究, 26(1): 40——51.
李智武, 刘树根, 陈洪德, 刘顺, 郭兵, 田小彬. 2008. 龙门山冲断带分段: 分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版), 35(4): 440——454.
李志雄, 邵志刚, 赵翠萍, 李圣强, 王慧敏, 吕梅梅, 和平, 刘桂平, 崔子键. 2009. 汶川8.0级地震序列活动的分段性研究[J]. 地震, 29(1): 26——32.
马寅生, 龙长兴, 谭成轩, 王涛, 张永双, 雷伟志, 李滨, 龚明权, 廖春庭, 吴满路. 2008. 四川汶川MS8.0级地震同震变形特征和分段性[J]. 地质通报, 27(12): 2076——2085.
石玉涛, 高原, 赵翠萍, 姚志祥, 太龄雪, 张永久. 2009. 汶川地震余震序列的地震各向异性[J]. 地球物理学报, 52(2): 398——407.
唐荣昌, 文德华, 黄祖智, 伍先国, 林伟凡, 陈国星, 吴刚. 1991. 松潘—龙门山地区主要活动断裂带第四纪活动特征[J]. 中国地震, 7(3): 64——71.
万永革, 吴忠良, 周公威, 黄静. 2000. 根据震源的两个节面的走向角和倾角求滑动角[J]. 地震地磁观测与研究, 21(5): 26——30.
万永革, 沈正康, 刁桂苓, 王福昌, 胡新亮, 盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报, 51(3): 793——804.
王敏. 2009. 基于GPS同震位移场约束反演2008年5·12汶川大地震破裂空间分布[J]. 地球物理学报, 52(10): 2519——2526.
王勤彩, 陈章立, 郑斯华. 2009. 汶川大地震余震序列震源机制的空间分段特征[J]. 科学通报, 54(16): 2348——2354.
徐锡伟, 闻学泽, 叶建青, 马保起, 陈杰, 周荣军, 何宏林, 田勤俭, 何玉林, 王志才, 孙昭民, 冯希杰, 于贵华, 陈立春, 陈桂华, 于慎鄂, 冉勇康, 李细光, 李陈侠, 安艳芬. 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597——629.
张勇, 许力生, 陈运泰. 2009. 2008年汶川大地震震源机制的时空变化[J]. 地球物理学报, 52(2): 379——389.
赵翠萍, 陈章立, 周连庆, 李志雄, 康英. 2009. 汶川MW8.0级地震震源破裂过程研究: 分段特征[J]. 科学通报, 54(22): 3475——3482.
郑勇, 马宏生, 吕坚, 倪四道, 李迎春, 韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学: D辑, 39(4): 413——426.
钟继茂, 程万正. 2006. 由多个地震震源机制解求川滇地区平均应力场方向[J]. 地震学报, 28(4): 337——346.
周荣军, 黄润秋, 雷建成, 何玉林, 黎小刚, 王世元, 叶友清, 刘玉法, 亢川川, 梁明剑, 戈天勇, 何强, 黄伟. 2008. 四川汶川8.0级地震地表破裂与震害特点[J]. 岩石力学与工程学报, 27(11): 2173——2183.
朱艾斓, 徐锡伟, 刁桂苓, 苏金蓉, 冯向东, 孙晴, 王亚丽. 2008. 汶川MS8.0地震部分余震重新定位及地震构造初步分析[J]. 地震地质, 30(3): 759——767.
Bokelmann G H R, Beroza G C. 2000. Depth——dependent earthquake focal mechanism orientation: Evidence for a weak zone in the lower crust[J]. J Geophys Res, 105(B9): 21683——21695.
Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. J Geophys Res, 89(B11): 9305——9320.
Gillard D, Wyss M, Nakata J S. 1992. A seismotectonic model for western Hawaii based on stress tensor inversion from fault plane solutions[J]. J Geophys Res, 97(B5): 6629——6641.
Gillard D, Wyss M. 1995. Comparison of strain and stress tensor orientation: Application to Iran and California[J]. J Geophys Res, 100(B11): 22197——22213.
Gillard D, Wyss M, Okubo P. 1996. Type of faulting and orientation of stress and strain as a function of space and time in Kilauea’s south flank, Hawaii[J]. J Geophys Res, 101(B7): 16025——16042.
Hardebeck J L, Nazareth J L, Hauksson E. 1998. The static stress change triggering model: Constraints from two southern California aftershock sequences[J]. J Geophys Res, 103(B10): 24427——24437.
Kao H, Angelier J. 2001. Stress tensor inversion for the Chi——Chi earthquake sequence and its implications on regional collision[J]. Bull Seism Soc Amer, 91(5): 1028——1040.
Lu Z, Wyss M. 1996. Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions[J]. J Geophys Res, 101(B1): 803——816.
Lu Z, Wyss M, Pulpan H. 1997. Details of stress directions in the Alaska subduction zone from fault plane solutions[J]. J Geophys Res, 102(B3): 5385——5402.
Polat O, Haessler H, Cisternas A, Philip H, Eyidogan H, Aktar M, Frogneux M, Comte D, Gürbüz C. 2002. The Izmit (Kocaeli), Turkey earthquake of 17 August 1999: Previous seismicity, aftershock, and seismotectonics[J]. Bull Seism Soc Amer, 92(1): 361——375.
Ratchkovski N A. 2003. Change in stress directions along the central Denali fault, Alaska after the 2002 earthquake sequence[J]. Geophys Res Lett, 30(19): 2017, doi:10.1029/2003GL017905.
Shen Z K, Sun J B, Zhang P Z, Wan Y G, Wang M, Bürgmann R, Zeng Y H, Gan W J, Liao H, Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718——724, doi:10.1038/NGEO636.
Wiemer S, Gerstenberger M, Hauksson E. 2002. Properties of the aftershock sequence of the 1999 MW7.1 Hector Mine earthquake: Implications for aftershock hazard[J]. Bull Seism Soc Amer, 92(4): 1227——1240.
Wyss M, Lu Z. 1995. Plate boundary segmentation by stress directions: Southern San Andreas Fault, California[J]. Geophys Res Lett, 22(5): 547——550.
计量
- 文章访问数: 1496
- HTML全文浏览量: 1240
- PDF下载量: 214