VHR DEM measurement technology and its application in active fault research
-
摘要: 首先分析了获取数字高程模型(DEM)的高分遥感立体测量、合成孔径雷达干涉测量技术、激光雷达测距技术和运动重建技术等技术手段,以及现阶段高空间分辨率数字高程模型(VHR DEM)提取技术的主要特点,实际应用中需根据研究区地形地貌特点选择合适的VHR DEM获取技术;然后,结合最新研究成果着重阐述了VHR DEM在活断层识别及几何结构分析、同震位移与累积位移获取和古地震研究等领域的最新应用;最后指出,VHR DEM由于其高精度、高空间分辨率的特点,正逐步改变传统活断层的研究方法,使得对活断层的研究进入到了前所未有的精细化水平.Abstract: Firstly, we analyzed several technologies by which to obtain DEM (digital elevation model), including the high resolution remote sensing stereo measurement, InSAR (interferometric synthetic aperture radar), LiDAR (light detection and ranging) and SfM (structure form motion), and their characteristics to extract VHR DEM (very high resolution digital elevation model). In practical application, we should consider the terrain features of the study area and choose reasonable technology to extract VHR DEM. Then, combining with the latest research results, we summarized the applications of VHR DEM in active faults identification and geometric structure analysis, co-seismic displacement and cumulative displacement as well as paleoearthquake research. VHR DEM has brought the active fault research into the unprecedented fine level with its sub-meter spatial resolution and high accuracy.
-
Keywords:
- DEM acquisition technology /
- VHR DEM extraction /
- active fault
-
-
表 1 高分测绘卫星参数
Table 1 Parameters of high resolution optical remote sensing mapping satellites
遥感卫星名称 发射
年份地面分辨率/m 重访周
期/d幅宽
/km平面精度/m 高程精度/m 全色 多光谱 无控制 有控制 无控制 有控制 美国 IKONOS-2 1999 1 4 3 11 12 2 10 3 法国 SPOT-5 2002 2.5/5/10 10 3 60 - 10 10 5 美国 Orbview-3 2003 1 4 3 8 11 - 16 - 美国 Worldview-1 2007 0.41 8 1.7 17.6 7.6 2 - - 美国 GeoEye-1 2008 0.5/0.41 1.64 3 15.2 4 2 6 3 美国 Worldview-2 2009 0.46 1.84 1 16.4 4 2 3 2 法国 Pleiades 2011 0.5 2 1 20 - - 1 0.5 法国 SPOT-6 2012 1.5 6 3 60 - - - - 中国资源三号 2012 3.5/2.1/3.7 5.8 5 50 6 1.6 8 1.6 美国 Worldview-3 2014 0.31 1.24 4.5 13.1 2.16 - 1.61 0.62 注:表中各卫星获取DEM的精度仅供参考,因为不同研究人员在进行精度评价时其影像覆盖区域的地形不同,数据处理过程也有差异.表中参数引自Deilami和Hashim (2011),潘红播等(2013),朱红等(2014),兰穹穹等(2015),Jacobsen和Topan (2015)以及Hu等(2016). -
毕丽思, 何宏林, 徐岳仁, 魏占玉, 石峰. 2011.基于高分辨率DEM的裂点序列提取和古地震序列的识别:以霍山山前断裂为实验区[J].地震地质, 33(4): 963-977. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104021.htm Bi L S, He H L, Xu Y R, Wei Z Y, Shi F. 2011. The extraction of knickpoint series based on the high resolution DEM data and the identification of paleo-earthquake series: A case study of the Huoshan MTS. piedmont fault[J]. Seismology and Geology, 33(4): 963-977 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104021.htm
陈涛. 2014. 机载激光雷达技术在构造地貌定量化研究中的应用[D]. 北京: 中国地震局地质研究所: 3-23. http://edu.wanfangdata.com.cn/Periodical/Detail/gjdzdt201506013 Chen T. 2014. Application of Airborne LiDAR (Light Detection and Ranging) for Quantitative Tectonic Geomor-phology[D]. Beijing: Institute of Geology, China Earthquake Administration: 3-23 (in Chinese). http://edu.wanfangdata.com.cn/Periodical/Detail/gjdzdt201506013
陈晓利, 周本刚, 冉洪流, 王明明. 2010.汶川地震中擂鼓镇地区的滑坡崩塌规律及预测[J].吉林大学学报:地球科学版, 40(6): 1371-1379. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201006022.htm Chen X L, Zhou B G, Ran H L, Wang M M. 2010. Analysis and prediction of the spatial distribution of landslides triggered by Wenchuan earthquakes in Leiguzhen region[J]. Journal of Jilin University: Earth Science, 40(6): 1371-1379 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201006022.htm
陈晓利, 袁仁茂, 庾露. 2013. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J].地震地质, 35(3): 661-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201303019.htm Chen X L, Yuan R M, Yu L. 2013. Applying the Newmark's model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology, 35(3): 661-670 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201303019.htm
程三友, 李英杰, 刘少峰. 2010.基于DEM的大别山地区地貌特征研究[J].东华理工大学学报:自然科学版, 33(3): 270-275. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201003011.htm Chen S Y, Li Y J, Liu S F. 2010. Geomorphology features of the Dabie orogenic belt based on DEM data[J]. Journal of East China Institute of Technology, 33(3): 270-275 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201003011.htm
杜亚男, 冯光财, 李志伟, 朱建军, 彭星. 2015. TerraSAR-X/TanDEM-X获取高精度数字高程模型技术研究[J].地球物理学报, 58(9): 3089-3102. doi: 10.6038/cjg20150907 Du Y N, Feng G C, Li Z W, Zhu J J, Peng X. 2015. Generation of high precision DEM from TerraSAR-X/TanDEM-X[J]. Chinese Journal of Geophysics, 58(9): 3089-3102 (in Chinese). doi: 10.6038/cjg20150907
高明星, 刘少峰. 2008. DEM数据在青藏高原地貌研究中的应用[J].国土资源遥感, (1): 59-63. doi: 10.6046/gtzyyg.2008.01.13 Gao M X, Liu S F. 2008. The application of DEM data to the study of Tibet plateau[J]. Remote Sensing for Land and Resources, (1): 59-63 (in Chinese). doi: 10.6046/gtzyyg.2008.01.13
何宏林, 魏占玉, 毕丽思, 徐岳仁. 2015.利用基岩断层面形貌定量特征识别古地震:以霍山山前断裂为例[J].地震地质, 37(2): 400-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502005.htm He H L, Wei Z Y, Bi L S, Xu Y R. 2015. Identify paleo-earthquakes using quantitative morphology of bedrock fault surface: A case study on the Huoshan piedmont fault[J]. Seismology and Geology, 37(2): 400-412 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502005.htm
洪顺英, 申旭辉, 荆凤, 杜则澄. 2007.基于SRTM-DEM的阿尔泰山构造地貌特征分析[J].国土资源遥感, (3): 62-66. doi: 10.6046/gtzyyg.2007.03.14 Hong S Y, Shen X H, Jing F, Du Z C. 2007. An analysis of geomorphology characteristics of the Altai mountain based on DEM[J]. Remote Sensing for Land and Resources, (3): 62-66 (in Chinese). doi: 10.6046/gtzyyg.2007.03.14
胡艺. 2008. 基于数字高程模型的构造地貌分析[D]. 北京: 中国地质大学(北京): 20-26. http://cdmd.cnki.com.cn/Article/CDMD-11415-2008068688.htm Hu Y. 2008. DEM-Based Tectonic Geomorphology Study in the Northeastern Margin of Tibetan Plateau[D]. Beijing: China University of Geosciences (Beijing): 20-26 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-11415-2008068688.htm
兰穹穹, 郝雪涛, 齐怀川. 2015.资源三号卫星影像DEM提取与精度分析[J].遥感信息, 30(3): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201503003.htm Lan Q Q, Hao X T, Qi H C. 2015. DEM extraction and precision analysis based on ZY-3 remote sensing data[J]. Remote Sensing Information, 30(3): 14-18 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201503003.htm
李峰, 徐锡伟, 陈桂华, 董绍鹏, 魏占玉. 2008.高精度测量方法在汶川MS8.0地震地表破裂带考察中的应用[J].地震地质, 30(4): 1065-1075. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200804024.htm Li F, Xu X W, Chen G H, Dong S P, Wei Z Y. 2008. The application of different high-precision survey method in the investigation of the MS8.0 Wenchuan earthquake surface ruptures[J]. Seismology and Geology, 30(4): 1065-1075 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200804024.htm
李清泉, 李必军, 陈静. 2000.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报, 25(5): 387-392. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201325207.htm Li Q Q, Li B J, Chen J. 2000. Research on laser range scanning and its application[J]. Journal of Wuhan Technical University of Surveying and Mapping, 25(5): 387-392 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201325207.htm
李树楷, 刘彤, 尤红建. 2000.机载三维成像系统[J].地球信息科学学报, (1): 23-27. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012315479.htm Li S K, Liu T, You H J. 2000. Airborne 3D imaging system[J]. Geo-Information Science, (1): 23-27 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10335-1012315479.htm
李占飞, 刘静, 邵延秀, 张金玉, 袁兆德, 王鹏, 唐茂云, 王朋涛. 2016.基于LiDAR的海原断裂松山段断错地貌分析与古地震探槽选址实例[J].地质通报, 35(1): 104-116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601009.htm Li Z F, Liu J, Shao Y X, Zhang J Y, Yuan Z D, Wang P, Tang M Y, Wang P T. 2016. Tecto-geomorphic analysis and selection of trench sites along Haiyuan fault in Songshan site based on high-resolution airbone LiDAR data[J]. Geological Bulletin of China, 35(1): 104-116 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601009.htm
刘静, 丁林, 曾令森, Tapponnier P, Gaudemer Y. 2006.青藏高原典型地区的地貌量化分析:兼对高原"夷平面"的讨论[J].地学前缘, 13(5): 285-299. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200605000.htm Liu J, Ding L, Zeng L S, Tapponnier P, Gaudemer Y. 2006. Large-scale terrain analysis of selected regions of the Tibetan plateau: Discussion on the origin of plateau planation surface[J]. Earth Science Frontiers, 13(5): 285-299 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200605000.htm
刘静, 陈涛, 张培震, 张会平, 郑文俊, 任治坤, 梁诗明, 盛传贞, 甘卫军. 2013.机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J].科学通报, 58(1): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm Liu J, Chen T, Zhang P Z, Zhang H P, Zheng W J, Ren Z K, Liang S M, Sheng C Z, Gan W J. 2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm
刘经南, 张小红. 2003.激光扫描测高技术的发展与现状[J].武汉大学学报:信息科学版, 28(2): 132-137. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200302001.htm Liu J N, Zhang X H. 2003. Progress of airborne laser scanning altimetry[J]. Geomatics and Information Science of Wuhan University, 28(2): 132-137 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200302001.htm
刘甲美, 高孟潭, 陈鲲. 2015.地形效应影响下地震动参数与斜坡稳定性的相关性研究[J].地震学报, 37(5): 865-874. doi: 10.11939/jass.2015.05.014 Liu J M, Gao M T, Chen K. 2015. On the correlation of ground motion parameters with slope stability incorporating topographic effects[J]. Acta Seismologica Sinica, 37(5): 865-874 (in Chinese). doi: 10.11939/jass.2015.05.014
刘先林, 段福洲, 宫辉力. 2007.航空摄影科技发展成就与未来展望[J].前沿科学, (3): 10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QYKX200703004.htm Liu X L, Duan F Z, Gong H L. 2007. Achievements and prospects of aerial photography technology[J]. Frontier Science, (3): 10-14 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-QYKX200703004.htm
马洪超, 姚春静, 张生德. 2008.机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J].遥感学报, 12(6): 925-932. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm Ma H C, Yao C J, Zhang S D. 2008. Some technical issues of airborne LiDAR system applied to Wenchuan earthquake relief works[J]. Journal of Remote Sensing, 12(6): 925-932 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm
马洪超. 2011.激光雷达测量技术在地学中的若干应用[J].地球科学:中国地质大学学报, 36(2): 347-354. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102022.htm Ma H C. 2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science: Journal of China University of Geosciences, 36(2): 347-354 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102022.htm
潘红播, 张过, 唐新明, 王霞, 周平, 许妙忠, 李德仁. 2013.资源三号测绘卫星影像产品精度分析与验证[J].测绘学报, 42(5): 738-744. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305017.htm Pan H B, Zhang G, Tang X M, Wang X, Zhou P, Xu M Z, Li D R. 2013. Accuracy analysis and verification of ZY-3 products[J]. Acta Geodaetica et Cartogrphica Sinica, 42(5): 738-744 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305017.htm
任治坤, 陈涛, 张会平, 郑文俊, 张培震. 2014. LiDAR技术在活动构造研究中的应用[J].地质学报, 88(6): 1196-1207. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htm Ren Z K, Chen T, Zhang H P, Zheng W J, Zhang P Z. 2014. LiDAR survey in active tectonics studies: An introduction and overview[J]. Acta Geologica Sinica, 88(6): 1196-1207 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htm
宿星, 孟兴民, 王思源, 魏万鸿, 冯乐涛. 2017.陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究:以天水市为例[J].第四纪研究, 37(2): 319-330. Su X, Meng X M, Wang S Y, Wei W H, Feng L T. 2017. Statistics of characteristic parameters and evolutionary mechanism of landslides in typical area of Longzhong loess plateau: A case study of Tianshui city[J]. Quaternary Sciences, 37(2): 319-330 (in Chinese).
孙刚. 2007.测绘卫星的发展及技术现状[J].测绘科学与工程, 27(1): 46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201320015.htm Sun G. 2007. The development and technical status of topographic satellite[J]. Geomatic Science and Engineering, 27(1): 46-51 (in Chinses). http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201320015.htm
汤国安, 李发源, 刘学军. 2010.数字高程模型教程[M].第2版.北京:科学出版社: 3-6. Tang G A, Li F Y, Liu X J. 2010. Digital Elevation Model Tutorial[M]. 2nd ed. Beijing: Science Press: 3-6 (in Chinese).
汤国安. 2014.我国数字高程模型与数字地形分析研究进展[J].地理学报, 69(9): 1305-1325. doi: 10.11821/dlxb201409006 Tang G A. 2014. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 69(9): 1305-1325 (in Chinese). doi: 10.11821/dlxb201409006
唐新明, 谢俊峰, 张过. 2012.测绘卫星技术总体发展和现状[J].航天返回与遥感, 33(3): 17-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201203004.htm Tang X M, Xie J F, Zhang G. 2012. Development and status of mapping satellite technology[J]. Spacecraft Recovery and Remote Sensing, 33(3): 17-24(in Chinses). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201203004.htm
王进, 郭靖, 王卫东, 方理刚. 2012.权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J].中南大学学报:自然科学版, 43(5): 1932-1939. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201205051.htm Wang J, Guo J, Wang W D, Fang L G. 2012. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University: Science and Technology, 43(5): 1932-1939 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201205051.htm
王朋涛, 邵延秀, 张会平, 刘洪春, 吴赵. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J].第四纪研究, 36(2): 433-442. http://cdmd.cnki.com.cn/Article/CDMD-85402-1015543026.htm Wang P T, Shao Y X, Zhang H P, Liu H C, Wu Z. 2016. The application of sUAV photogrammetry in active tectonics: Shanmagou site of Haiyuan fault, for example[J]. Quaternary Sciences, 36(2): 433-442 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-85402-1015543026.htm
王志恒, 胡卓玮, 赵文吉, 官辉力, 邓金宪. 2014.基于确定性系数概率模型的降雨型滑坡孕灾环境因子敏感性分析:以四川省低山丘陵区为例[J].灾害学, 29(2): 109-115. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201402022.htm Wang Z H, Hu Z W, Zhao W J, Guan H L, Deng J X. 2014. Susceptibility analysis of precipitation-induced landslide disaster-pregnant environmental factors based on the certainty factor probability model: Taking the hilly area in Sichuan as example[J]. Journal of Catastrophology, 29(2): 109-115 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201402022.htm
魏占玉, 何宏林, 高伟, 徐锡伟, 甘伟军, 卫蕾华. 2014.基于LiDAR数据开展活动断层填图的实验研究:以新疆独山子背斜-逆冲断裂带为例[J].地震地质, 36(3): 794-813. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201403020.htm Wei Z Y, He H L, Gao W, Xu X W, Gan W J, Wei L H. 2014. Experimental study on geologic mapping of active tectonics based on LiDAR data: A case of Dushanzi anticline-reverse fault zone in Xinjiang[J]. Seismology and Geology, 36(3): 794-813 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201403020.htm
魏占玉, Ramon A, 何宏林, 高伟. 2015.基于SfM方法的高密度点云数据生成及精度分析[J].地震地质, 37(2): 636-648. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502024.htm Wei Z Y, Ramon A, He H L, Gao W. 2015. Accuracy analysis of terrain point cloud acquired by "structure from motion" using aerial photos[J]. Seismology and Geology, 37(2): 636-648 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502024.htm
许才军, 何平, 温扬茂, 刘洋. 2015. InSAR技术及应用研究进展[J].测绘地理信息, 40(2): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201502003.htm Xu C J, He P, Wen Y M, Liu Y. 2015. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics, 40(2): 1-9 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201502003.htm
许冲, 戴福初, 姚鑫, 陈剑, 涂新斌, 曹琰波, 肖建章. 2010.基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J].岩石力学与工程学报, 29(增刊1): 2972-2981. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm Xu C, Dai F C, Yao X, Chen J, Tu X B, Cao Y B, Xiao J Z. 2010. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 2972-2981 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm
杨景春, 李有利. 2011.活动构造地貌学[M].北京:北京大学出版社: 121-150. Yang J C, Li Y L. 2011. Active Tectonic Geomorphology[M]. Beijing: Peking University Press: 121-150 (in Chinese).
庾露, 单新建, 陈晓利. 2014.基于综合指标法的芦山地震滑坡危险区等级快速划分[J].地震地质, 36(4): 1106-1115. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404014.htm Yu L, Shan X J, Chen X L. 2014. A fast classification for Lushan earthquake-induced landslide hazard zones based on comprehensive indexes method[J]. Seismology and Geology, 36(4): 1106-1115 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404014.htm
袁小祥, 王晓青, 窦爱霞, 董彦芳, 王龙, 金鼎坚. 2012.基于地面LIDAR玉树地震地表破裂的三维建模分析[J].地震地质, 34(1): 39-46. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201201007.htm Yuan X X, Wang X Q, Dou A X, Dong Y F, Wang L, Jin D J. 2012. Terrestrial LiDAR-based 3D modeling analysis of surface rupture caused by Yushu earthquake[J]. Seismology and Geology, 34(1): 39-46 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201201007.htm
张会平, 杨农, 张岳桥, 孟晖. 2004.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感, 16(4): 54-58. doi: 10.6046/gtzyyg.2004.04.14 Zhang H P, Yang N, Zhang Y Q, Meng H. 2004. A GIS-based research on morpho structural features of the Minshan tectonic belt[J]. Remote Sensing for Land & Resources, 16(4): 54-58 (in Chinese). doi: 10.6046/gtzyyg.2004.04.14
张会平, 杨农, 张岳桥, 孟晖. 2006.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究, 26(1): 126-135. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200601015.htm Zhang H P, Yang N, Zhang Y Q, Meng H. 2006. Geomorphology of the Minjiang drainage system (Sichuan, China) and its structural implications[J]. Quaternary Sciences, 26(1): 126-135 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200601015.htm
张培震, 李传友, 毛凤英. 2008.河流阶地演化与走滑断裂滑动速率[J].地震地质, 30(1): 43-57. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801004.htm Zhang P Z, Li C Y, Mao F Y. 2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 43-57 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801004.htm
张小红, 刘经南. 2004.机载激光扫描测高数据滤波[J].测绘科学, 29(6): 50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200406011.htm Zhang X H, Liu J N. 2004. Airborne laser scanning altimetry data filtering[J]. Science of Surveying and Mapping, 29(6): 50-53 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200406011.htm
张祖勋. 2007.从数字摄影测量工作站(DPW)到数字摄影测量网格(DPGrid)[J].武汉大学学报:信息科学版, 32(7): 565-571. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200707000.htm Zhang Z X. 2007. From digital photogrammetry workstation (DPW) to digital photogrammetry grid (DPGrid)[J]. Geomatics and Information Science of Wuhan University, 32(7): 565-571 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200707000.htm
赵洪壮, 李有利, 杨景春, 吕红华. 2009.基于DEM数据的北天山地貌形态分析[J].地理科学, 29(3): 445-449. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200903023.htm Zhao H Z, Li Y L, Yang J C, Lü H H. 2009. Geomorphic characteristics of northern Tianshan mountains based on DEM data[J]. Scientia Geographica Sinica, 29(3): 445-449 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200903023.htm
郑文俊, 雷启云, 杜鹏, 陈涛, 任治坤, 俞晶星, 张宁. 2015.激光雷达(LiDAR):获取高精度古地震探槽信息的一种新技术[J].地震地质, 37(1): 232-241. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201501018.htm Zheng W J, Lei Q Y, Du P, Chen T, Ren Z K, Yu J X, Zhang N. 2015. 3-D laser scanner (LiDAR): A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1): 232-241 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201501018.htm
周晓明. 2011. 机载激光雷达点云数据滤波算法的研究与应用[D]. 郑州: 解放军信息工程大学: 34-121. http://cdmd.cnki.com.cn/Article/CDMD-90008-1012325196.htm Zhou X M. 2011. Research and Application of Airborne LiDAR Point Cloud Data Filters[D]. Zhengzhou: The PLA Information Engineering University: 34-121 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90008-1012325196.htm
朱红, 刘维佳, 张爱兵. 2014.光学遥感立体测绘技术综述及发展趋势[J].现代雷达, 36(6): 6-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201406002.htm Zhu H, Liu W J, Zhang A B. 2014. Overview and development trend of optical remote sensing stereo mapping techniques[J]. Modern Radar, 36(6): 6-12 (in chinses). http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201406002.htm
Ackermann F. 1999. Airborne laser scanning: Present status and future expectations[J]. ISPRS J Photogramm Remote Sens, 54(2/3): 64-67. http://www.ingentaconnect.com/content/els/09242716/1999/00000054/00000002/art00009
Arrowsmith J R, Zielke O. 2009. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment[J]. Geomorphology, 113(1/2): 70-81. https://asu.pure.elsevier.com/en/publications/tectonic-geomorphology-of-the-san-andreas-fault-zone-from-high-re-2
Baltsavias E P. 1999. A comparison between photogrammetry and laser scanning[J]. ISPRS J Photogramm Remote Sens, 54(2/3): 83-94. https://www.researchgate.net/publication/222477391_A_comparison_between_photogrammetry_and_laser_scanning_ISPRS_J_Photogramm_Remote_Sens_542383-94
Bevis M, Hudnut K, Sanchez R, Toth C, Grejner-Brzezinska D, Kendrick E, Caccamise D, Raleigh D, Zhou H, Shan S, Shindle W, Yong A, Harvey J, Borsa A, Ayoub F, Shrestha R, Carter B, Sartori M, Phillips D, Coloma F. 2005. The B4 project: Scanning the San Andreas and San Jacinto fault zones[C]//American Geophysical Union, Fall Meeting. San Francisco, USA: American Geophysical Union: Abstract H34B-01.
Bhardwaj A, Chatterjee R S, Jain K. 2013. Assimilation of DEMs generated from optical stereo and InSAR pair through data fusion[J]. Sci Res, 1(3): 39-44. doi: 10.11648/j.sr.20130103.12
Brown M, Lowe D G. 2005. Unsupervised 3D object recognition and reconstruction in unordered datasets[C]//Fifth International Conference on 3-D Digital Imaging and Modeling. Ottawa, Canada: Institute of Electrical and Electronics Engineers: 56-63.
Bubeck A, Wilkinson M, Roberts G P, Cowie P A, McCaffrey K J W, Phillips R, Sammonds P. 2015. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning[J]. Geomorphology, 237: 38-51. doi: 10.1016/j.geomorph.2014.03.011
Chen T, Zhang P Z, Liu J, Li C Y, Ren Z K, Hudnut K W. 2014. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20): 2396-2409. doi: 10.1007/s11434-014-0199-4
Chiba T, Suzuki Y, Hiramatsu T. 2007. Digital terrain representation methods and red relief image map[J]. J Jpn Cartogr Assoc, 45: 27-36.
Chiba T, Kaneta S I, Suzuki Y. 2008. Red relief image map: New visualization method for three dimensional data[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 37(B2): 1071-1076. https://www.researchgate.net/publication/237517308_Red_relief_image_map_New_visualization_method_for_three_dimensional_data
Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth Planet Sci Lett, 254(3/4): 239-255. https://www.researchgate.net/publication/222836396_Impact_of_riser_reconstructions_on_estimation_of_secular_variation_in_rates_of_strike-slip_faulting_Revisiting_the_Cherchen_River_site_along_the_Altyn_Tagh_Fault_NW_China
Cowgill E, Gold R D, Chen X H, Wang X F, Arrowsmith J R, Southon J. 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J]. Geology, 37(7): 647-650. doi: 10.1130/G25623A.1
Cowgill E, Bernardin T S, Oskin M E, Bowles C, Yıkılmaz M B, Kreylos O, Elliott A J, Bishop S, Gold R D, Morelan A, Bawden G W, Hamann B, Kellogg L H. 2012. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 8(4): 787-804. doi: 10.1130/GES00687.1
Deilami K, Hashim M. 2011. Very high resolution optical satellites for DEM generation: A review[J]. EUR J Sci Res, 49(4): 542-554. http://www.academia.edu/3316919/Very_high_resolution_optical_satellites_for_DEM_generation_a_review
Elliott A J. 2014. Control of Rupture Behavior by a Restraining Double-Bend From Slip Rates on the Altyn Tagh Fault[D]. California: University of California: 2-4.
Fonstad M A, Dietrich J T, Courville B C, Jensen J L, Carbonneau P E. 2013. Topographic structure from motion: A new development in photogrammetric measurement[J]. Earth Surf Proc Landforms, 38(4): 421-430. doi: 10.1002/esp.v38.4
Giaccio B, Galadini F, Sposato A, Messina P, Moro M, Zreda M, Cittadini A, Salvi S, Todero A. 2003. Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis: Results from the Campo Felice fault (central Apennines, Italy)[J]. Geomorphology, 49(3/4): 281-301. http://www.academia.edu/22933052/Bedrock_fault_scarp_history_Insight_from_t-LiDAR_backscatter_behaviour_and_analysis_of_structure_changes
Goldstein R M, Zebker H A, Werner C L. 1988. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 23(4): 713-720. doi: 10.1029/RS023i004p00713
Graham L C. 1974. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 62(6): 763-768. doi: 10.1109/PROC.1974.9516
Haddad D E, Akçiz S O, Arrowsmith J R, Rhodes D D, Oldow J S, Zielke O, Toké N A, Haddad A G, Mauer J, Shilpakar P. 2012. Applications of airborne and terrestrial laser scanning to paleoseismology[J]. Geosphere, 8(4): 771-786. doi: 10.1130/GES00701.1
Haugerud R A, Harding D J, Johnson S Y, Harless J L, Weaver C S, Sherrod B L. 2003. High-resolution lidar topography of the Puget Lowland, Washington: A bonanza for earth science[J]. GSA Today, 13(6): 4-10. doi: 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
Hu F, Gao X M, Li G Y, Li M. 2016. DEM extraction from worldview-3 stereo-images and accuracy evaluation[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 23 ISPRS Congress. Prague: Czech Republic: 327-332.
Hudnut K W, Borsa A, Glennie C, Minster J B. 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake (MW7.1) from airborne laser swath mapping[J]. Bull Seismol Soc Am, 92(4): 1570-1576. doi: 10.1785/0120000934
Jacobsen K, Topan H. 2015. DEM generation with short base length Pleiades triplet[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Munich, Germany: ISPRS J Photogramm Remote Sens: 81-86.
James M R, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application[J]. J Geophys Res, 117(F3): F03017. https://www.researchgate.net/publication/255970600_Straightforward_reconstruction_of_3D_surfaces_and_topography_with_a_camera_Accuracy_and_geoscience_application
Jiang H J, Zhang L, Wang Y, Liao M S. 2014. Fusion of high-resolution DEMs derived from COSMO-SkyMed and TerraSAR-X InSAR datasets[J]. J Geod, 88(6): 587-599. doi: 10.1007/s00190-014-0708-x
Johnson K, Nissen E, Saripalli S, Arrowsmith J R, McGarey P, Scharer K, Williams P, Blisniuk K. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1
Kaula W M, Schubert G, Lingenfelter R E, Sjogren W L, Wollenhaupt W R. 1974. Apollo laser altimetry and inferences as to lunar structure[C]//Proceedings of the 5th Lunar Science Conference. New York: Pergamon Press: 3049-3058.
Lin Z, Kaneda H, Mukoyama S, Asada N, Chiba T. 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182: 104-115. doi: 10.1016/j.geomorph.2012.11.001
Meigs A. 2013. Active tectonics and the LiDAR revolution[J]. Lithosphere, 5(2): 226-229. doi: 10.1130/RF.L004.1
Miller C L, Laflamme R A. 1958. The Digital Terrain Model: Theory and Application[M]. Cambridge: Massachusetts Institute of Technology, Photogrammetry Laboratory: 433-442.
Niethammer U, James M R, Rothmund S, Travelletti J, Joswig M. 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results[J]. Engineering Geology, 128: 2-11. doi: 10.1016/j.enggeo.2011.03.012
Nissen E, Maruyama T, Arrowsmith J R, Elliott J R, Krishnan A K, Oskin M E, Saripalli S. 2014. Coseismic fault zone deformation revealed with differential lidar: Examples from Japanese MW7 intraplate earthquakes[J]. Earth Planet Sci Lett, 405: 244-256. doi: 10.1016/j.epsl.2014.08.031
Oskin M E, Arrowsmith J R, Corona A H, Elliott A J, Fletcher J M, Fielding E J, Gold P O, Garcia J J G, Hudnut K W, Liu-Zeng J, Teran O J. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702-705. doi: 10.1126/science.1213778
Rogers A E E, Ingalls R P. 1969. Venus: Mapping the surface reflectivity by radar interferometry[J]. Science, 165(3895): 797-799. doi: 10.1126/science.165.3895.797
Scharer K M, Salisbury J B, Arrowsmith J R, Rockwell T K. 2014. Southern San Andreas fault evaluation field activity: Approaches to measuring small geomorphic offsets: Challenges and recommendations for active fault studies[J]. Seismol Res Lett, 85(1): 68-76. doi: 10.1785/0220130108
Westoby M J, Brasington J, Glasser N F, Hambrey M J, Reynolds J M. 2012. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314. doi: 10.1016/j.geomorph.2012.08.021
Zhou Y, Parsons B, Elliott J R, Barisin I, Walker R T. 2015a. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor-Cucapah epicentral area[J]. J Geophys Res, 120(12): 8793-8808. doi: 10.1002/2015JB012358
Zhou Y, Elliott J R, Parsons B, Walker R T. 2015b. The 2013 Balochistan earthquake: An extraordinary or completely ordinary event?[J]. Geophys Res Lett, 42(15): 6236-6243. doi: 10.1002/2015GL065096
Zhou Y, Walker R T, Elliott J R, Parsons B. 2016. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes[J]. Geophys Res Lett, 43(7): 3134-3142. doi: 10.1002/2016GL067899
Zielke O, Arrowsmith J R, Ludwig L G, Akçiz S O. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781
Zielke O, Arrowsmith J R. 2012. LaDiCaoz and LiDAR imager: MATLAB GUIs for LiDAR data handling and lateral displacement measurement[J]. Geosphere, 8(1): 206-221. doi: 10.1130/GES00686.1
Zielke O, Arrowsmith J R, Ludwig L G, Akciz S O. 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas fault[J]. Bull Seismol Soc Am, 102(3): 1135-1154. doi: 10.1785/0120110230
计量
- 文章访问数: 778
- HTML全文浏览量: 385
- PDF下载量: 33