Tectonic feature and layered anisotropy on the northeastern margin of the Qinghai-Xizang Plateau
-
摘要:
本文综合前人在青藏高原东北缘利用不同方法不同资料得到的地震各向异性结果,对该地区断裂和应力等构造特征及分层各向异性进行了分析。结果表明,青藏高原东北缘以地壳缩短增厚变形为主,部分区域存在各向异性分层或壳内韧性层。XKS (SKS,PKS和SKKS震相的统称)分裂的快波方向整体呈NW或WNW向,与上地幔物质的流动有关。地壳的快波方向表明地壳变形会受到断裂及主压应力的影响。祁连造山带和海原断裂带的分层各向异性特征揭示了上地壳与中下地壳可能存在解耦。阿拉善地块东部至鄂尔多斯地块西部可能存在壳幔解耦现象,上下两层的变形机制不同。秦岭造山带表现为较强的壳幔耦合。松潘—甘孜地块的分层特征及其变形机制较为复杂,仍然存在争议。
Abstract:In this paper, we synthesize the seismic anisotropy results of the Qinghai-Xizang Plateau obtained by various methods and data from previous studies, and analyze the tectonic features and the layered anisotropy of the northeastern margin of the Qinghai-Xizang Plateau. The results of S wave splitting in the upper crust show that the fast-wave direction changes significantly in the Yinchuan graben as well as in the Haiyuan fault. The dominant direction of the second polarization in the Hexi Corridor and Qilian block is consistent with the strike of the active faults, especially in the domain of the Haiyuan fault, which exhibits an obvious along-strike rotation. The higher delay time at block junctions and block margin may reflect the increased strength of the upper crustal medium in these areas. Receiver function results often used to reflect the anisotropic characteristics of the whole crust. Previous studies have revealed that the Qilian-Haiyuan fault and the west Qinling northern margin fault and other deep and large fault cut through the crust, and the fast-wave directions show an obvious rotation along the strike of the fault. Among them, the fast-wave direction of the Haiyuan-Liupanshan fault shows obvious decoupling of the upper and lower crust, and the upper crust tends to be more aligned with the direction of the compressive stresses. Different anisotropy results between the Yinchuan graben and the northern part of the Ordos block, which may come from complex tectonic activities reflect the weaker anisotropy of the block. The XKS (SKS, PKS and SKKS shortly named XKS) wave splitting can clearly reflect the anisotropic characteristics of the lithosphere under the surface. The results show that the main fast-wave polarization directions in the studied area are NW and WNW, and the Haiyuan fault and the Longmenshan fault are NS and NE, respectively, which are different from the average directions in the studied area. Combined with the receiver function and XKS results, there are deviations of nearly 90° in the fast-wave direction in the eastern Alax block, the western Ordos block, the northern part of the Yinchuan graben, and the Longmenshan fault, and the deformation modes of the crust and the upper mantle in these regions may be different. The phase velocity results indicate that the causes of the large-scale low velocity anomalies are different for the Qilian and west Qinling. The low velocity zones in the Qilian orogen may be caused by crustal shortening, whereas for the low velocity zone in the Songpan-Garze area, large scale crustal channel flow does not seem to explain the lower vP/vS ratios and the more fragmented low-velocity layers in the receiver function results. Low velocity anomalies in the shallow part of the Ordos block may be related to surface sedimentation, and smaller delay time may indicate a steady state of lithospheric structure, but the northern part may have been influenced by tectonic activity of the Yinchuan graben. Summarizing the results, it is found that the fast wave directions of multiple methods in the Qilian orogen are close to each other, the S-wave splitting is more consistent with the upper layer fitted by the layered anisotropy, and the lower layer is more consistent with the anisotropic character of the upper mantle as reflected by the XKS results and the long-period surface wave results. The upper crust of the Haiyuan fault is more affected by the compressive stress, and the fast-wave direction is in the NE direction, but in the lower-middle crust and upper mantle, the directions of the fast waves were almost parallel in the anisotropy results of the long-period surface waves, the receiver functions, and XKS, and the directions of lattice-aligned dominance in the lower and middle crust and upper mantle may be the same. The difference in anisotropy between the crust and upper mantle in the Yinchuan graben reflects the NW- and WNW-oriented lattice orientations of the mantle lithosphere in the Qinghai-Xizang Plateau, while the NE-oriented crustal fast-wave direction may reflect simple shearing of faults in the Yinchuan graben, and there may be a difference in crust-mantle deformation. The receiver function and ambient noise results suggest that with the NE-directed thrusting of the Qinghai-Xizang Plateau in the western Qinling, the middle and lower crust may have been heated by mantle material and produced NE-directed channel flow or detachment, but the more similar splitting parameter of XKS and Pms and the lower vP/vS are contrary to the idea of large-scale crustal channel flow, and other scholars have suggested that the layered phenomenon found is a transition from brittle deformation of upper crust to ductile deformation of the middle and lower crust. Therefore, the layered characteristics of the west Qinling and Songpan-Garze blocks are still inconclusive. The crust and upper mantle of the Qinling orogen are in continuous deformation motion, and the mantle material is transported along the southern margin of the Ordos block and the middle of the northern margin of the South China block. The fast-wave directions shown by XKS and Pms indicate that the direction of crustal-mantle lattice dominance is aligned along the direction of material flow, and that the crust and mantle are strong coupled. Controlled by the complex tectonic features and the constraints of observatory station density, the exploration of shell-mantle deformation characteristics, shell-mantle coupling problems, anisotropic layering and dynamical features in the studied area still needs the incorporation of higher-quality and higher-density data as well as more accurate analytical methods.
-
引言
印度−欧亚板块的相互挤压碰撞,不仅创造了青藏高原这个壮丽的地质奇观,而且仍在不断推动着高原的扩张和上升 (Yin,Harrison,2000)。其中青藏高原东北缘作为运动的前端,受青藏地块、鄂尔多斯地块、阿拉善地块以及华南地块的共同影响,从北至南断裂带分布较为密集,区域的物质运移以及变形模式也较为复杂。据历史地震目录资料,公元前780年至2023年该区域M≥7.0地震119次(国家地震科学数据中心,2016),其中M≥8.0地震22次,包括2008年5月12日汶川MS8.0地震(图1)。
研究区西北侧河西走廊及祁连山北缘组成的祁连造山带,发育有多组近EW向及WNW向的断裂。祁连造山带发育自新生代华北克拉通,学者们认为中新世以来青藏高原的抬升过程与北祁连山的活动逆冲断层有关,同时祁连地块的隆升以及东北向扩张重新激活了河西走廊东北侧的断裂带(Yin,Harrison,2000;张怀惠等,2021;高锐等,2022)。微震识别结果显示,祁连造山带可能发育与原断裂带斜交的NNW向隐伏断裂,且处于较为活跃的状态(杨少博等,2022)。祁连山的复杂地幔结构也造成了该区域东西两段的地貌差异(李蕙琳等,2022)。祁连造山带的地壳厚度为50—55 km,且vP/vS低于常值,表明地壳中的石英、铁镁成分随着地壳的缩短增厚而减少,是连续的变形模式(李永华等,2006)。地壳厚度信息也暗示青藏高原东北缘的运动前端可能已经跨越河西走廊及其东北部边界并进入阿拉善地块南缘(史克旭等,2020)。祁连构造区东南缘发育有延伸至鄂尔多斯地块西边界的NNW向左旋走滑的海原断裂带。古地震研究发现海原断裂带的丛集现象及强震复发的周期性较为突出(闵伟等,2000;张培震等,2003)。海原断裂带CO2通量、浓度及热流高于常值,表明构造应力集中,变形强烈(Li et al,2023b)。前人将祁连造山带至海原断裂的区域划分为多个强震危险区,危险区内断层闭锁较强,应力积累速率较高(Li et al,2017;石富强等,2018;朱琳等,2022)。海原断裂带由一系列次级断层组成,晚新生代以来发生多次构造变化。12 Ma前海原断裂带的变形表现为NE方向的逆冲推覆,而5.4 Ma前则以不断增加的左旋走滑分量为主(王伟涛等,2014)。GPS资料显示,海原断裂带的最大主应变方向为NE向,与印度板块和俄罗斯西伯利亚地台挤压方向一致,断裂平均滑动速率约为4.5 mm/a (Gan et al,2007;刘金瑞等,2018)。海原断裂带的莫霍面跨过地壳进入上地幔,前人的研究认为海原断裂带可能是印度—欧亚板块相互挤压碰撞的产物,是青藏高原东北缘重要的边界断裂带(王琼等,2013;Shi et al,2021;沈胜意等,2022)。在青藏高原地块内部也存在着一条延伸至华南地块及秦岭造山带的西秦岭北缘断裂,全程470 km,走向NW50°—70°,晚第四纪活动强烈的水平滑动速率约为2.3 mm/a,而垂直滑动速率较小(李传友等,2007),断裂切穿地壳呈左旋走滑特征(宋婷等,2022)。虽然滑动速率弱于海原断裂带,但西秦岭北缘断裂连接至东侧秦岭—大别造山带,地壳厚度以青藏高原地块边缘为界东西差异明显,部分学者认为青藏高原物质由西秦岭东向流出,那么西秦岭北缘断裂可能为青藏高原物质沿秦岭造山带流通的一条重要通道(王琼等,2013;Shen et al,2015)。地壳厚度研究结果显示研究区自西至东地壳厚度呈阶跃式减薄,各地块边缘处地壳厚度明显厚于地块内部(史克旭等,2020)。江在森等(2001)与崔笃信等(2009)的GPS观测结果与震源机制反演得到的应力场趋势相吻合,自西至东由NNE向逐渐偏转为NE向(冯兵等,2022;孟文等,2022),前人认为这可能是高原物质NE向的流动受到具有克拉通性质的鄂尔多斯地块以及阿拉善地块的阻挡产生的顺时针运动方向偏转。
为更进一步探究青藏高原东北缘的动力学特征和壳幔运动变化,学者们提出了多种动力学假说。Tapponnier等(1982)认为印度—欧亚板块初期碰撞形成青藏高原后,随着印度板块的不断俯冲,高原不断抬升,因此青藏高原内形成了复杂的断裂构造和地壳的增厚,高原物质正是通过这些断裂不断流通运移。部分学者认为印度与欧亚板块持续会聚挤压,高原隆升冲击到岩石圈厚度较大且较为坚硬的地块,引起青藏高原东北缘区域的地壳发生缩短和增厚,壳幔的变形是连贯、耦合的(England,Houseman,1986;Dewey et al,1988;Tian et al,2014)。另有研究认为青藏高原内部几乎未发生上地壳的变形,地壳变形主要集中在稳定性较差的下地壳,这种变形在上下地壳之间是相互独立的,即地壳的上下两部分存在解耦(Royden et al,1997,2008;Clark,Royden,2000)。这些模型对于理解研究区的变形机制和特征具有重要意义,而针对东北缘的动力学机制和构造特征,单一假说并不适合整体变化特征(许志琴等,2010)。
地震波的传播会经过地球深部各种介质,当地震波经过具有微裂隙的介质或壳幔介质而使其应力发生改变时,可以通过地震波反演的地震各向异性去反映壳幔的内部构造和动力学特征(Crampin,1978,1981)。S波穿过具有各向异性的介质会产生快、慢S波,通常用快S波偏振方向和慢S波时间延迟来描述,这种引起剪切波分裂的介质在地壳和地幔中普遍存在(Crampin,Peacock,2005),近年来被广泛应用于构造特征以及深部物质运移研究(王琼等,2013;郭桂红等,2019;吕晋妤等,2022)。不同深度的各向异性特征形成的原因也不同,中上地壳的各向异性特征通常与区域主压应力方向或断裂走向平行,是扩容各向异性(extensive-dilatancy anisotrop,缩写为EDA)的裂隙受应力变化定向排列的结果(Crampin,1981);Meissner等(2002)认为较深地壳的环境会引起矿物晶格的定向排列,下地壳各向异性是由云母、角闪石等各向异性矿物的存在而产生的。岩石实验和数值模拟结果认为,上地幔橄榄岩等会由于软流圈物质的流动而产生沿流向的定向排列(Zhang,Karato,1995;Ben,Mainprice,1998)。但各向异性的根本成因还有待深入研究,地幔物质的流动与地幔矿物晶格的定向排列都会引起各向异性(Silver,Chan,1991;高原等,2010)。本文收集了前人不同方法不同资料得到的地震各向异性和速度结构成像结果,综合分析了青藏高原东北缘的断裂、壳-幔变形模式与分层各向异性的复杂特征。
1. 区域壳幔各向异性特征
1.1 近震S波分裂揭示的上地壳各向异性
近震S波分裂是地震波穿过具有形状优势方向(space-preferred orientation,缩写为SPO)的介质产生的,近震S波分裂有着较好的横向分辨率,各向异性快波偏振方向主要受该区域主压应力以及地壳变形影响(Li et al,2023a),慢波时间延迟主要受到各向异性介质强度的影响(Kong et al,2016;钱旗伟等,2017;李秋生等,2020)。张辉等(2012)运用甘肃固定地震台站的地震资料获得了区域18个台站的各向异性结果(图2)。祁连造山带快波偏振方向为NNE,NE向,与区域主压应力方向一致,华南地块部分及西秦岭发生偏转,区域的主压应力方向可能发生改变,由ENE向顺时针旋转为NE向以及WNW向。钱旗伟等(2017)发现祁连造山带的大量台站记录表现出两个快波优势偏振方向,其中一个快波方向与区域主压应力场一致,而近WNW向的构造断裂带可能是NW向第二快波偏振方向的诱因。
刘庚等(2017)运用九年近震波形资料给出了秦岭造山带的各向异性特征,即四川盆地北缘地区呈NE和WNW向快波优势方向,慢波时间延迟较大,可能存在较强的各向异性介质。秦岭造山带的快波方向发生偏转,为ENE向,与该区域的主压应力场方向相符合(盛书中等,2015)。许英才等(2019)的结果表明,鄂尔多斯地块、青藏高原以及阿拉善地块交会区,快波方向呈NE向,与区域主压应力相吻合,但在海原断裂带处偏转为WNW向,与断裂带的走向一致。张艺和高原(2017)运用中国地震科学台站一期和二期资料研究分析认为,阿拉善地块内部快波偏振方向呈NE向,银川地堑的则与许英才等(2019)的结果差别较大,可能原因为银川地堑局部较强的NW−SE方向的拉张应力导致东西两侧介质的优势方向发生了改变。郭桂红等(2015)的结果与张辉等(2012)和钱旗伟等(2017)较为一致,华南地块边界快波偏振方向出现20°—50°的偏差,推测由所用数据不足及地块边界复杂构造所致。
我们在前人的研究结果中发现,快波方向在银川地堑以及海原断裂带处发生明显的变化,河西走廊、祁连地块也存在第二偏振优势方向,快波方向与附近的活动断裂走向一致,特别在海原断裂带表现为明显的沿走向偏转。在前人的研究成果中,地块交会处及临近地块边缘存在明显增大的时间延迟,反映出交会区上地壳各向异性介质强度的增加(张辉等,2012;刘庚等,2017;钱旗伟等,2017;张艺,高原,2017;许英才等,2019;刘同振,高原,2023)。我们认为青藏高原东北缘的上地壳受到局部应力场及活动断裂的制约,快波方向在青藏地块东缘发生改变,逐渐偏转为近EW向,至海原断裂及华南地块偏转为近NW向,从GPS资料的速度场变化也可以得到一致的结果(Wang,Shen,2020;李莹,高原,2021)。
1.2 Pms波分裂揭示的地壳各向异性
由于近震S波所覆盖的深度较浅,波形仅能覆盖中上地壳(约15 km)的深度,对于青藏高原东北缘等地壳较厚的区域,无法得到全地壳的各向异性特征。而接收函数方法利用速度间断面的P-S转换波和多次反射波经过各向异性介质到达地表(图3),接收函数Pms转换波的到时随方位角会呈现三角函数的变化,通过拟合接收函数到时可以反演表征全地壳各向异性特征的参数(Rümpker et al,2014)。McNamara和Owens (1993)首次利用接收函数研究地表以下至莫霍面以上的地壳结构。Bostock (1998)也通过拟合理论与实际接收函数得到分层的各向异性参数,目前发展了多种提取接收函数以及反演各向异性参数的方法,可以进一步提高计算效率以及反演的精确度(Ammon et al,1990;吴庆举等,2003)。
图 3 接收函数示意图(修改自Ammon et al,1990)Figure 3. Schematic diagram of receiver functions (Modified from Ammon et al,1990)Shen等(2015)同时运用径向和切向接收函数得到了青藏高原东北缘19个台站的各向异性特征(图4),发现在海原断裂带以及祁连造山带下地壳中存在各向异性低速层,这些位置的快波偏振方向与Clark和Royden (2000)中的下地壳流方向相吻合。邵若潼等(2019)的结果显示松潘—甘孜地块各向异性快波方向为NW−SE以及WNW−ESE向,慢波延迟时间平均为0.56 s,认为各向异性来自于中下地壳,在松潘—甘孜地块与四川盆地的挤压碰撞过程中产生了中下地壳流。Xu等(2018)运用H-κ叠加技术获得了654个台站的地壳厚度及各向异性特征,认为较大的地壳厚度及较低的vP/vS表明青藏高原东北缘岩石圈整体缩短增厚,祁连山以及松潘—甘孜地块的地幔岩石圈符合连贯变形模式,与下地壳流模型不一致。Zheng等(2021)的结果显示,阿拉善地块快波方向由西至东由NW向变为NE向,慢波延迟时间平均为0.36 s,观测到的地壳各向异性与走滑断层有关,青藏高原东北缘可能不存在中下地壳流动。
接收函数各向异性的快波偏振方向与地壳内具有晶格优势方向(lattice-preferred orientation,缩写为LPO)和SPO的介质有关,而时间延迟表示了地壳介质的整体各向异性强度(李莹,高原,2021)。Sherrington等(2004)表明中下地壳的各向异性高达14%,地壳中的各向异性大多来自于中下地壳(Chen et al,2013),上地壳各向异性对地壳和上地幔各向异性的影响较小(黄臣宇,常利军,2021)。Shen等(2015)和Shi等(2021)的研究结果表明青藏高原东北缘的部分深大断裂带切穿地壳,会对地壳部分的各向异性结果产生影响。快波偏振方向在祁连—海原断裂带以及西秦岭北缘断裂表现为明显的沿断裂带走向偏转,青藏高原地块快波偏振所指示的方向与GPS、深大断裂带的走向较为一致,呈现NW或NNW向。受青藏高原东北向扩张的影响,阿拉善地块内部快波偏振方向呈NE向,鄂尔多斯地块及阿拉善地块之间较强的拉张应力使前人在银川地堑的各向异性结果存在部分偏差。前人的研究结果显示在祁连造山带以及青藏高原地块内部的地壳以缩短增厚变形为主。鄂尔多斯地块北部存在各向异性差异,有学者认为该差异可能是邻区复杂构造活动引起了异常的晶格优势取向及各向异性强度(Xu et al,2018)所致,也有学者认为地块内部较为稳定,呈较弱的地震各向异性(常利军等,2011;Zheng et al,2021)。从表征不同尺度与深度的S波分裂与接收函数结果来看,海原—六盘山断裂带的快波方向显示出明显的上、下地壳解耦,其中上地壳更容易受到应力场的影响(Shi et al,2021)。银川地堑内的地壳快波方向为NNE或NNW,与近震S波各向异性的结果较为一致。我们发现前人利用Pms震相提取到的研究区地壳各向异性结果存在较大的差异,这些差异首先可能来自于学者们采用的不同方法(网格搜索法和到时拟合法等),其次在获取各向异性的过程中,地震事件的数量及方位角的覆盖程度同样会引起各向异性参数的变化。黄臣宇和常利军(2021)认为结果差异也可能来自于Pms震相本身的信噪比及提取接收函数过程中的信息遗失。Shen等(2017)的研究结果中发现海原、六盘山断裂带存在较为明显的“双莫霍”特征,复杂的地壳内部结构同样会对Pms震相到时及提取的各向异性结果产生较大的影响。
1.3 XKS波分裂揭示的岩石圈各向异性
XKS (SKS,PKS和SKKS震相的简称)波分裂方法是使用85°—180°的远震XKS震相,根据切向能量最小方法反演各向异性参数,对各向异性参数校正后,快慢波通常会在时间上同步,质点轨迹也会近似变为一条直线(王琼等,2013)。由于外核P波在核幔边界转换,消除了震源侧的介质影响,震相穿过上地幔以及整个地壳,可以清晰地反映台站下岩石圈的各向异性特征(Silver,Savage,1994;Shen,Gao,2021)。郑斯华和高原(1994)最先通过远震SKS资料对大陆岩石圈的方位各向异性进行研究。Silver和Savage (1994)提出了XKS震相针对分层各向异性的理论,对于更复杂的内部构造有了更好的约束,但两层以上的分裂参数需要严格的约束(Rümpker,Silver,1998)。
王琼等(2013)利用甘肃41个固定台站资料通过XKS震相分裂发现祁连造山带快波偏振呈NW−SE向(图5),与断裂带走向吻合,认为上地幔介质中的晶格优势方向平行于地幔物质流动方向。吴逸影等(2021)同时利用切向能量最小以及最小特征值法获得了41个秦岭造山带台站的各向异性参数,秦岭造山带在海原断裂带至造山带中部,中下地壳与上地幔是耦合的、是垂直连贯的变形,而东侧上地幔产生了地幔的拖拽流动引起快波偏振方向的改变,可能存在壳幔解耦。Liu等(2020)发现秦岭造山带西侧的NWW快波方向与地表断层走向平行,较大的时间延迟可能来自岩石圈与软流圈共同的贡献,松潘—甘孜地块南部较小的时间延迟可能与地幔热物质上涌有关(An,Shi,2006;Deng,Tesauro,2016)。Chang等(2017)联合GPS地表形变场和XKS波分裂得到了地幔形变场,并据此对青藏高原东北缘垂向的变形特征进行评估,其中XKS波分裂结果显示祁连造山带,陇中盆地及阿拉善地块西部的各向异性结果一致性较高,主要为NW的快波偏振方向在秦岭以及鄂尔多斯地块发生偏转,但鄂尔多斯地块内部的变形程度较小。
由于XKS波穿过整个上地幔,XKS快波偏振方向被认为与地幔橄榄岩定向排列有关,可以反映上地幔物质的流动,慢波时间延迟主要表示岩石圈介质整体各向异性强度。青藏高原东北缘各向异性的来源是岩石圈地幔(Chang et al,2017;Liu et al,2020),前人结果表明研究区主要快波偏振方向呈NW,WNW向,海原断裂带及龙门山断裂对结果影响较大,分别偏转为近NS向和NE向。秦岭造山带的快波方向显示青藏高原东北缘的软流圈物质流动受到坚硬的鄂尔多斯地块的阻挡,从鄂尔多斯地块和华南地块之间流出。鄂尔多斯地块内部快波方向结果存在差异,学者们认为此差异反映了该区域较弱的各向异性强度或地块较为复杂的构造环境(马禾青等,2010;王琼等,2013),但较弱的变形场表明鄂尔多斯地块仍是稳定克拉通的一部分(Chang et al,2017)。
结合接收函数以及XKS的结果,二者在阿拉善地块东部、鄂尔多斯地块西部、银川地堑北部以及龙门山断裂带快波方向皆存在近90°的偏差,这些区域的地壳和上地幔变形方式可能存在差异;龙门山断裂带及海原断裂带的快波方向表现为沿断裂带走向偏转;陇中盆地受主压应力以及断裂带影响较小,XKS所呈现的整体WNW,NW向快波方向在接收函数结果中也有相似的趋势变化。
1.4 背景噪声面波资料反演的地壳各向异性
以不同频率传播的面波可以反映不同深度的结构变化,长周期的远震面波可以揭示上地幔的各向异性,其水平和垂直方向的高分辨率可以同时反映径向各向异性和方位各向异性(鲁来玉等,2014)。背景噪声资料不依赖于地震事件,通过不同台站之间的噪声资料进行互相关以提取格林函数、面波频散曲线,最后获得地球内部的速度结构(王琼,高原,2012)。学者们常使用长周期面波解释上地幔深部的各向异性特征,对于较浅的地壳,所使用的高频面波信号衰减、散射较为严重,而使用背景噪声层析成像对地壳的速度结构进行补充可极大地增加结果的可靠性和分辨率(Shapiro et al,2004;李伦等,2023)。
付媛媛和肖卓(2020)利用背景噪声成像方法发现6—16 s周期相速度在祁连、松潘—甘孜、鄂尔多斯地块及银川地堑存在低速异常。不同的是鄂尔多斯地块及银川地堑的低速异常随深度增加逐渐变为高速异常,浅部的低速异常可能与鄂尔多斯地块内的沉积层有关(Bao et al,2020)。16—25 s周期相速度在祁连、松潘—甘孜区域仍表现为低速特征,认为可能与该区域高温熔融有关,同时不排除较深莫霍面对相速度的影响。王琼和高原(2018)发现鄂尔多斯地块的低速异常随周期逐渐增加逐渐变为高速异常,认为地块内中下地壳的变形是连续的,不存在地壳物质流动。面波25 s周期内松潘—甘孜地块快波偏振方向由NE逐渐变为NW向,对应相速度结果中出现的中地壳低速异常反映了地块内存在中地壳物质的流动。四川盆地北部、松潘—甘孜—西秦岭的低速体在Zhao等(2021)的结果中也有发现,该研究认为低速异常可能来自于中地壳30 km的部分熔融(1%—5%),受温度扩散的影响,这种熔融态流动在西秦岭北缘断裂带终止。Li等(2022)的结果显示在松潘—甘孜地块以及祁连造山带15 km出现明显的vsh与vsv低速,二者构造方式不同,其中松潘—甘孜存在约4%的正径向各向异性,祁连造山带的低速区似乎并未联通,并表现为负径向各向异性。Wang等(2023)结合接收函数以及面波反演的S波速度结构认为祁连造山带的低速异常仅存在于局部,松潘—甘孜的低速体未与外界相互联通,地壳局部的熔融以及较低的波速比不能说明地壳韧性流动。其他学者的研究结果认为松潘—甘孜的低速体是地壳增厚过程中的放射性加热(Bao et al,2020)。
面波所揭示的方位各向异性是垂直于介质晶格对称轴的相速度方位差异(李莹,高原,2021),反映该面波频率所对应深度至上层深度的综合效应,而径向各向异性反映了vsh与vsv的差异,正径向各向异性表现为更多的水平剪切运动,而负径向各向异性表现为垂直连贯运动(Li et al,2022)。前人的研究结果发现青藏高原东北缘上地壳的快波偏振与区域断裂带有关,整体面波的快波主要方向为NW向;海原断裂及银川地堑皆存在快波方向随深度的改变及较弱的各向异性(王琼,高原,2018)。相速度结果认为产生祁连以及西秦岭大范围低速异常的原因不同,祁连造山带的低速体可能产生于地壳的缩短过程,对于松潘—甘孜存在的低速区,大规模的地壳流似乎不能解释接收函数结果中较低的波速比和较破碎的低速层(Xu et al,2018;Bao et al,2020);陇中盆地由于地壳厚度的骤减,并未体现出异常的速度值;阿拉善地块和鄂尔多斯地块较为稳定,相速度呈逐步递增趋势,地壳处于耦合的运动状态,整体S波速度普遍高于其它区域。对于秦岭造山带东侧是否存在由地块旋转所引起的地壳流,仍需要更详细的资料进一步验证。
2. 青藏高原东北缘各向异性分层特征与构造意义
如果地震波穿过各向异性层会产生地震各向异性,那么地震波穿过多个各向异性层就可能会产生各向异性的分层特征(高原等,1993;Silver,Savage,1994)。学者们常基于单层各向异性模型去解释壳幔及软流圈的变形与物质运动,面对实际的多层各向异性介质时,所得结果往往会出现很大偏差,难以准确反映壳幔的各向异性特征。然而,对于双层各向异性结构,XKS分裂参数的特征表现为快波偏振方向和时间延迟都随地震射线的方位角发生规律性变化(Silver,Savage,1994;Savage,1999;沈胜意等,2022)。学者们在死海、天山构造带及青藏高原都发现各向异性分层的现象(Kaviani et al,2011;Kong et al,2018)。常利军等(2011)运用SKS分裂方法,发现鄂尔多斯地块内的部分台站结果符合双层各向异性特征,上层较弱的各向异性(快波方向θ=83°,时间延迟δt=0.5 s)表明其介质层来自于鄂尔多斯地块所属的古老克拉通,而下层(θ=132°,δt=0.8 s)对应青藏高原东北缘NW−SE向的地幔物质流动,大地电磁数据指出这种分层现象来自于鄂尔多斯地块北部的中生代地幔的热物质上涌,呈现出电性的非均匀性,而南部鄂尔多斯地块表现为高导异常,可能是软流圈流动所致(Dong et al,2014)。SKS方法建立的模型显示,秦岭造山带上地幔及下地壳为耦合形态,但鄂尔多斯地块及扬子地块的旋转,使秦岭东部可能存在下地壳与上地幔的解耦(吴逸影等,2021)。海原断裂带的近震S波快波偏振为NE和NNE向,而Pms所指示的快波方向为NW和WNW向,该现象是海原断裂带至银川地堑南部可能存在分层各向异性的重要证据(Wang et al,2016;Shi et al,2020)。XKS分裂研究提出了海原断裂至银川地堑的双层各向异性模型(图6),上层介质的各向异性包含了地壳和上地幔的顶部,下层各向异性来自于更深的上地幔介质,可能与软流圈的流动有关(沈胜意等,2022)。Huang等(2017)的研究认为,在华北克拉通发现的双层各向异性,下层NW向快波偏振方向为软流圈的贡献,而上层则与局部造山带走向平行,与构造活动有关。松潘—甘孜地块上地壳与地幔岩石圈中间可能存在一个薄弱的中下地壳流动或拆离,但止于西秦岭断裂带南侧,与Zhao等(2021)的研究结果一致,认为松潘—甘孜地块的上地壳与地幔岩石圈的变形模式是相同的,但与中下地壳可能存在差异。
图 6 海原断裂到银川地堑双层各向异性模型示意图(引自沈胜意等,2022)地表的黑色粗线为块体边界,白色曲线为海原断裂。深蓝色线段表示上层各向异性,红色线段表示下层各向异性,红色箭头指示地幔物质运动的方向Figure 6. Two-layer anisotropic model beneath the Haiyuan fault and Yinchuan graben (after Shen et al,2022)The thick black line on the surface is the block boundary,and the Haiyuan fault is shown in white. The dark blue line indicates the anisotropy of the upper layer,the red line indicates the anisotropy of the lower layer,and the red arrow indicates the direction of mantle material movement多种方法的结果在祁连造山带均体现了较为接近的快波偏振方向(图7),XKS所得到的快波方向与面波30 s的快波方向较为一致,呈WNW向。祁连造山带近震S波快波偏振方向为NE−SW向(张辉等,2012),与该区域XKS双层各向异性介质上层较为吻合,主要反映了上地壳的NE向挤压应力(王琼等,2013),而双层各向异性结果中的下层与XKS结果近似,反映了上地幔岩石晶格的定向排列(Ye et al,2016)。双层各向异性模型对于海原断裂及银川地堑的构造模式给出了较为合理的解释,上地壳受主压应力影响较大,快波方向为NE向,这与背景噪声反演的32.5 km处沿断裂带走向的快波方向存在较大差异(Bao et al,2020),表明上地壳的脆性岩石变形与中下地壳的晶格优势排列方向不一致。但在中下地壳,通过背景噪声获得的快波方向与长周期面波、接收函数和XKS的快波方向结果是近似平行的,中、下地壳与上地幔顶部的晶格排列优势方向可能是一致的。断裂带附近较低的vP/vS,可能与地壳在鄂尔多斯地块碰撞过程中产生的高温高压有关(Deng et al,2018;Shi et al,2021)。XKS分层各向异性揭示出软流圈的物质流动在鄂尔多斯地块边缘发生了逆时针偏转,进入到银川地堑,地幔岩石圈介质产生了NW,WNW向的晶格定向排列,而地壳快波方向表现为NE−SW向,与断陷轴近似平行,可能是断层简单剪切引起的地壳介质晶格NE向排列(Xu et al,2018),同时不排除与地幔热物质上涌有关(付媛媛,肖卓,2020)。Pms分层及背景噪声结果认为西秦岭区域随着青藏高原NE向的推挤,中下地壳可能受到地幔热物质的加热而产生了NE向的熔融流动或拆离(Shen et al,2015;Huang et al,2017;Zhao et al,2021),这种流动由于热扩散的原因在西秦岭北缘断裂以南终止,并没有延伸至陇中盆地,但上地壳仍为脆性变形引起的浅层微裂隙排列,壳内可能存在解耦;另有学者认为该区域XKS与Pms较为近似的分裂参数及较低的vP/vS与大规模地壳流的观点是相悖的(Xu et al,2018;Wang et al,2023)。发现的分层现象是上地壳脆性变形至中、下地壳韧性变形的转变,这也象征着青藏高原可能处于由早期地壳缩短增厚至后期小尺度无序地壳流的过渡(Bao et al,2020)。XKS的结果在秦岭造山带所体现出的上地幔物质流动方向与地块旋转所引起的横向运动一致,研究认为秦岭造山带地壳与上地幔是连续的变形运动,且地幔物质沿鄂尔多斯地块南缘及华南地块北缘中间流出,XKS与Pms所示的快波方向表明壳幔晶格优势方向沿流动方向排列,壳幔是耦合的(黄臣宇,常利军,2021)。鄂尔多斯地块内部较小的时间延迟可能表明岩石圈结构的稳定状态,但是存在地块整体的扭曲(Zhu et al,2012),这可能与青藏高原地块NE向的推挤有关(许忠淮等,2003;Zheng et al,2021)。双层各向异性结果揭示的上层地壳可能包含古老克拉通的“化石”各向异性,前人的面波方位各向异性结果波动较大,体波结果在这一区域体现出不一致的复杂构造,地表的较厚沉积可能是区域浅部低速层的诱因(Wang et al,2023)。背景噪声、XKS分层结果认为,该区域并不存在地壳流动,鄂尔多斯地块南部阶跃减薄的岩石圈也为青藏高原软流圈的东向挤压提供了路径(Chang et al,2017;王琼,高原,2018;吴逸影等,2021;Zhang et al,2022)。阿拉善地块东部至鄂尔多斯地块西部的XKS与Pms快波方向大角度相交,XKS快波方向与地幔的NNE向运动引起的岩石圈晶格WNW向优势排列有关。Xu等(2018)认为异常的Pms快波方向和较大的时间延迟可能反映了银川地堑内的断层剪切运动,但在Zheng等(2021)的地壳各向异性结果中时间延迟较小,不排除地壳各向异性较弱的可能,壳幔可能存在不同的变形方式。
3. 讨论与结论
印度—欧亚板块的挤压碰撞引起了青藏高原的隆升和扩张。青藏高原东北缘研究结果表明:青藏高原以地壳的缩短增厚及壳幔耦合变形为主,其东北缘的部分区域发现各向异性分层及壳内软弱层。青藏高原东北缘的上地幔及软流圈物质总体上随着青藏高原NE向的推挤产生了NW或WNW向的运动,在鄂尔多斯地块以及阿拉善地块边界受到坚硬地块对物质运移的阻挡并转向。
鄂尔多斯地块、阿拉善地块、海原断裂带、祁连造山带及松潘—甘孜地块可能存在各向异性分层。根据本文收集的各向异性数据,阿拉善地块东部至鄂尔多斯地块西部的壳幔快波方向大角度相交,暗示可能存在壳幔变形差异。祁连造山带、海原断裂带及银川地堑南部的分层主要体现在上地壳与中下地壳。上地壳主要是受浅层断裂及主压应力控制的脆性岩石的变形,Pms远震长周期地震波反映的各向异性,不少研究者认为可能更多来自中下地壳。祁连造山带及海原断裂带的壳幔是耦合的,但从整个岩石圈来看,上、下地壳之间可能存在各向异性分层。秦岭造山带表现为较强的壳幔耦合特征。由于不同方法和数据的结果差异性,目前对于松潘—甘孜地块的分层特征尚无定论,可能与软弱的中下地壳流动或壳幔的复杂变形方式有关。
各向异性方法在解释青藏高原的隆升、碰撞过程及壳幔变形机制方面都取得了重要进展,并且青藏高原东北缘上下地壳甚至岩石圈的分层也得到了更直观的初步观测结果,分层各向异性越来越受到重视。但受控于复杂的构造特征以及观测台站密度的约束,研究区域内的壳幔变形特征、壳幔耦合问题、各向异性分层及动力学特征的探讨,仍需更高质量和更高密度数据以及更准确的分析方法的加入。
-
图 2 青藏高原东北缘近震S波分裂结果
GPS速度场数据引自Wang和Shen (2020),其中张艺和高原(2017)的研究结果并没有对时间延迟归一化,因此在本研究中只采用其快波方向
Figure 2. S-wave splitting results at the NE margin of the Qinghai-Xizang Plateau
GPS velocity field data are from Wang and Shen (2020). The results of Zhang and Gao (2017) did not normalize the delay time parameters,so only the fast wave polarization direction results were used in this study
图 3 接收函数示意图(修改自Ammon et al,1990)
Figure 3. Schematic diagram of receiver functions (Modified from Ammon et al,1990)
图 6 海原断裂到银川地堑双层各向异性模型示意图(引自沈胜意等,2022)
地表的黑色粗线为块体边界,白色曲线为海原断裂。深蓝色线段表示上层各向异性,红色线段表示下层各向异性,红色箭头指示地幔物质运动的方向
Figure 6. Two-layer anisotropic model beneath the Haiyuan fault and Yinchuan graben (after Shen et al,2022)
The thick black line on the surface is the block boundary,and the Haiyuan fault is shown in white. The dark blue line indicates the anisotropy of the upper layer,the red line indicates the anisotropy of the lower layer,and the red arrow indicates the direction of mantle material movement
-
常利军,王椿镛,丁志峰. 2011. 鄂尔多斯块体及周缘上地幔各向异性研究[J]. 中国科学:地球科学,41(5):686–699. Chang L J,Wang C Y,Ding Z F. 2011. Upper mantle anisotropy in the Ordos Block and its margins[J]. Science China Earth Sciences,54(6):888–900. doi: 10.1007/s11430-010-4137-2
崔笃信,王庆良,胡亚轩,王文萍,梁伟锋. 2009. 青藏高原东北缘岩石圈变形及其机理[J]. 地球物理学报,52(6):1490–1499. Cui D X,Wang Q L,Hu Y X,Wang W P,Liang W F. 2009. Lithosphere deformation and deformation mechanism in northeastern margin of Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics,52(6):1490–1499 (in Chinese).
冯兵,郝明,张志朋,张晓瞳,朱飞鸿,朱良玉,王文青,柴旭超,惠航. 2022. 青藏高原东北缘及其周边地区现今构造应力场及地震活动性[J]. 大地测量与地球动力学,42(10):1067–1073. Feng B,Hao M,Zhang Z P,Zhang X T,Zhu F H,Zhu L Y,Wang W Q,Chai X C,Hui H. 2022. Current tectonic stress field and seismic activity in northeastern Tibetan Plateau and its surrounding areas[J]. Journal of Geodesy and Geodynamics,42(10):1067–1073 (in Chinese).
付媛媛,肖卓. 2020. 青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像[J]. 地球物理学报,63(3):860–870. Fu Y Y,Xiao Z. 2020. Ambient noise tomography of Rayleigh and Love wave in Northeast Tibetan Plateau and adjacent regions[J]. Chinese Journal of Geophysics,63(3):860–870 (in Chinese).
高锐,齐蕊,黄兴富,陈宣华,熊小松,郭晓玉,刘晓惠,廖杰. 2022. 青藏高原东北缘祁连山中部精细地壳结构研究[J]. 地球物理学报,65(8):2857–2871. doi: 10.6038/cjg2022P0907 Gao R,Qi R,Huang X F,Chen X H,Xiong X S,Guo X Y,Liu X H,Liao J. 2022. Disclosure of high-resolution crustal structure beneath the central region of Qilian Shan,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,65(8):2857–2871 (in Chinese).
高原,郑斯华,冯德益. 1993. 剪切波的多级分裂:概念的提出与初步分析[J]. 东北地震研究,9(4):1–10. Gao Y,Zheng S H,Feng D Y. 1993. Shear wave multiple-splitting:Proposal of concept and preliminary analysis[J]. Seismological Research of Northeast China,9(4):1–10 (in Chinese).
高原,吴晶,易桂喜,石玉涛. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系[J]. 科学通报,55(29):2837–2843. Gao Y,Wu J,Yi G X,Shi Y T. 2010. Crust-mantle coupling in North China:Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin,55(31):3599–3605. doi: 10.1007/s11434-010-4135-y
郭桂红,张智,程建武,董治平,闫建萍,马亚维. 2015. 青藏高原东北缘地壳各向异性的构造含义[J]. 地球物理学报,58(11):4092–4105. doi: 10.6038/cjg20151117 Guo G H,Zhang Z,Cheng J W,Dong Z P,Yan J P,Ma Y W. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication[J]. Chinese Journal of Geophysics,58(11):4092–4105 (in Chinese).
郭桂红,武澄泷,唐国彬,侯爵,张明辉,贺志洪,张智,蒲举,刘旭宙,陈继峰,程建武. 2019. 青藏高原东北缘壳幔各向异性研究:基于SKS和Pms震相分析[J]. 地球物理学报,62(5):1650–1662. Guo G H,Wu C L,Tang G B,Hou J,Zhang M H,He Z H,Zhang Z,Pu J,Liu X Z,Chen J F,Cheng J W. 2019. Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases[J]. Chinese Journal of Geophysics,62(5):1650–1662 (in Chinese).
国家地震科学数据中心. 2016. 中国历史地震目录[EB/OL]. [2023−06−01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz. National Earthquake Data Center. 2016. Chinese Historical Earthquake Catalog[EB/OL]. [2023−06−01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).
黄臣宇,常利军. 2021. 基于横波分裂的青藏高原多圈层各向异性研究进展[J]. 地球与行星物理论评,52(2):164–181. Huang C Y,Chang L J. 2021. Reviews on seismic anisotropy based on shear-wave splitting in the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,52(2):164–181 (in Chinese).
江在森,张希,崔笃信,胡亚轩,陈文胜,王双绪,陈兵. 2001. 青藏块体东北缘近期水平运动与变形[J]. 地球物理学报,44(5):636–644. Jiang Z S,Zhang X,Cui D X,Hu Y X,Chen W S,Wang S X,Chen B. 2001. Recent horizontal movement and deformation in the northeast margin of Qinghai-Tibet block[J]. Chinese Journal of Geophysics,44(5):636–644 (in Chinese).
李传友,张培震,张剑玺,袁道阳,王志才. 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究,27(1):54–63. Li C Y,Zhang P Z,Zhang J X,Yuan D Y,Wang Z C. 2007. Late-Quaternary activity and slip rate of the western Qinling fault at Huangxianggou[J]. Quaternary Sciences,27(1):54–63 (in Chinese).
李蕙琳,黄兴富,高锐,叶卓. 2022. 青藏高原东北缘祁连山西段与东段岩石圈结构差异研究[J]. 地球物理学报,65(5):1581–1594. Li H L,Huang X F,Gao R,Ye Z. 2022. The lithospheric structure differences between the western and eastern Qilian in the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,65(5):1581–1594 (in Chinese).
李伦,蔡晨,付媛媛,方洪健. 2023. 多种面波层析成像方法及其在青藏高原的应用与对比[J]. 地球与行星物理论评(中英文),54(2):174–196. Li L,Cai C,Fu Y Y,Fang H J. 2023. Multiple surface wave tomography methods and their applications to the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,54(2):174–196 (in Chinese).
李秋生,高原,王绪本,赵俊猛. 2020. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报,63(3):789–801. Li Q S,Gao Y,Wang X B,Zhao J M. 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics,63(3):789–801 (in Chinese).
李莹,高原. 2021. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征[J]. 地震,41(4):15–45. doi: 10.12196/j.issn.1000-3274.2021.04.002 Li Y,Gao Y. 2021. Basic characteristics of tectonics and seismic anisotropy in the southeastern margin of the Qinghai-Tibet Plateau[J]. Earthquake,41(4):15–45 (in Chinese).
李永华,吴庆举,安张辉,田小波,曾融生,张瑞青,李红光. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报,49(5):1359–1368. Li Y H,Wu Q J,An Z H,Tian X B,Zeng R S,Zhang R Q,Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics,49(5):1359–1368 (in Chinese).
刘庚,高原,石玉涛. 2017. 秦岭造山带及其两侧区域地壳剪切波分裂[J]. 地球物理学报,60(6):2326–2337. Liu G,Gao Y,Shi Y T. 2017. Shear-wave splitting in Qinling Orogen and its both sides[J]. Chinese Journal of Geophysics,60(6):2326–2337 (in Chinese).
刘金瑞,任治坤,张会平,李传友,张竹琪,郑文俊,李雪梅,刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报,61(4):1281–1297. doi: 10.6038/cjg2018L0364 Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault and its tectonic implications[J]. Chinese Journal of Geophysics,61(4):1281–1297 (in Chinese).
刘同振,高原. 2023. 青藏高原东北缘地壳地震各向异性研究进展[J]. 中国地震,39(2):225–242. doi: 10.3969/j.issn.1001-4683.2023.02.001 Liu T Z,Gao Y. 2023. Reviews on the crustal seismic anisotropy in the northeast margin of the Tibetan Plateau[J]. Earthquake Research in China,39(2):225–242 (in Chinese).
鲁来玉,何正勤,丁志峰,王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报,57(3):822–836. doi: 10.6038/cjg20140312 Lu L Y,He Z Q,Ding Z F,Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics,57(3):822–836 (in Chinese).
吕晋妤,沈旭章,金睿智,黄柳婷. 2022. 青藏高原东北缘地壳介质各向异性非均匀特征及其构造意义[J]. 地球物理学报,65(6):1980–1990. Lü J Y,Shen X Z,Jin R Z,Huang L T. 2022. Laterally heterogeneous crustal anisotropy in the northeastern margin of Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics,65(6):1980–1990 (in Chinese).
马禾青,丁志峰,常利军,高武平,蔡新华. 2010. 宁夏地区上地幔地震各向异性特征[J]. 地震学报,32(5):507–516. doi: 10.3969/j.issn.0253-3782.2010.05.001 Ma H Q,Ding Z F,Chang L J,Gao W P,Cai X H. 2010. Seismic anisotropy of the upper mantle in Ningxia region[J]. Acta Seismologica Sinica,32(5):507–516 (in Chinese).
孟文,郭祥云,李永华,韩立波,张重远. 2022. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报,65(9):3229–3251. Meng W,Guo X Y,Li Y H,Han L B,Zhang C Y. 2022. Tectonic stress field and dynamic characteristics in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,65(9):3229–3251 (in Chinese).
闵伟,张培震,邓起东. 2000. 区域古地震复发行为的初步研究[J]. 地震学报,22(2):163–170. Min W,Zhang P Z,Deng Q D. 2000. Primary study on regional paleoearthquake recurrence behavior[J]. Acta Seismologica Sinica,22(2):163–170 (in Chinese).
钱旗伟,吴晶,刘庚,沙成宁,马建新,白占孝,赵燕杰,刘小梅. 2017. 青藏高原东北缘中上地壳介质各向异性及其构造意义[J]. 地球物理学报,60(6):2338–2349. doi: 10.6038/cjg20170625 Qian Q W,Wu J,Liu G,Sha C N,Ma J X,Bai Z X,Zhao Y J,Liu X M. 2017. Anisotropy of middle-upper crust derived from shear-wave splitting in the northeastern Tibetan Plateau and tectonic implications[J]. Chinese Journal of Geophysics,60(6):2338–2349 (in Chinese).
邵若潼,沈旭章,张元生. 2019. 青藏高原东北缘甘东南地区地壳各向异性特征及构造意义[J]. 地球物理学报,62(9):3340–3353. doi: 10.6038/cjg2019M0635 Shao R T,Shen X Z,Zhang Y S. 2019. Crustal anisotropy and tectonic implications beneath southeastern Gansu Province in northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,62(9):3340–3353 (in Chinese).
沈胜意,高原,刘同振. 2022. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态:从海原断裂至银川地堑[J]. 地球物理学报,65(5):1595–1611. doi: 10.6038/cjg2022O0340 Shen S Y,Gao Y,Liu T Z. 2022. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau:From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics,65(5):1595–1611 (in Chinese).
盛书中,万永革,黄骥超,卜玉菲,李祥. 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报,58(2):436–452. doi: 10.6038/cjg20150208 Sheng S Z,Wan Y G,Huang J C,Bu Y F,Li X. 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics,58(2):436–452 (in Chinese).
石富强,邵志刚,占伟,丁晓光,朱琳,李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报,61(9):3651–3663. doi: 10.6038/cjg2018L0631 Shi F Q,Shao Z G,Zhan W,Ding X G,Zhu L,Li Y J. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,61(9):3651–3663 (in Chinese).
史克旭,张瑞青,肖勇. 2020. 利用虚拟地震测深法约束青藏高原东北缘及周边地区地壳厚度[J]. 地球物理学报,63(12):4369–4381. doi: 10.6038/cjg2020N0128 Shi K X,Zhang R Q,Xiao Y. 2020. Constraints on the crustal thickness in the northeastern Tibetan Plateau and adjacent regions from virtual deep seismic sounding[J]. Chinese Journal of Geophysics,63(12):4369–4381 (in Chinese).
宋婷,沈旭章,梅秀苹,焦煜媛,李敏娟,苏小芸,季婉婧. 2022. 利用接收函数频率特征研究青藏高原东北缘地区的莫霍面性质[J]. 地震地质,44(5):1290–1312. doi: 10.3969/j.issn.0253-4967.2022.05.013 Song T,Shen X Z,Mei X P,Jiao Y Y,Li M J,Su X Y,Ji W J. 2022. Constraining Moho characteristics in the north-eastern margin of Tibet Plateau with frequency-dependence of receiver function[J]. Seismology and Geology,44(5):1290–1312 (in Chinese).
王琼,高原. 2012. 噪声层析成像在壳幔结构研究中的现状与展望[J]. 地震,32(1):70–81. doi: 10.3969/j.issn.1000-3274.2012.01.007 Wang Q,Gao Y. 2012. Present state and prospect of ambient noise tomography in the study of crust mantle structure[J]. Earthquake,32(1):70–81 (in Chinese).
王琼,高原. 2018. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报,61(7):2760–2775. doi: 10.6038/cjg2018L0509 Wang Q,Gao Y. 2018. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of the Tibetan Plateau derived from seismic ambient noise[J]. Chinese Journal of Geophysics,61(7):2760–2775 (in Chinese).
王琼,高原,石玉涛,吴晶. 2013. 青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据[J]. 地球物理学报,56(3):892–905. doi: 10.6038/cjg20130318 Wang Q,Gao Y,Shi Y T,Wu J. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet Plateau:Evidence from shear wave splitting of SKS,PKS and SKKS[J]. Chinese Journal of Geophysics,56(3):892–905 (in Chinese).
王伟涛,张培震,郑德文,庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘,21(4):266–274. Wang W T,Zhang P Z,Zheng D W,Pang J Z. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers,21(4):266–274 (in Chinese).
吴庆举,田小波,张乃铃,李卫平,曾融生. 2003. 计算台站接收函数的最大熵谱反褶积方法[J]. 地震学报,25(4):382–389. doi: 10.3321/j.issn:0253-3782.2003.04.005 Wu Q J,Tian X B,Zhang N L,Li W P,Zeng R S. 2003. Receiver function estimated by maximum entropy deconvolution[J]. Acta Seismologica Sinica,25(4):382–389 (in Chinese).
吴逸影,邓斯壮,钮凤林,贺巍,吴汉宁. 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式[J]. 地球物理学报,64(5):1608–1619. Wu Y Y,Deng S Z,Niu F L,He W,Wu H N. 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting[J]. Chinese Journal of Geophysics,64(5):1608–1619 (in Chinese).
谢振新,吴庆举,张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义[J]. 地球物理学报,60(6):2315–2325. doi: 10.6038/cjg20170623 Xie Z X,Wu Q J,Zhang R Q. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications[J]. Chinese Journal of Geophysics,60(6):2315–2325 (in Chinese).
许英才,高原,石玉涛,王琼,陈安国. 2019. 鄂尔多斯块体西缘地壳介质各向异性:从银川地堑到海原断裂带[J]. 地球物理学报,62(11):4239–4258. doi: 10.6038/cjg2019M0309 Xu Y C,Gao Y,Shi Y T,Wang Q,Chen A G. 2019. Crustal seismic anisotropy in the west margin of the Ordos block:From the Yinchuan graben to the Haiyuan fault zone[J]. Chinese Journal of Geophysics,62(11):4239–4258 (in Chinese).
许志琴,杨经绥,嵇少丞,张泽明,李海兵,刘福来,张建新,吴才来,李忠海,梁凤华. 2010. 中国大陆构造及动力学若干问题的认识[J]. 地质学报,84(1):1–29. Xu Z Q,Yang J S,Ji S C,Zhang Z M,Li H B,Liu F L,Zhang J X,Wu C L,Li Z H,Liang F H. 2010. On the continental tectonics and dynamics of China[J]. Acta Geologica Sinica,84(1):1–29 (in Chinese). doi: 10.1111/j.1755-6724.2010.00164.x
许忠淮,汪素云,裴顺平. 2003. 青藏高原东北缘地区Pn波速度的横向变化[J]. 地震学报,25(1):24–31. doi: 10.3321/j.issn:0253-3782.2003.01.003 Xu Z H,Wang S Y,Pei S P. 2003. Lateral variation of Pn velocity beneath northeastern marginal region of Qingzang Plateau[J]. Acta Seismologica Sinica,25(1):24–31 (in Chinese).
杨少博,王炳文,高级,张海江. 2022. 东祁连山北缘断裂带基于深度学习的密集台阵地震事件快速检测与定位研究[J]. 震灾防御技术,17(1):38–45. doi: 10.11899/zzfy20220104 Yang S B,Wang B W,Gao J,Zhang H J. 2022. Rapid earthquake detection and location for dense array data in the fault zone of the northern margin of the east Qilian Mountains based on deep learning[J]. Technology for Earthquake Disaster Prevention,17(1):38–45 (in Chinese).
张怀惠,张志诚,李建锋,唐建洲. 2021. 青藏高原东北缘中新生代构造演化:来自磷灰石和锆石裂变径迹的证据[J]. 地球物理学报,64(6):2017–2034. doi: 10.6038/cjg2021O0297 Zhang H H,Zhang Z C,Li J F,Tang J Z. 2021. Meso-Cenozoic tectonic evolution in the northeastern margin of the Tibetan Plateau:Evidence from apatite and zircon fission tracks[J]. Chinese Journal of Geophysics,64(6):2017–2034 (in Chinese).
张辉,高原,石玉涛,刘小凤,王熠熙. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报,55(1):95–104. Zhang H,Gao Y,Shi Y T,Liu X F,Wang Y X. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics,55(1):95–104 (in Chinese).
张培震,闵伟,邓起东,毛凤英. 2003. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学:地球科学,33(8):705–713. Zhang P Z,Min W,Deng Q D. Mao F Y. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China fault zone[J]. Science in China:Earth Sciences,48(3):364–375. doi: 10.1360/02yd0464
张艺,高原. 2017. 中国地震科学台阵两期观测资料近场记录揭示的南北地震带地壳剪切波分裂特征[J]. 地球物理学报,60(6):2181–2199. Zhang Y,Gao Y. 2017. The characteristics of crustal shear-wave splitting in North-South seismic zone revealed by near field recordings of two observation periods of ChinArray[J]. Chinese Journal of Geophysics,60(6):2181–2199 (in Chinese).
郑斯华,高原. 1994. 中国大陆岩石层的方位各向异性[J]. 地震学报,16(2):131–140. Zheng S H,Gao Y. 1994. The orientation anisotropy of rock stratum in Chinese mainland[J]. Acta Seismologica Sinica,16(2):131–140 (in Chinese).
朱琳,戴勇,石富强,邵辉成. 2022. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报,44(2):223–236. doi: 10.11939/jass.20220012 Zhu L,Dai Y,Shi F Q,Shao H C. 2022. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica,44(2):223–236 (in Chinese).
Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303
An M J,Shi Y L. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Inter,159(3/4):257–266.
Bao X W,Song X D,Eaton D W,Xu Y X,Chen H L. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophys Res Lett,47(3):e2019GL085721. doi: 10.1029/2019GL085721
Ben Ismaı̈l W,Mainprice D. 1998. An olivine fabric database:An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics,296(1/2):145–157.
Bostock M G. 1998. Mantle stratigraphy and evolution of the Slave Province[J]. J Geophys Res:Solid Earth,103(B9):21183–21200. doi: 10.1029/98JB01069
Chang L J,Ding Z F,Wang C Y,Flesch L M. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear-wave splitting data[J]. Tectonophysics,699:93–101. doi: 10.1016/j.tecto.2017.01.025
Chen Y,Zhang Z J,Sun C Q,Badal J. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Res,24(3/4):946–957.
Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Crampin S. 1978. Seismic-wave propagation through a cracked solid:Polarization as a possible dilatancy diagnostic[J]. Geophys J Int,53(3):467–496. doi: 10.1111/j.1365-246X.1978.tb03754.x
Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion,3(4):343–391. doi: 10.1016/0165-2125(81)90026-3
Crampin S,Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth[J]. Wave Motion,41(1):59–77. doi: 10.1016/j.wavemoti.2004.05.006
Deng Y F,Tesauro M. 2016. Lithospheric strength variations in Mainland China:Tectonic implications[J]. Tectonics,35(10):2313–2333. doi: 10.1002/2016TC004272
Deng Y F,Li J T,Song X D,Zhu L P. 2018. Joint inversion for lithospheric structures:Implications for the growth and deformation in northeastern Tibetan Plateau[J]. Geophys Res Lett,45(9):3951–3958. doi: 10.1029/2018GL077486
Dewey J F,Shackleton R M,Chang C F,Sun Y Y. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philos Trans Roy Soc A:Math,Phys Eng Sci,327(1594):379–413.
Dong H,Wei W B,Ye G F,Jin S,Jones A G,Jing J N,Zhang L T,Xie C L,Zhang F,Wang H. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area:Evidence of regional lithospheric modification[J]. Geochem Geophys Geosyst,15(6):2414–2425. doi: 10.1002/2014GC005270
England P,Houseman G. 1986. Finite strain calculations of continental deformation,2. Comparison with the India-Asia collision zone[J]. J Geophys Res:Solid Earth,91(B3):3651–3676. doi: 10.1029/JB091iB03p03651
Gan W J,Zhang P Z,Shen Z K,Niu Z J,Wang M,Wan Y G,Zhou D M,Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res:Solid Earth,112(B8):B08416.
Huang Z C,Tilmann F,Xu M J,Wang L S,Ding Z F,Mi N,Yu D Y,Li H. 2017. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth Planet Sci Lett,478:66–75. doi: 10.1016/j.jpgl.2017.08.030
Kaviani A,Rümpker G,Weber M,Asch G. 2011. Short-scale variations of shear-wave splitting across the Dead sea basin:Evidence for the effects of sedimentary fill[J]. Geophys Res Lett,38(4):L04308.
Kong F S,Wu J,Liu K H,Gao S S. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth Planet Sci Lett,442:72–79. doi: 10.1016/j.jpgl.2016.03.003
Kong F S,Wu J,Liu L,Liu K H,Song J G,Li J B,Gao S S. 2018. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses[J]. Tectonophysics,747-748:68–78. doi: 10.1016/j.tecto.2018.09.013
Li S L,Guo Z,Yu Y,Wu X Y,Chen Y J. 2022. Imaging the northeastern crustal boundary of the Tibetan Plateau with radial anisotropy[J]. Geophys Res Lett,49(23):e2022GL100672. doi: 10.1029/2022GL100672
Li S Y,Gao Y,Jin H L. 2023a. Upper crustal deformation characteristics in the northeastern Tibetan Plateau and its adjacent areas revealed by GNSS and anisotropy data[J]. Earthquake Science,36(4):297–308. doi: 10.1016/j.eqs.2023.05.003
Li Y,Chen Z,Sun A H,Liu Z F,Caracausi A,Martinelli G,Lu C. 2023b. Geochemical features and seismic imaging of the tectonic zone between the Tibetan Plateau and Ordos Block,central northern China[J]. Chem Geol,622:121386. doi: 10.1016/j.chemgeo.2023.121386
Li Y C,Shan X J,Qu C Y,Zhang Y F,Song X G,Jiang Y,Zhang G H,Nocquet J M,Gong W Y,Gan W J,Wang C S. 2017. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault,northeastern Tibetan Plateau[J]. J Asian Earth Sci,150:87–97. doi: 10.1016/j.jseaes.2017.10.010
Liu J,Wu J P,Wang W L,Fang L H,Chang K. 2020. Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations[J]. Tectonophysics,785:228430. doi: 10.1016/j.tecto.2020.228430
McNamara D E,Owens T J. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases[J]. J Geophys Res:Solid Earth,98(B7):12003–12017. doi: 10.1029/93JB00711
Meissner R,Mooney W D,Artemieva I. 2002. Seismic anisotropy and mantle creep in young orogens[J]. Geophys J Int,149(1):1–14. doi: 10.1046/j.1365-246X.2002.01628.x
Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in Eastern Tibet[J]. Science,276(5313):788–790. doi: 10.1126/science.276.5313.788
Royden L H,Burchfiel B C,van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science,321(5892):1054–1058. doi: 10.1126/science.1155371
Rümpker G,Silver P G. 1998. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy[J]. Geophys J Int,135(3):790–800. doi: 10.1046/j.1365-246X.1998.00660.x
Rümpker G,Kaviani A,Latifi K. 2014. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping[J]. Geophys J Int,199(1):146–163. doi: 10.1093/gji/ggu154
Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?[J]. Rev Geophys,37(1):65–106. doi: 10.1029/98RG02075
Shapiro N M,Ritzwoller M H,Molnar P,Levin V. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy[J]. Science,305(5681):233–236. doi: 10.1126/science.1098276
Shen S Y,Gao Y. 2021. Research progress on layered seismic anisotropy:A review[J]. Earthquake Research Advances,1(1):100005. doi: 10.1016/j.eqrea.2021.100005
Shen X Z,Yuan X H,Ren J S. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau:Evidence for crustal channel flow[J]. Geochem,Geophys,Geosyst,16(12):4223–4236.
Shen X Z,Liu M,Gao Y,Wang W J,Shi Y T,An M J,Zhang Y S,Liu X Z. 2017. Lithospheric structure across the northeastern margin of the Tibetan Plateau:Implications for the plateau’s lateral growth[J]. Earth Planet Sci Lett,459:80–92. doi: 10.1016/j.jpgl.2016.11.027
Sherrington H F,Zandt G,Frederiksen A. 2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters[J]. J Geophys Res:Solid Earth,109(B2):B02312.
Shi Y T,Gao Y,Shen X Z,Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics,774:228274. doi: 10.1016/j.tecto.2019.228274
Shi Y T,Gao Y,Lu L Y. 2021. Receiver function structures beneath the Haiyuan fault on the northeastern margin of the Tibetan Plateau[J]. Earthquake Science,34(4):367–377. doi: 10.29382/eqs-2020-0055
Silver P G,Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. J Geophys Res:Solid Earth,96(B10):16429–16454. doi: 10.1029/91JB00899
Silver P G,Savage M K. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers[J]. Geophys J Int,119(3):949–963. doi: 10.1111/j.1365-246X.1994.tb04027.x
Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tian X B,Liu Z,Si S K,Zhang Z J. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics,634:198–207. doi: 10.1016/j.tecto.2014.07.001
Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774
Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
Wang W L,Cai G Y,Wu J P,Fang L H. 2023. The lithospheric S-wave velocity structure beneath the NE Tibetan Plateau and its surrounding craton basins[J]. Frontiers in Earth Science,10:1066265. doi: 10.3389/feart.2022.1066265
Xu X M,Niu F L,Ding Z F,Chen Q F. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering[J]. Earth Planet Sci Lett,497:204–216. doi: 10.1016/j.jpgl.2018.06.010
Ye Z,Li Q S,Gao R,Zhang H S,Shen X Z,Liu X Z,Gong C. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications[J]. Tectonophysics,671:1–8. doi: 10.1016/j.tecto.2016.01.011
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28:211–280. doi: 10.1146/annurev.earth.28.1.211
Zhang C,Guo Z,Yu Y,Yang T,Chen Y J. 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking[J]. Geophys Res Lett,49(6):e2021GL097680. doi: 10.1029/2021GL097680
Zhang H S,Teng J W,Tian X B,Zhang Z J,Gao R,Liu J Q. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements[J]. Geophys J Int,191(3):1285–1294.
Zhang S Q,Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature,375(6534):774–777. doi: 10.1038/375774a0
Zhao P P,Chen J H,Li Y,Liu Q Y,Chen Y F,Guo B,Yin X Z. 2021. Growth of the northeastern Tibetan Plateau driven by crustal channel flow:Evidence from high-resolution ambient noise imaging[J]. Geophys Res Lett,48(13):e2021GL093387. doi: 10.1029/2021GL093387
Zheng T,Gao S S,Ding Z F,Liu K H,Chang L J,Fan X P,Kong F S,Yu Y Q. 2021. Crustal azimuthal anisotropy and deformation beneath the northeastern Tibetan Plateau and adjacent areas:Insights from receiver function analysis[J]. Tectonophysics,816:229014. doi: 10.1016/j.tecto.2021.229014
Zhu R X,Yang J H,Wu F Y. 2012. Timing of destruction of the North China Craton[J]. Lithos,149:51–60. doi: 10.1016/j.lithos.2012.05.013