The prediction equations for the significant duration of strong motion in Chinese mainland
-
摘要: 基于2007—2015年间我国数字强震动观测台网记录到的MW5.0—6.6地震事件中的强震动记录,综合考虑震源、传播路径及场地的影响,采用随机效应回归分析方法建立了适用于中国大陆地区的地震动显著持时预测方程,并与其它地区的预测方程进行了对比分析。结果显示:显著持时随震级和距离的增大而增大,硬土场地的地震动持时整体上略小于软土场地,而且本文给出的地震动显著持时随预测变量的变化趋势与其它研究地区具有一定的相似性。Abstract: The earthquake damages of engineering structures have been affected by the amplitude, frequency and duration of the strong motion records. However, there are relatively few published duration equations available in Chinese mainland. In this paper, we collected the strong motion records with magnitude MW5.0—6.6 during 2007—2015 from Chinese digital strong motion networks. Considering the effects of source, path and site, the random-effected regression technique was adopted to fit a predictive equation in respect to the significant duration. In comparing the predicted durations with other studies, it is shown that this predicted significant duration increases with the increased earthquake magnitude or the increased distance, and decreases with the increased vS30. Furthermore, it has the similar characteristics with other studied regions.
-
Keywords:
- strong motion records /
- significant duration /
- prediction equation /
- regression
-
-
图 2 数据集(图1)中台站vS30值来自于NGA-West2场地数据库的台站数量柱状分布图
Figure 2. Histogram of the station numbers with vS30 value from the NGA-West2 dataset
图 8 不同场地和不同震级条件下本文5%—75%地震动显著持时回归结果与Bommer等(2009)以及Lee和Green (2014)结果的对比
Figure 8. Comparisons of the D5-75 prediction equation in this study with Bommer et al (2009) model and LG2014 models for CENA and WNA from Lee and Green (2014)
图 9 不同场地和不同震级条件下本文5%—95%地震动显著持时回归结果与其它回归结果的对比
Figure 9. Comparisons of thie D5-95 prediction equation in this study with those from Bommer et al (2009) model and LG2014 models for CENA and WNA from Lee and Green (2014)
表 1 回归系数和相关不确定性
Table 1 Regression coefficients and uncertainty
震级区间 a b 标准差σ 相关系数R2 MW5.5—6.0 −3.613(±0.272) 0.963(±0.002) 5.835 0.994 MW6.0—6.5 −7.240(±0.270) 0.979(±0.002) 5.952 0.990 MW6.5—7.0 −13.596(±0.301) 0.993(±0.002) 7.313 0.993 表 2 D5-75和D5-95预测方程的回归系数、事件间残差的标准差τ、事件内残差的标准差σ及总标准差σtotal
Table 2 Regression coefficients and standard deviation for the between-events τ,within-event σ and total σtotal
a1 a2 a3 a4 a5 a6 σ τ σtotal D5-75 −2.991 9 0.603 7 0.869 4 −0.048 0 2.980 4 −0.130 0 0.439 8 0.250 7 0.506 2 D5-95 0.156 1 0.364 7 0.495 8 −0.014 5 2.5* −0.178 4 0.299 3 0.238 6 0.382 8 *a5为置信区间的参数,D5-95中参照Bommer等(2009)将a5值设定为2.5。 -
吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008 Lü H F,Zhao F X. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
史大成. 2009. 基于GIS的场地分类新方法研究[D]. 哈尔滨: 中国地震局工程力学研究所: 16. Shi D C. 2009. Study on New Methods of Site Classification Based on GIS[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 16 (in Chinese).
王倩. 2015. 水平地震动持时的特征研究[D]. 哈尔滨: 中国地震局工程力学研究所: 15–16. Wang Q. 2015. Study on Characteristics of the Duration of Horizontal Components of Ground Motions[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 15–16 (in Chinese).
温瑞智. 2016. 我国强地震动记录特征综述[J]. 地震学报,38(4):550–563. Wen R Z. 2016. A review on the characteristics of Chinese strong ground motion recordings[J]. Acta Seismologica Sinica,38(4):550–563 (in Chinese).
温瑞智,徐培彬,任叶飞,周宝峰. 2017. 强震动记录Flatfile的研究进展[J]. 地震工程与工程震动,37(3):38–47. Wen R Z,Xu P B,Ren Y F,Zhou B F. 2017. Development of the strong-motion Flatfile[J]. Earthquake Engineering and Engineering Dynamics,37(3):38–47 (in Chinese).
谢礼立,周雍年. 1984. 一个新的地震动持续时间定义[J]. 地震工程与工程振动,4(2):27–35. Xie L L,Zhou Y N. 1984. A new definition of strong ground motion duration[J]. Earthquake Engineering and Engineering Vibration,4(2):27–35 (in Chinese).
谢礼立,张晓志. 1988. 地震动记录持时与工程持时[J]. 地震工程与工程振动,8(1):31–38. Xie L L,Zhang X Z. 1988. Accelerogram-based duration and engineering duration of ground motion[J]. Earthquake Engineering and Engineering Vibration,8(1):31–38 (in Chinese).
中国地震台网中心. 2018. 历史查询[EB/OL]. [2018-01-01]. http://www.ceic.ac.cn/history. China Earthquake Networks Center. 2018. History query[EB/OL]. [2018-01-01]. http://www.ceic.ac.cn/history.
Abrahamson N A,Youngs R R. 1992. A stable algorithm for regression analyses using the random effects model[J]. Bull Seismol Soc Am,82(1):505–510.
Afshari K,Stewart J P. 2016. Physically parameterized prediction equations for significant duration in active crustal regions[J]. Earthq Spectra,32(4):2057–2081. doi: 10.1193/063015EQS106M
Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: MIT Press: 438–483.
Bates D, Chambers J, Dalgaard P, Gentleman R, Hornik K, Ihaka R, Kalibera T, Lawrence M, Leisch F, Ligges L, Lumley T, Maechler M, Morgan M, Murrell P, Plummer M, Ripley B, Sarkar D, Lang D T, Tierney L, Urbanek S. 2011. Program-R(Version 3.4.2): A language and environment for statistical computing and graphics[CP/OL]. [2018-01-01]. http://www.r-project.org/.
Bommer J J,Martínez-Pereira A. 1999. The effective duration of earthquake strong motion[J]. J Earthq Eng,3(2):127–172.
Bommer J J,Stafford P J,Alarcon J E. 2009. Empirical equations for the prediction of the significant,bracketed,and uniform duration of earthquake ground motion[J]. Bull Seismol Soc Am,99(6):3217–3233. doi: 10.1785/0120080298
Boore D M,Thompson E M. 2014. Path durations for use in the stochastic-method simulation of ground motions[J]. Bull Seismol Soc Am,104(5):2541–2522. doi: 10.1785/0120140058
Bora S S,Scherbaum F,Kuehn N,Stafford P. 2014. Fourier spectral- and duration models for the generation of response spectra adjustable to different source-,propagation-,and site conditions[J]. Bull Earthq Eng,12(1):467–493. doi: 10.1007/s10518-013-9482-z
Bray J D,Rathje E M. 1998. Earthquake-induced displacements of solid-waste landfills[J]. J Geotech Geoenviron Eng,124(3):242–253. doi: 10.1061/(ASCE)1090-0241(1998)124:3(242)
Chandramohan R,Baker J W,Deierlein G G. 2016. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records[J]. Earthq Spectra,32(2):927–950. doi: 10.1193/122813EQS298MR2
GCMT. 2018. Global CMT web page[EB/OL]. [2018-01-01]. http://www.globalcmt.org/.
Hancock J,Bommer J J. 2007. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response[J]. Soil Dyn Earthq Eng,27(4):291–299. doi: 10.1016/j.soildyn.2006.09.004
Lee J,Green R A. 2014. An empirical significant duration relationship for stable continental regions[J]. Bull Earthq Eng,12(1):217–235. doi: 10.1007/s10518-013-9570-0
Raghunandan M,Liel A B. 2013. Effect of ground motion duration on earthquake-induced structural collapse[J]. Struct Safety,41:119–133. doi: 10.1016/j.strusafe.2012.12.002
Zhang S R,Wang G H,Pang B H,Du C B. 2013. The effects of strong motion duration on the dynamic response and accumulated damage of concrete gravity dams[J]. Soil Dyn Earthq Eng,45:112–124. doi: 10.1016/j.soildyn.2012.11.011
-
期刊类型引用(12)
1. 王丽红,王同利,武敏捷,李菊珍,岳晓媛,李红. 2020年7月12日古冶M_S 5.1地震前北京地电阻率异常分析. 地震地磁观测与研究. 2023(03): 87-94 . 百度学术
2. 杜学彬,张元生,谭大诚,安张辉,王建军,范莹莹,刘君,陈军营. 国际地震和火山电磁方法组织2016年兰州研讨会——纪念兰州地震研究所开创地电监测预报地震半个多世纪. 地震工程学报. 2022(01): 244-250 . 百度学术
3. 郑斌,石川. 电力工程中极址区域地电阻率适宜性评价. 大众标准化. 2022(04): 84-86 . 百度学术
4. 叶青,王晓,杜学彬,解滔,范晔,周振贵,刘高川. 中国地震井下地电阻率研究进展. 吉林大学学报(地球科学版). 2022(03): 669-683 . 百度学术
5. 王同利,崔博闻,叶青,李菊珍,王丽红,童琼. 九寨沟M_S7.0地震地电阻率变化时空演化分析. 地球物理学报. 2020(06): 2345-2356 . 百度学术
6. 高研,李飞,史红军. 2018年松原M5.7地震前地电阻率变化特征研究. 防灾减灾学报. 2019(02): 46-51 . 百度学术
7. 李红中,张修杰,马占武,刘祥兴. 花岗岩地区深埋长大隧道工程勘察关键技术研究——以粤东地区某隧道工程为例. 公路工程. 2018(05): 110-119 . 百度学术
8. 杜学彬,刘君,崔腾发,范莹莹,安张辉,闫睿,王丽. 两次近距离大震前成都台视电阻率重现性、相似性和各向异性变化. 地球物理学报. 2015(02): 576-588 . 百度学术
9. 徐锡泉,高昌志,王亮. 内蒙古宝昌台地电阻率长期观测数据研究. 地震工程学报. 2014(02): 405-412 . 百度学术
10. 高曙德,汤吉,孙维怀. 盈江5.8级和缅甸7.2级地震前电磁异常. 地球物理学报. 2013(05): 1538-1548 . 百度学术
11. 解滔,杜学彬,郑国磊,陈军营,谭大诚,安张辉,范莹莹,刘君. 水平两层均匀介质中井下电阻率观测信噪比的理论计算. 西北地震学报. 2012(01): 18-22+104 . 百度学术
12. 刘君,杜学彬,Jacques Zlotnicki,范莹莹,安张辉. 几次大震前的地面和空间电磁场变化. 地球物理学报. 2011(11): 2885-2897 . 百度学术
其他类型引用(0)