Discrimination between earthquakes and explosions based on decision-making algorithm
-
摘要: 在矩阵决策方法的基础上,建立了识别地震与爆破的矩阵决策算法(MDA).着眼于快速识别,研究了5个判据. 其中初动方向和振幅比判据的效果较好.用MDA算法对北京附近62个事件进行了识别和检验得到:用5个判据C检验的正确识别率达到97%, U检验也达到93%,识别效果较好;依次从5个判据中任选4个判据作决策识别和检验, 10个结果中有7个的正确识别率在93.3%以上.结果表明,本文建立的MDA算法和所选的特征能有效地识别地震与爆破,可应用于两者的快速识别.
-
关键词:
- 震爆识别 矩阵法(MDA) 决策 振幅比
Abstract: We constructed a matrix decision-making algorithm (MDA) for discriminating explosions from earthquakes. In order to meet the need of quickly identifying explosions and earthquakes, we examined 5 criteria, among which the first motion polarity and amplitude ratio criterion are better in use for the discrimination. Using MDA method we identified and tested 62 seismic events in Beijing region and its vicinity. The rate of correct recognition reaches to 97% for C test and 93% for U test with 5 criteria. Choosing any 4 of the 5 criteria in turn we made 10 recognition tests, 7 of the 10 test results gave the correct recognition rates above 93%. These results show that the MDA algorithm we constructed is effective in discriminating explosions from earthquakes and can be applied to quick recognition of seismic events. -
-
-
期刊类型引用(6)
1. 曹昌军,陈向军,金花,李奎. 新疆乌鲁木齐及周边地区非天然地震特征与识别. 内陆地震. 2024(01): 70-80 . 百度学术
2. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 . 百度学术
3. 毛世榕,史水平,苏梅艳,蒋志峰,玉壮基. 基于RBF神经网络的地震与爆破识别技术. 地震地磁观测与研究. 2020(03): 59-66 . 百度学术
4. 王婷婷,边银菊. 振幅衰减特性在地震与爆破识别中的应用. 地震学报. 2015(01): 169-179 . 本站查看
5. 张博,边银菊,王婷婷. 用逐步代价最小决策法识别地震与爆破. 地震学报. 2014(02): 233-243+339 . 本站查看
6. 王婷婷,边银菊,张博. 地震和爆破的综合识别方法研究. 地球物理学进展. 2013(05): 2433-2443 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1465
- HTML全文浏览量: 643
- PDF下载量: 158
- 被引次数: 8