Study on the rupture directivity of the 2021 Yangbi earthquake sequence
-
摘要:
基于2021年云南漾濞MS6.4地震序列的强震动记录,建立了地震动参数预测方程,采用破裂方向性效应拟合方法估计了强震动记录丰富且空间分布均匀的九次地震的震源破裂方向性特征。结果表明:其中的四次地震(1号、4号、8号、9号)表现出破裂方向性效应,且均为不均匀双侧破裂,但优势破裂方向不同(4号和8号为东南向,1号西北向,9号西南向),说明2021年漾濞地震序列的地震破裂较为复杂;由于主震(4号地震)的破裂速度较慢(约为2.2 km/s),其破裂方向性效应较弱且主要对峰值速度有影响,其它三次地震破裂方向性效应十分显著,破裂速度大于主震;此外,四次地震的破裂方向性效应还存在一定的周期相关性。
Abstract:This study used the strong-motion recordings of the MS6.4 Yangbi earthquake sequence in Yunnan Province to establish the prediction equations of ground motion parameters, and then estimated the focus rupture directivities characteristics for nine Yangbi earthquakes with abundant recordings in a good spatial station coverage based on the rupture directivity effect fitting method. The results indicated that the rupture directivity effects are observed in four of these earthquakes (i.e., the 1st, 4th, 8th, and 9th earthquakes). The four earthquakes are all characterized by the bilateral ruptures with various predominant rupture directions (i.e., southeast for the 4th and 8th events, northwest for the 1st event, and southwest for the 9th event), which illustrates the rupture complexities of the Yangbi earthquake sequence. Since the estimated rupture velocity (about 2.2 km) of the mainshock (the 4th event) is very slow, its rupture directivity effects are not strong and mainly affect the peak ground velocity. However, the rupture directivity effects for the other three earthquakes are very strong and the rupture velocities are faster than that of the mainshock. The dependency of the rupture directivity effects on the period was also observed in the four earthquakes.
-
-
表 1 地震动参数预测方程回归系数及标准差
Table 1 Regression coefficients and standard deviations of the parameter prediction equations of ground motion
地震动强度指标 回归系数 a1 a2 a3 a4 a5 a6 a7 φ τ σ PGA 2.907 4 −0.089 5 0.028 5 −1.719 0 0.142 1 −0.009 6 −0.085 5 0.340 8 0.192 4 0.391 4 PGV 2.226 0 −0.106 2 0.046 6 −1.481 1 0.099 0 −0.008 6 −0.521 2 0.358 9 0.244 6 0.434 3 PSA T=0.10 s 2.581 5 0.066 6 0.026 1 −1.456 6 0.043 9 −0.005 4 −0.023 1 0.357 2 0.171 4 0.396 2 T=0.15 s 2.650 7 0.082 0 0.025 9 −1.081 5 0.041 3 −0.008 2 −0.241 3 0.368 8 0.205 0 0.421 9 T=0.20 s 2.818 1 0.090 8 0.029 2 −1.117 1 0.027 4 −0.006 6 −0.333 8 0.419 9 0.230 2 0.478 9 T=0.26 s 2.902 3 0.030 4 0.042 1 −0.963 7 −0.000 5 −0.006 7 −0.405 1 0.456 1 0.237 0 0.514 0 T=0.30 s 2.764 9 0.046 3 0.044 1 −0.900 2 −0.013 7 −0.006 5 −0.426 5 0.448 0 0.230 3 0.503 7 T=0.36 s 3.021 2 0.068 7 0.043 0 −1.003 7 −0.008 1 −0.005 4 −0.556 9 0.424 4 0.224 9 0.480 3 T=0.40 s 3.165 0 0.103 1 0.039 3 −1.1328 0.005 1 −0.005 3 −0.624 6 0.420 0 0.223 8 0.475 9 T=0.46 s 2.810 6 0.198 6 0.037 9 −0.977 2 −0.050 5 −0.003 7 −0.637 0 0.404 7 0.230 9 0.465 9 T=0.50 s 2.657 4 0.251 2 0.034 4 −0.949 4 −0.059 6 −0.004 0 −0.646 8 0.403 3 0.232 5 0.465 5 T=0.60 s 2.190 3 0.343 8 0.036 4 −0.735 3 −0.130 6 −0.001 5 −0.654 1 0.402 5 0.244 5 0.470 9 T=0.70 s 2.026 6 0.344 0 0.035 3 −0.619 7 −0.124 0 −0.003 1 −0.677 0.400 3 0.241 0 0.467 2 T=0.90 s 1.713 3 0.364 3 0.034 4 −0.429 3 −0.142 6 −0.002 0 −0.721 1 0.403 5 0.246 0 0.472 6 T=1.00 s 1.416 7 0.430 2 0.028 6 −0.294 7 −0.147 7 −0.003 0 −0.749 4 0.411 8 0.232 4 0.472 9 T=1.50 s 1.015 6 0.548 5 0.018 0 −0.079 2 −0.155 4 −0.001 9 −0.919 5 0.457 7 0.260 7 0.526 7 表 2 震级相关的h值
Table 2 Magnitude-dependent h values
M h M h M h M h 2.8—3.5 1.00 3.6—3.7 1.05 4.0—4.5 1.10 4.6—4.7 1.20 5.0 1.50 5.2 1.50 5.6 2.00 6.4 3.90 表 3 选用的9次地震的基本信息及记录数
Table 3 Basic information and the number of recordings for the nine events considered
地震编号 发震时刻(北京时间) MS 北纬/° 东经/° 震源深度/km 记录数 年-月-日 时:分:秒 1 2021-05-19 20:05:56 4.6 25.65 99.91 10 50 2 2021-05-21 21:21:25 5.6 25.65 99.92 10 96 3 2021-05-21 21:21:57 4.2(ML) 25.63 99.96 10 50 4 2021-05-21 21:48:34 6.4 25.70 99.88 10 100 5 2021-05-21 21:55:28 5.0 25.67 99.89 9 62 6 2021-05-21 22:31:10 5.2 25.61 99.97 8 97 7 2021-05-21 23:23:34 4.5 25.59 99.98 9 72 8 2021-05-22 02:28:43 4.2(ML) 25.63 99.92 19 37 9 2021-05-22 20:14:36 4.7 25.60 99.92 10 63 表 4 基于PGA,PGV分别估计的地震破裂方向性参数
Table 4 Rupture directivity parameters estimated based on PGA and PGV,respectively
地震编号 峰值参数 φ/° vr/β k $ {\max C_{\rm{d}}^{0.5} }$ ${\min C_{\rm{d}}^{0.5} } $ ${{\max C_{\rm{d} }^{0.5} }/{\min C_{\rm{d} }^{0.5} } }$ 1 PGA 316.0±11.4 0.93±0.04 0.96±0.03 3.73 0.75 4.95 PGV 309.0±33.6 0.70±0.16 0.86±0.10 1.70 0.80 2.14 2 PGA 296.1±51.4 0.61±0.16 0.68±0.10 1.32 0.83 1.59 PGV 220.6±38.4 0.64±0.10 0.88±0.14 1.56 0.79 1.97 3 PGA 119.0±69.9 0.58±0.17 0.27±0.16 1.31 0.83 1.59 PGV 130.3±104.2 0.64±0.19 0.27±0.15 1.44 0.82 1.75 4 PGA 233.1±58.6 0.63±0.14 0.78±0.14 1.45 0.82 1.78 PGV 167.1±6.8 0.62±0.04 0.82±0.04 1.42 0.81 1.82 5 PGA 247.1±108.1 0.51±0.14 0.71±0.15 1.21 0.82 1.47 PGV 197.4±82.4 0.68±0.18 0.72±0.18 1.50 0.83 1.81 6 PGA 99.4±55.6 0.66±0.17 0.19±0.17 1.55 0.81 1.92 PGV 130.2±64.9 0.70±0.17 0.24±0.17 1.59 0.82 1.94 7 PGA 114.6±41.9 0.63±0.13 0.34±0.14 1.34 0.83 1.61 PGV 97.1±51.4 0.64±0.15 0.22±0.14 1.47 0.82 1.80 8 PGA 149.8±21.9 0.76±0.10 0.87±0.11 1.90 0.80 2.39 PGV 155.6±19.9 0.84±0.12 0.93±0.09 2.43 0.77 3.16 9 PGA 244.4±11.2 0.65±0.08 0.87±0.06 1.57 0.80 1.98 PGV 242.5±18.7 0.70±0.13 0.87±0.08 1.73 0.79 2.18 -
段梦乔,赵翠萍,周连庆,赵策,左可桢. 2021. 2021年5月21日云南漾濞MS6.4地震序列发震构造[J]. 地球物理学报,64(9):3111–3125. Duan M Q,Zhao C P,Zhou L Q,Zhao C,Zuo K Z. 2021. Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics,64(9):3111–3125 (in Chinese).
胡进军,谢礼立. 2011. 汶川地震近场加速度基本参数的方向性特征[J]. 地球物理学报,54(10):2581–2589. Hu J J,Xie L L. 2011. Directivity in the basic parameters of the near-field acceleration ground motions during the Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(10):2581–2589 (in Chinese).
雷兴林,王志伟,马胜利,何昌荣. 2021. 关于2021年5月滇西漾濞MS6.4地震序列特征及成因的初步研究[J]. 地震学报,43(3):261–286. Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. Acta Seismologica Sinica,43(3):261–286 (in Chinese).
李大虎,丁志峰,吴萍萍,刘韶,邓菲,张旭,赵航. 2021. 2021年5月21日云南漾濞MS6.4地震震区地壳结构特征与孕震背景[J]. 地球物理学报,64(9):3083–3100. Li D H,Ding Z F,Wu P P,Liu S,Deng F,Zhang X,Zhao H. 2021. The characteristics of crustal structure and seismogenic background of Yangbi MS6.4 earthquake on May 21,2021 in Yunnan Province,China[J]. Chinese Journal of Geophysics,64(9):3083–3100 (in Chinese).
龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646. Long F,Qi Y P,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
卢永坤,张建国,张方浩,杜浩国,杨黎薇. 2021. 2021年云南漾濞MS6.4地震烈度与震害特征[J]. 地震研究,44(3):429–438. Lu Y K,Zhang J G,Zhang F H,Du H G,Yang L W. 2021. The characteristics of the seismic intensity and damage of the 2021 Yangbi,Yunnan MS6.4 earthquake[J]. Journal of Seismological Research,44(3):429–438 (in Chinese).
苏金波,刘敏,张云鹏,王伟涛,李红谊,杨军,李孝宾,张淼. 2021. 基于深度学习构建2021年5月21日云南漾濞MS6.4地震序列高分辨率地震目录[J]. 地球物理学报,64(8):2647–2656. Su J B,Liu M,Zhang Y P,Wang W T,Li H Y,Yang J,Li X B,Zhang M. 2021. High resolution earthquake catalog building for the 21 May 2021 Yangbi,Yunnan,MS6.4 earthquake sequence using deep-learning phase picker[J]. Chinese Journal of Geophysics,64(8):2647–2656 (in Chinese).
杨九元,温扬茂,许才军. 2021. 2021年5月21日云南漾濞MS6.4地震:一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报,64(9):3101–3110. Yang J Y,Wen Y M,Xu C J. 2021. The 21 May 2021 MS6.4 Yangbi (Yunnan) earthquake:A shallow strike-slip event rupturing in a blind fault[J]. Chinese Journal of Geophysics,64(9):3101–3110 (in Chinese).
岳汉,张勇,盖增喜,王腾,赵里. 2020. 大地震震源破裂模型:从快速响应到联合反演的技术进展及展望[J]. 中国科学:地球科学,50(4):515–537. Yue H,Zhang Y,Ge Z X,Wang T,Zhao L. 2020. Resolving rupture processes of great earthquakes:Reviews and perspective from fast response to joint inversion[J]. Science China Earth Sciences,63(4):492–511. doi: 10.1007/s11430-019-9549-1
Abrahamson N A,Youngs R R. 1992. A stable algorithm for regression analyses using the random effects model[J]. Bull Seismol Soc Am,82(1):505–510. doi: 10.1785/BSSA0820010505
Abrahamson N A,Silva W J. 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismol Res Lett,68(1):94–127. doi: 10.1785/gssrl.68.1.94
Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence[M]//Earthquakes in Kern County, California During 1952. California: State of California Natural Resources, Division of Mines: 199−202.
Ben-Menahem A. 1961. Radiation of seismic surface-waves from finite moving sources[J]. Bull Seismol Soc Am,51(3):401–435. doi: 10.1785/BSSA0510030401
Bernard P,Herrero A,Berge C. 1996. Modeling directivity of heterogeneous earthquake ruptures[J]. Bull Seismol Soc Am,86(4):1149–1160. doi: 10.1785/BSSA0860041149
Boatwright J. 2007. The persistence of directivity in small earthquakes[J]. Bull Seismol Soc Am,97(6):1850–1861. doi: 10.1785/0120050228
Calderoni G,Rovelli A,Ben-Zion Y,Di Giovambattista R. 2015. Along-strike rupture directivity of earthquakes of the 2009 L’Aquila,Central Italy,seismic sequence[J]. Geophys J Int,203(1):399–415. doi: 10.1093/gji/ggv275
Chen J L,Hao J L,Wang Z,Xu T. 2022. The 21 May 2021 MW6.1 Yangbi earthquake:A unilateral rupture event with conjugately distributed aftershocks[J]. Seismol Res Lett,93(3):1382–1399. doi: 10.1785/0220210241
Colavitti L,Lanzano G,Sgobba S,Pacor F,Gallovič F. 2022. Empirical evidence of frequency-dependent directivity effects from small-to-moderate normal fault earthquakes in central Italy[J]. J Geophys Res:Solid Earth,127(6):e2021JB023498.
Convertito V,Caccavale M,De Matteis R,Emolo A,Wald D,Zollo A. 2012. Fault extent estimation for near-real-time ground-shaking map computation purposes[J]. Bull Seismol Soc Am,102(2):661–679. doi: 10.1785/0120100306
Courboulex F,Dujardin A,Vallee M,Delouis B,Sira C,Deschamps A,Honore L,Thouvenot F. 2013. High-frequency directivity effect for an MW4.1 earthquake,widely felt by the population in southeastern France[J]. Bull Seismol Soc Am,103(6):3347–3353. doi: 10.1785/0120130073
Cultrera G,Pacor F,Franceschina G,Emolo A,Cocco M. 2009. Directivity effects for moderate-magnitude earthquakes (MW5.6−6.0) during the 1997 Umbria-Marche sequence,central Italy[J]. Tectonophysics,476(1/2):110–120.
Folesky J,Kummerow J,Shapiro S A,Häring M,Asanuma H. 2016. Rupture directivity of fluid-induced microseismic events:Observations from an enhanced geothermal system[J]. J Geophys Res:Solid Earth,121(11):8034–8047. doi: 10.1002/2016JB013078
Gallovič F. 2016. Modeling velocity recordings of the MW6.0 South Napa,California,earthquake:Unilateral event with weak high-frequency directivity[J]. Seismol Res Lett,87(1):2–14. doi: 10.1785/0220150042
Gong W Z,Ye L L,Qiu Y X,Lay T,Kanamori H. 2022. Rupture directivity of the 2021 MW6.0 Yangbi,Yunnan earthquake[J]. J Geophys Res:Solid Earth,127(9):e2022JB024321. doi: 10.1029/2022JB024321
Joyner W B. 1991. Directivity for nonuniform ruptures[J]. Bull Seismol Soc Am,81(4):1391–1395.
Kane D L,Shearer P M,Goertz-Allmann B P,Vernon F L. 2013. Rupture directivity of small earthquakes at Parkfield[J]. J Geophys Res:Solid Earth,118(1):212–221. doi: 10.1029/2012JB009675
Lengliné O,Got J L. 2011. Rupture directivity of microearthquake sequences near Parkfield,California[J]. Geophys Res Lett,38(8):L08310.
Lin Y Y,Lapusta N. 2018. Microseismicity simulated on asperity–like fault patches:On scaling of seismic moment with duration and seismological estimates of stress drops[J]. Geophys Res Lett,45(16):8145–8155. doi: 10.1029/2018GL078650
McGuire J J. 2004. Estimating finite source properties of small earthquake ruptures[J]. Bull Seismol Soc Am,94(2):377–393. doi: 10.1785/0120030091
McGuire J L,Zhao L,Jordan T H. 2002. Predominance of unilateral rupture for a global catalog of large earthquakes[J]. Bull Seismol Soc Am,92(8):3309–3317. doi: 10.1785/0120010293
Pacor F,Gallovič F,Puglia R,Luzi L,D’Amico M. 2016. Diminishing high-frequency directivity due to a source effect:Empirical evidence from small earthquakes in the Abruzzo region,Italy[J]. Geophys Res Lett,43(10):5000–5008. doi: 10.1002/2016GL068546
Phung V, Atkinson G M, Lau D T. 2004. Characterization of directivity effects observed during 1999 Chi-Chi, Taiwan earthquake[C]//13th World Conference of Earthquake Engineering. Vancouver, BC, Canada: 2740.
Qiang S Y,Wang H W,Wen R Z,Ren Y F,Cui J W. 2023. Characteristics of strong ground motions from four MS≥5.0 earthquakes in the 2021 Yangbi,southwest China,seismic sequence[J]. J Earthq Eng,27(14):3957–3974. doi: 10.1080/13632469.2022.2143941.
Ren Y F,Wang H W,Wen R Z. 2017. Imprint of rupture directivity from ground motions of the 24 August 2016 MW6.2 Central Italy earthquake[J]. Tectonics,36(12):3178–3191. doi: 10.1002/2017TC004673
Ross Z E,Trugman D T,Azizzadenesheli K,Anandkumar A. 2020. Directivity modes of earthquake populations with unsupervised learning[J]. J Geophys Res:Solid Earth,125(2):e2019JB018299. doi: 10.1029/2019JB018299
Ruiz J A,Baumont D,Bernard P,Berge-Thierry C. 2011. Modelling directivity of strong ground motion with a fractal,k−2,kinematic source model[J]. Geophys J Int,186(1):226–244. doi: 10.1111/j.1365-246X.2011.05000.x
Spudich P,Chiou B S J. 2008. Directivity in NGA earthquake ground motions:Analysis using isochrone theory[J]. Earthq Spectra,24(1):279–298. doi: 10.1193/1.2928225
Velasco A A,Ammon C J,Lay T. 1994. Empirical green function deconvolution of broadband surface waves:Rupture directivity of the 1992 Landers,California (MW7.3),earthquake[J]. Bull Seismol Soc Am,84(3):735–750.
Wald D J,Heaton T H,Hudnut K W. 1996. The slip history of the 1994 Northridge,California earthquake determined from strong motion,teleseismic,GPS,and leveling data[J]. Bull Seismol Soc Am,86(1B):S49–S70. doi: 10.1785/BSSA08601B0S49
Wang H W,Ren Y F,Wen R Z,Xu P B. 2019. Breakdown of earthquake self-similar scaling and source rupture directivity in the 2016−2017 central Italy seismic sequence[J]. J Geophys Res:Solid Earth,124(4):3898–3917. doi: 10.1029/2018JB016543
Wang H W,Wen R Z. 2021. Attenuation and basin amplification revealed by the dense ground motions of the 12 July 2020 MS 5.1 Tangshan,China,earthquake[J]. Seismol Res Lett,92(4):2109–2121. doi: 10.1785/0220200400
Wen R Z,Wang H W,Ren Y F. 2015. Rupture directivity from strong-motion recordings of the 2013 Lushan aftershocks[J]. Bull Seismol Soc Am,105(6):3068–3082. doi: 10.1785/0120150100
Yang T,Li B R,Fang L H,Su Y J,Zhong Y S,Yang J Q,Qin M,Xu Y J. 2022. Relocation of the foreshocks and aftershocks of the 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. J Earth Sci,33(4):892–900. doi: 10.1007/s12583-021-1527-7
Yenier E,Atkinson G M. 2015. Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations:Application to central and eastern North America[J]. Bull Seismol Soc Am,105(4):1989–2009. doi: 10.1785/0120140332
Yoshida K. 2019. Prevalence of asymmetrical rupture in small earthquakes and its effect on the estimation of stress drop:A systematic investigation in inland Japan[J]. Geosci Lett,6(1):16–23. doi: 10.1186/s40562-019-0145-z
Yoshida K,Saito T,Emoto K,Urata Y,Sato D. 2019. Rupture directivity,stress drop,and hypocenter migration of small earthquakes in the Yamagata-Fukushima border swarm triggered by upward pore-pressure migration after the 2011 Tohoku-Oki earthquake[J]. Tectonophysics,769(2019):228184.
Zhou Y J,Ren C M,Ghosh A,Meng H R,Fang L H,Yue H,Zhou S Y,Su Y J. 2022. Seismological characterization of the 2021 Yangbi foreshock-mainshock sequence,Yunnan,China:More than a triggered cascade[J]. J Geophys Res:Solid Earth,127(8):e2022JB024534. doi: 10.1029/2022JB024534
-
期刊类型引用(0)
其他类型引用(1)