Research progress on the numerical simulation of seismic wave motion based on spectral element method
-
摘要:
基于谱元法的地震波动数值模拟已被广泛用于地震震源破裂、大规模地震波传播、区域复杂场地及工程结构(群)地震反应、地震层析成像等重要问题的研究及应用当中,是目前地震工程学、地震学和地球物理学等地震科技领域共同关注的前沿热点技术。早期发展的切比雪夫谱元法(CSEM)和勒让德谱元法(LSEM)更接近谱方法的域分解思路,其形式相对复杂且计算效率较低。目前广泛使用的是一种形式简洁的LSEM,其实施步骤和主要公式已经与有限元法完全一致,仅通过内置的高斯-洛巴托-勒让德(GLL)高精度数值积分保留着与谱方法之间的联系。谱元法的巨大成功不仅源于算法本身的高精度、规整性和灵活性,更是得益于以SPECFEM2D/3D,SPECFEM_GLOBE,SPEED等为代表的开源软件集成了复杂模拟所需的各项关键技术,包括三维复杂介质建模、震源模型数值实现、平面地震波输入、大规模并行计算、全球地震波模拟、伴随方法以及多尺度或不连续方法等。本文全面介绍了CSEM、LSEM、间断伽辽金谱元法(DG-SEM或DGM)、三角形单元谱元法、谱元法精度和稳定性方面的研究或应用进展,并详细阐述了谱元法在我国的发展历程以及我国学者关于谱元法研究与工程应用的学术贡献。谱元法可归属于有限元法范畴,其高阶单元具有优良的精度和稳定性,并能从理论上严格地导出集中质量矩阵。在地震波动领域各种形式的有限差分法和有限元法中,地震学和地球物理学的速度结构反演或震源参数反演对地震波到时、波形等细节比较敏感,通常需采用谱元法或高阶交错网格有限差分法等高精度方法。而地震工程领域主要关注不同工程结构、非线性岩土介质或者流体-固体多场耦合等情形下的力和变形,此时具有丰富单元库的有限元法常常更为有效。最后,考虑到二阶及以上谱单元的性能显著优于一阶有限单元,进一步研究不同地震工程问题的谱元解法具有重要意义,而且随着震源-路径-场地-结构(群)的地震灾害全过程模拟的日益发展,谱元法这种具有灵活单元阶次变化、宽频带模拟精度和高效并行能力的特殊高阶有限元法将会受到越来越多关注。
Abstract:The spectral element method (SEM)-based numerical simulation of seismic wave motion has been widely applied in the study of earthquake source rupture process, large-scale seismic wave propagation, seismic response of regional complex sites without/with engineering structures (systems), seismic tomography, and so forth. This technique is currently a frontier hotspot of common concern in the fields of earthquake science and technology including earthquake engineering, seismology, geophysics, etc. Spectral element method, which is sometimes also termed as spectral finite element method (SPECFEM), spectral element method, or hp-type element method, is a combination of spectral method and finite element method (FEM). Hence, it shares the advantages of both the two methods, i.e., the high accuracy and fast convergence of spectral method, and the regularity and flexibility of FEM.
In early times, the Chebyshev spectral element method (CSEM) and Legendre spectral element method (LSEM) originated from the domain decomposition of spectral methods, and therefore they inherit the complicated formulations of the latter, in which each of the interpolation basis functions is a linear combination of Chebyshev or Legendre orthogonal polynomials. Consequently, both the methods are as accurate as the spectral methods, but their applications are severely limited by the cumbersome and inefficient multi-layer nested computational structure that is resulted from those basis functions. Nowadays, the most frequently-used SEM is a concise form of LSEM developed by Komatitsch et al. In this method, the early-used complicated basis functions are simplified to the Lagrange shape functions that are commonly adopted in FEM, and those orthogonal polynomial-based analytical Gauss-Lobatto-Legendre (GLL) quadrature formulae are replaced by a simple numerical list of the GLL point coordinates and integration weights. Specifically, the non-equally distributed GLL points serve as the element nodes and the GLL high-precision numerical integration formula is applied to calculate the element mass, stiffness matrices, etc. This configuration makes the LSEM enjoy the same solution procedure and computational formulations as that of FEM, but avoid the significant defects of the classical high-order finite element method, including the intrinsic numerical error of the high-order polynomial interpolation based on equally-spaced grid and the lower computational efficiency due to the high-order consistent mass matrix. In a word, this LSEM has actually become a high-performance lumped-mass high-order finite element method. In addition to the above methods, the family of non-conforming spectral element methods has also been broadly studied and successfully applied in many problems, making themselves an important branch of the SEM. By introducing the so-called Lagrange multiplier or interior penalty term as a glue to effectively connect spectral elements with quite different sizes, orders, shapes and so on, the non-conforming SEMs are more flexible and highly efficient in dealing with multi-scale or discontinuous problems, which appear frequently in large-scale or complicated seismic wave simulations.
The great success of SEM is not only due to the high accuracy, regularity and flexibility of the algorithm itself, but also attributed to those well-designed open-source SEM programs represented by SPECFEM2D/3D, SPECFEM_GLOBE, SPEED, etc. These programs have incorporated a variety of key technologies that are required in complex simulations, such as three-dimensional complex models, different seismic source models or plane wave input method, large-scale parallel computing, global simulation, adjoint method, multi-scale or discontinuous modeling and so on. In the field of earthquake engineering, the SEM has been applied to perform physics-based deterministic numerical simulation of strong ground motion and to realize the “end-to-end” seismic response analysis that is from the source rupture to engineering structures or even engineering systems. The massive simulation data is a good supplement to the insufficient strong ground motion records, and the modeling of seismic wave propagation in actual geolocial structures can compensate for the weak physical background of traditional ground motion prediction equations (GMPEs) or stochastic methods. These simulations, which have reached a certain level of reliability, bring new vitality to earthquake engineering research and application. In the fields of seismology or geophysics, the highly-efficient forward simulation of SEM has been combined with the adjoint method, enabling a simultaneous modeling of the seismic wave fields generated from a number of observation stations, thus the number of forward simulations required for an inversion process can be reduced to an acceptable level. In this way, the advanced full wave inversion (FWI) or seismic tomography technique has been practically used to investigate seismic source mechanisms and to reveal regional or even global velocity structures. Finally, the development of SEM in China is elaborated. The SEM was introduced into China around the year of 2000, and the related studies mainly focused on the basic performance of the method and some preliminary applications until early 2010s. In the past decade, the Chinese researchers have been conducting more and more innovative work on the SEM algorithms and various engineering applications, and some of the work has reached the research forefront of the world.
-
引言
1935年Richter(1935,1958)在公布美国加州第一份地震目录时引入了地方性震级标度ML,1959年李善邦(1981)将Richter的原始震级公式引入我国,其表达式为
(1) 式中:Aμ为地动位移,单位为μm,Aμ=(AN+AE)/2,AN和AE分别为N-S分向和E-W分向S波(或Lg波)位移的最大振幅;R(Δ)为量规函数; Δ为震中距.李善邦(1981)结合我国当时常用的62型短周期地震仪器和基式中长周期地震仪器的特性,得到了R1(Δ)和R2(Δ)两个量规函数,其中R1(Δ)适用于短周期地震仪,R2(Δ)适用于中长周期地震仪(刘瑞丰等,2015).根据《地震及前兆数字观测技术规范》中地震观测的要求,目前我国地震台网在计算地方性震级时使用的是R1(Δ)(中国地震局,2001).R1(Δ)和R2(Δ)都是根据华北地区地震波的衰减特性得到的,与全国其它地区有一定差异.量规函数描述了地震波随震中距衰减的特性,与地壳构造紧密相关(陈培善,秦嘉政,1983;薛志照,1992),因此,对区域性差异较大的地区,采用同一个量规函数显然是不合理的(严尊国等,1992,1995).如果量规函数不准确,可能使各区测定的相同震级值的地震并不等同(陈培善,秦嘉政,1983),故有必要建立我国分区地方性震级量规函数.
新中国成立后,我国先后建设了昆明、成都、兰州、南京、佘山、拉萨、广州和北京等一些国家地震台站;1966年以后,我国又陆续建设了北京、上海、沈阳、兰州、昆明和成都等6大区域地震台网以及西昌、呼和浩特、临汾、郑州、邯郸、太原、嘉祥、南京、汕头、大同、天津、唐山、银川和乌鲁木齐等小区域地震台网;到1978年,国家地震台站增至86个,全国区域地震台站增至435个;至2007年底,国家地震台网和31个省级地震台网正式运行的台站已达1007个.几十年来,国家地震台网和省级地震台网已经积累了大量的地震观测资料,为建立我国分区地方性震级量规函数的获取创造了有利的条件.
1. 资料收集
对于本项研究,地震观测数据的收集、整理是个较棘手的问题.2002年以前,我国省级地震台网一般使用模拟地震观测数据编辑地震观测报告,这些地震观测数据均保存在各省地震局.各省地震局数据管理的单位不同,数据格式也不同,特别是一些省地震局1990年以前的数据都是纸介质的地震观测报告,因此,我们组织全国31个省、自治区和直辖市地震局地震监测中心的业务人员利用一年多时间对1973年以来不同数据格式、不同存储介质的历史震相数据,按统一的数据格式进行录入和整理,共收集整理了全国31个省级地震台网1973—2002年1308个台站的震相数据,ML0.1以上的有效地震共计10万5282次,地震资料37万5744组.全国地震观测数据整合统计信息列于表 1,震中与台站分布如图 1所示.
表 1 1973—2002年全国各省地震观测数据整合统计表Table 1. The statistics of the earthquake observation data in all the provinces of China from 1973 to 2002台网名称 地震次数 台站个数 资料组数 观测时段 安徽 3208 51 8268 1976—2002 福建 7534 55 47851 1989—2002 甘肃 4650 63 13537 1990—2000 广东 3592 50 3944 1990—2000 广西 3043 27 7492 1980—2002 海南 452 17 2256 2000—2002 北京、天津、河北 4614 163 8872 1989—2002 河南 2542 31 6406 1981—2002 黑龙江 1071 36 2531 1973—2002 湖北 2065 53 10508 1980—2002 湖南 350 18 1132 1987—2002 吉林 252 15 2561 1990—2001 江苏、上海 3831 33 13224 1982—2002 江西 400 7 748 1991—2002 辽宁 2037 50 11952 1980—2002 内蒙古东部 2280 23 10243 1990—2002 内蒙古中西部 2697 26 12289 1990—2002 宁夏 2858 17 11785 1990—2002 青海 4691 12 16385 1990—2002 山东 3936 52 24690 1975—2002 山西 7884 63 21402 1991—2000 陕西 1244 21 22202 1990—2002 重庆、四川 15300 92 37462 1990—2002 西藏 2363 26 2738 2001—2002 新疆 7238 54 33926 1990—2000 云南、贵州 14900 235 40684 1990—1999 浙江 250 18 656 1988—2002 注:2000年以前海南的地震观测数据属广东台网. 2. 计算方法
震级残差统计分析方法是陈培善和秦嘉政(1983)根据Christoskov等(1978)提出的方法加以改进得到的,首先用单台地震的震级值减去该地震的平均值得到单台地震的震级偏差,然后再绘出震级偏差随震中距的变化曲线,进而得出新的量规函数.
设Ne为地震次数,Ns为记录地震的台站个数,根据式(1),求得第i次地震第j个台站的单台震级MLij(陈培善,秦嘉政,1983;陈运泰,刘瑞丰,2004)为
(2) 对第i次地震,其对所有台站的震级平均值MLij为
(3) 将式(2)减去式(3),得到单台震级的偏差值ΔMLij为
(4) 根据单台震级的偏差值可得到震级偏差ΔMLij随震中距Δ的变化曲线,如果量规函数正确,则震级偏差随震中距的变化曲线就应该在0值附近摆动.曲线偏差值的负值为量规函数的校正值,将校正值加到量规函数R1(Δ)上,即可得到新的量规函数(陈培善,秦嘉政,1983;陈继锋等,2013).
按照上述方法,依次计算每个省的震级偏差,绘制各省的震级偏差随震中距的变化曲线和量规函数曲线;在此基础上,将相邻省的震级偏差随震中距的变化曲线以及量规函数曲线进行对比,并依据我国地质构造情况和地方性震级的精度允许范围,将区别不大的省份合并为一个区域.鉴于内蒙古自治区占地面积较大,将其分为东部和中西部地区,然而经对比发现,这两个地区的差别并不大,可以合并.这样,最终将全国31个省份划分为5个大区,分别为东北与华北(黑龙江、吉林、辽宁、内蒙古、北京、天津、河北、山西、山东、河南、宁夏和陕西)、华南(福建、广东、广西、海南、江苏、上海、浙江、江西、湖南、湖北和安徽)、西南(云南、四川、重庆和贵州)、青藏(青海、西藏和甘肃)和新疆.从实用性和方便性出发,5大分区所对应的新的地方性震级量规函数依次表示为R11(Δ),R12(Δ),R13(Δ),R14(Δ)和R15(Δ).其中,东北与华北地区共497个台站,3万1415次地震,13万5033组震级资料;华南地区共329个台站,2万4725次地震,9万6079组震级资料;西南地区共327个台站,3万200次地震,7万8146组震级资料;青藏地区共101个台站,1万1704次地震,3万2660组震级资料;新疆地区共54个台站,7238次地震,3万3926组震级资料.
3. 计算结果及分析
选取各分区地震资料比较集中的范围进行计算,将得到的单台震级的偏差值进行曲线拟合,并按10 km的震中距间距进行平滑,震级偏差随震中距的变化曲线如图 2所示.可以看出:对于东北与华北、青藏地区,当震中距处于0—100 km时,偏差小于0,处于300—550 km时,偏差大于0(图 2a,d);对于华南地区,当震中距处于450—550 km时,偏差大于0,曲线波动较大,其它则在0值附近上下波动(图 2b);对于西南地区,当震中距处于0—50 km时,偏差小于0,处于200—300 km时,偏差大于0(图 2c);对于新疆地区,当震中距处于0—230 km时,偏差小于0,处于300—450 km时,偏差大于0(图 2e).
图 2 单台震级偏差ΔMLij随震中距Δ的变化图(a)东北与华北地区;(b)华南地区;(c)西南地区;(d)青藏地区;(e)新疆地区 蓝色圆点为单台震级偏差值,红线为震级偏差平滑曲线,绿线为零线Figure 2. Variation of magnitude deviation ΔMLij of single station with epicentral distance Δ(a)Northeast-North China;(b)South China;(c)Southwest China;(d)Qinghai-Xizang region;(e)Xinjiang region The blue dots represent the local magnitude deviation of single station,the red curve represents smooth curve of local magnitude deviation,and the green curve represents zero curve图 3给出了各分区新量规函数与量规函数R1(Δ)的对比图,新的量规函数与震级偏差随震中距的变化曲线是相对应的.可以看出: 对于东北与华北、青藏地区,当震中距Δ处于0—100 km时,R11(Δ)>R1(Δ),R14(Δ)>R1(Δ),处于300—550 km时,R11(Δ)<R1(Δ),R14(Δ)<R1(Δ)(图 3a,d);对于华南地区,R1(Δ)与R12(Δ)两条曲线重合度最高,当Δ处于450—550 km时,R12(Δ)<R1(Δ)(图 3b);对于西南地区,当Δ处于0—50 km时,R13(Δ)>R1(Δ),处于200—300 km时,R13(Δ)<R1(Δ)(图 3c);对于新疆地区,当Δ处于0—230 km时,R15(Δ)>R1(Δ),处于300—450 km时,R15(Δ)<R1(Δ)(图 3e).
经计算所得的新量规函数列于表 2.在计算过程中,每个分区地震资料集中的震中距范围不一致,东北与华北、华南和青藏等3个地区集中在0—600 km,西南地区集中在0—300 km,新疆地区集中在0—550 km.在这些范围之外,因地震观测数据较少,计算得出的结果不可靠;但考虑到新量规函数的实用性以及地方性震级的定义,根据量规函数R1(Δ)和观测资料拟合曲线,将新量规函数的震中距范围扩展至0—1000 km.
表 2 新量规函数表Table 2. New calibration functionsΔ/km R11 R12 R13 R14 R15 0—5 1.9 1.8 2.0 2.0 2.0 10 2.0 1.9 2.0 2.1 2.1 15 2.2 2.1 2.1 2.2 2.2 20 2.3 2.2 2.2 2.3 2.3 25 2.5 2.4 2.4 2.5 2.5 30 2.7 2.6 2.6 2.6 2.6 35 2.9 2.8 2.7 2.8 2.8 40 2.9 2.9 2.8 2.9 2.8 45 3.0 3.0 2.9 3.0 2.9 50 3.1 3.1 3.0 3.1 3.0 55 3.2 3.2 3.1 3.2 3.1 60 3.3 3.3 3.2 3.2 3.2 70 3.3 3.3 3.2 3.2 3.2 75 3.4 3.4 3.3 3.3 3.3 85 3.3 3.3 3.3 3.4 3.3 90 3.4 3.4 3.4 3.5 3.4 100 3.4 3.4 3.4 3.5 3.4 110 3.5 3.5 3.5 3.6 3.6 120 3.5 3.5 3.5 3.6 3.6 130 3.6 3.6 3.6 3.7 3.6 140 3.6 3.6 3.6 3.7 3.6 150 3.7 3.7 3.7 3.8 3.7 160 3.7 3.7 3.7 3.7 3.7 170 3.8 3.8 3.8 3.8 3.8 180 3.8 3.7 3.8 3.8 3.8 190 3.9 3.8 3.9 3.9 3.9 200 3.9 3.9 3.9 3.9 3.9 210 3.9 4.0 3.9 4.0 3.9 220 3.9 4.0 3.9 4.0 4.0 230 4.0 4.1 4.0 4.1 4.0 240 4.1 4.1 4.0 4.1 4.0 250 4.1 4.2 4.0 4.1 4.1 260 4.1 4.2 4.1 4.1 4.1 270 4.2 4.2 4.2 4.2 4.2 280 4.2 4.3 4.1 4.1 4.1 290 4.3 4.4 4.2 4.2 4.2 300 4.2 4.4 4.3 4.2 4.3 310 4.3 4.5 4.4 4.3 4.4 320 4.3 4.4 4.4 4.3 4.4 330 4.4 4.5 4.5 4.4 4.4 340 4.4 4.5 4.5 4.4 4.4 350 4.4 4.5 4.5 4.5 4.5 360 4.5 4.6 4.5 4.5 4.5 370 4.5 4.6 4.5 4.4 4.5 380 4.5 4.6 4.6 4.5 4.5 390 4.5 4.6 4.6 4.5 4.5 400 4.6 4.7 4.7 4.5 4.6 420 4.6 4.7 4.7 4.6 4.7 430 4.6 4.7 4.8 4.7 4.7 440 4.6 4.7 4.8 4.75 4.8 450 4.6 4.7 4.8 4.75 4.8 460 4.6 4.7 4.8 4.75 4.8 470 4.7 4.7 4.8 4.8 4.8 500 4.8 4.7 4.8 4.8 4.8 510 4.8 4.8 4.9 4.9 4.9 530 4.8 4.8 4.9 4.9 4.9 540 4.8 4.8 4.9 4.9 4.9 550 4.8 4.8 4.9 4.9 4.9 560 4.9 4.9 4.9 4.9 4.9 570 4.8 4.9 4.9 4.9 4.9 580 4.9 4.9 4.9 4.9 4.9 600 4.9 4.9 4.9 4.9 4.9 610 5.0 5.0 5.0 5.0 5.0 620 5.0 5.0 5.0 5.0 5.0 650 5.1 5.1 5.1 5.1 5.1 700 5.2 5.2 5.2 5.2 5.2 750 5.2 5.2 5.2 5.2 5.2 800 5.2 5.2 5.2 5.2 5.2 850 5.2 5.2 5.2 5.2 5.2 900 5.3 5.3 5.3 5.3 5.3 1000 5.3 5.3 5.3 5.3 5.3 4. 量规函数的检验
为了检验新的地方性震级量规函数的精度和可用性,采用原量规函数R1(Δ)和新的分区量规函数R11(Δ),R12(Δ),R13(Δ),R14(Δ)和R15(Δ)分别对1973—2002年ML≥0.1地震的地方性震级进行重新测定,并对单台震级偏差和标准误差进行对比.
4.1 单台震级偏差统计对比
利用5大分区的量规函数与量规函数R1(Δ)计算所得单台震级偏差的统计对比如图 4所示.可以看出:东北与华北、华南、青藏和新疆等4个地区使用新量规函数计算所得的单台震级偏差明显较R1(Δ)计算所得的单台震级偏差更加集中,且向ΔMLij=0靠拢;而西南地区的对比结果不明显.对西南地区进行数据统计,用R1(Δ)计算所得的单台震级偏差绝对值小于0.2的占65.3%,处于0.3—0.5的占28.6%,处于0.6—0.8的占5.2%,大于0.9的占0.8%;用R13(Δ)计算所得的单台震级偏差绝对值小于0.2的占66.2%,处于0.3—0.5的占28.4%,处于0.6—0.8的占4.8%,大于0.9的占0.5%,因此使用R13(Δ)比R1(Δ)计算所得的单台震级偏差更加集中.
图 4 5大分区的新量规函数与量规函数R1(Δ)计算所得的单台震级偏差统计对比图(a)东北与华北地区;(b)华南地区;(c)西南地区;(d)青藏地区;(e)新疆地区Figure 4. The statistical comparisons of local magnitude deviation of single station by new calibration functions with those by R1(Δ)(a)Northeast-North China;(b)South China;(c)Southwest China;(d)Qinghai-Xizang region;(e)Xinjiang region总的看来,使用新量规函数R11(Δ),R12(Δ),R13(Δ),R14(Δ)和R15(Δ)较量规函数R1(Δ)得到的单台震级偏差值更加集中,这说明使用新量规函数会减小单台震级偏差.
4.2 标准误差对比
标准误差是评判地方性震级优劣程度的一个依据(陈培善,秦嘉政,1983).对第i次地震,其对所有台站震级的标准误差为
(5) 各区域所有地震对应的标准误差为
(6) 首先,用R1(Δ)计算本文所收集的所有地震的单台震级值,据式(5)和(6)得出各省的标准误差,进而得出各分区的标准误差S1;然后,用表 2中的新量规函数计算本文所收集的所有地震的单台震级值,进而得出各分区的标准误差S2,结果列于表 3.可以看出,两个标准误差的值为0.22—0.29,且S2<S1,表明新量规函数计算得到的震级优于R1(Δ)计算得到的震级,故使用新的量规函数能够提高地方性震级的测定精度.
表 3 两种量规函数计算所得的震级标准误差Table 3. The magnitude standard deviations calculated by two kinds of calibration functions区域 S1 S2 东北与华北地区 0.25 0.24 华南地区 0.24 0.22 西南地区 0.26 0.25 青藏地区 0.26 0.25 新疆地区 0.29 0.28 5. 讨论与结论
本文选用1973—2002年全国31个省级地震台网的地震观测资料,根据震级残差分析统计方法,依次绘出各省的震级偏差随震中距的变化曲线和量规函数曲线;经相邻省之间进行相互对比,将全国分为东北与华北、华南、西南、青藏和新疆等5大分区,对应的量规函数依次记为R11(Δ),R12(Δ),R13(Δ),R14(Δ)和R15(Δ).从这5个新量规函数与量规函数R1(Δ)的对比可以看出,新旧量规函数的变化在0.1—0.2之间.
由于省级地震台网的观测资料主要集中在震中距Δ≤600 km的范围内,因此震中距Δ≤600 km的新量规函数较旧量规函数有一定变化,而600 km<Δ≤1000 km的量规函数并没有变化.通过实际测定地方性震级表明,使用新量规函数较R1(Δ)计算所得的单台震级偏差更加集中,并向ΔMLij=0靠拢;而且使用新量规函数较R1(Δ)计算所得的地方性震级的标准误差有一定减小,这说明使用新的量规函数能够提高地方性震级的测定精度.
31个省级地震台网中心为本研究整理了1973年以来的地震观测资料,作者在此向所有参与资料整理的科技人员表示衷心的感谢.
-
图 1 标量波情形下1—10阶谱元法的网格频散曲线(引自De Basabe,Sen,2007)
Figure 1. Grid dispersion curves of 1st- to 10th-order spectral elements in acoustic case (from De Basabe,Sen,2007)
1 高斯-洛巴托-勒让德高精度数值积分的节点和权系数
1 The nodes and weights of Gauss-Lobatto-Legendre high-precision numerical integration
GLL节点数 积分节点 积分权系数 2 ±1 1 3 0 1.333 333 333 333 333 3 ±1 0.333 333 333 333 333 3 4 ±0.447 213 595 499 957 9 0.833 333 333 333 333 4 ±1 0.166 666 666 666 666 7 5 0 0.711 111 111 111 111 1 ±0.654 653 670 707 977 2 0.544 444 444 444 444 5 ±1 0.100 000 000 000 000 0 6 ±0.285 231 516 480 645 1 0.554 858 377 035 486 2 ±0.765 055 323 929 464 7 0.378 474 956 297 847 0 ±1 0.066 666 666 666 666 7 7 0 0.487 619 047 619 047 6 ±0.468 848 793 470 714 2 0.431 745 381 209 862 7 ±0.830 223 896 278 567 0 0.276 826 047 361 565 9 ±1 0.047 619 047 619 047 6 8 ±0.209 299 217 902 478 9 0.412 458 794 658 703 8 ±0.591 700 181 433 142 3 0.341 122 692 483 504 4 ±0.871 740 148 509 606 6 0.210 704 227 143 506 1 ±1 0.035 714 285 714 285 7 9 0 0.371 519 274 376 417 2 ±0.363 117 463 826 178 2 0.346 428 510 973 046 3 ±0.677 186 279 510 737 7 0.274 538 712 500 161 7 ±0.899 757 995 411 460 2 0.165 495 361 560 805 5 ±1 0.027 777 777 777 777 8 10 ±0.165 278 957 666 387 0 0.327 539 761 183 897 6 ±0.477 924 949 810 444 5 0.292 042 683 679 683 8 ±0.738 773 865 105 505 0 0.224 889 342 063 126 4 ±0.919 533 908 166 458 9 0.133 305 990 851 070 1 ±1 0.022 222 222 222 222 2 注:积分节点和权系数的数目与GLL节点数相对应,数值相同、正负号不同的积分节点对应相同的积分权系数。 表 1 经典二阶中心差分格式用于谱元法时的稳定条件(De Basabe,Sen,2010)
Table 1 Stability criteria for classical second-order central-difference scheme applied in spectral element method (De Basabe,Sen,2010)
谱单元
阶次标量波情形
(SH波动)弹性波情形
(P-SV波动)谱单元
阶次标量波情形
(SH波动)弹性波情形
(P-SV波动)qEmax qdmax qEmax qdmax qEmax qdmax qEmax qdmax 1 0.709 0.709 0.816 0.816 5 0.071 4 0.608 0.082 3 0.700 2 0.288 0.577 0.333 0.666 6 0.051 6 0.608 0.059 5 0.700 3 0.164 0.593 0.189 0.684 7 0.039 0 0.608 0.044 9 0.700 4 0.104 0.604 0.120 0.697 8 0.030 4 0.607 0.035 0 0.699 -
巴振宁,赵靖轩,张郁山,梁建文,张玉洁. 2023. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟[J]. 地球物理学报,66(3):1125–1138. doi: 10.6038/cjg2022Q0181 Ba Z N,Zhao J X,Zhang Y S,Liang J W,Zhang Y J. 2023. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D[J]. Chinese Journal of Geophysics,66(3):1125–1138 (in Chinese).
巴振宁,赵靖轩,桑巧稚,梁建文. 2024. 基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟[J]. 岩土工程学报,46(7):1387–1397. doi: 10.11779/CJGE20230582 Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering,46(7):1387–1397 (in Chinese).
曹丹平,周建科,印兴耀. 2015. 三角网格有限元法波动模拟的数值频散及稳定性研究[J]. 地球物理学报,58(5):1717–1730. doi: 10.6038/cjg20150522 Cao D P,Zhou J K,Yin X Y. 2015. The study for numerical dispersion and stability of wave motion with triangle-based finite element algorithm[J]. Chinese Journal of Geophysics,58(5):1717–1730 (in Chinese).
车承轩. 2007. 谱元法模拟起伏自由表面地层中的弹性波传播[D]. 大庆:大庆石油学院:1−49. Che C X. 2007. The Spectral Element Method for Elastic Wave Simulation in a Formation With a Topographic Traction Free Surface[D]. Daqing:Daqing Petroleum Institute:1−49 (in Chinese).
陈少林,柯小飞,张洪翔. 2019a. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报,51(2):594–606. Chen S L,Ke X F,Zhang H X. 2019a. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,51(2):594–606 (in Chinese).
陈少林,程书林,柯小飞. 2019b. 海洋地震工程流固耦合问题统一计算框架:不规则界面情形[J]. 力学学报,51(5):1517–1529. Chen S L,Cheng S L,Ke X F. 2019b. A unified computational framework for fluid-solid coupling in marine earthquake engineering:Irregular interface case[J]. Chinese Journal of Theoretical and Applied Mechanics,51(5):1517–1529 (in Chinese).
戴志军,李小军,侯春林. 2015. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学,32(11):40–50. doi: 10.6052/j.issn.1000-4750.2014.03.0196 Dai Z J,Li X J,Hou C L. 2015. A combination usage of transmitting formula and spectral element method and the study of its stability[J]. Engineering Mechanics,32(11):40–50 (in Chinese).
董兴朋,杨顶辉. 2017. 球坐标系下谱元法三维地震波场模拟[J]. 地球物理学报,60(12):4671–4680. doi: 10.6038/cjg20171211 Dong X P,Yang D H. 2017. Numerical modeling of the 3-D seismic wavefield with the spectral element method in spherical coordinates[J]. Chinese Journal of Geophysics,60(12):4671–4680 (in Chinese).
贺春晖,王进廷,张楚汉. 2017. 基于震源-河谷波场数值模拟的坝址地震动参数确定方法[J]. 地球物理学报,60(2):585–592. doi: 10.6038/cjg20170213 He C H,Wang J T,Zhang C H. 2017. Determination of seismic parameters for dam sites by numerical simulation of the rupture-canyon wave field[J]. Chinese Journal of Geophysics,60(2):585–592 (in Chinese).
胡元鑫,刘新荣,罗建华,张梁,葛华. 2011. 汶川震区地震动三维地形效应的谱元法模拟[J]. 兰州大学学报(自然科学版),47(4):24–32. Hu Y X,Liu X R,Luo J H,Zhang L,Ge H. 2011. Simulation of three-dimensional topographic effects on seismic ground motion in Wenchuan earthquake region based upon the spectral-element method[J]. Journal of Lanzhou University (Natural Sciences),47(4):24–32 (in Chinese).
蒋涵,周红,高孟潭. 2015. 山脊线与坡度和峰值速度放大系数的相关性研究[J]. 地球物理学报,58(1):229–237. doi: 10.6038/cjg20150120 Jiang H,Zhou H,Gao M T. 2015. A study on the correlation of ridge line and slope with peak ground velocity amplification factor[J]. Chinese Journal of Geophysics,58(1):229–237 (in Chinese).
孔曦骏,邢浩洁,李鸿晶. 2022. 流固耦合地震波动问题的显式谱元模拟方法[J]. 力学学报,54(9):2513–2528. doi: 10.6052/0459-1879-22-068 Kong X J,Xing H J,Li H J. 2022. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation[J]. Chinese Journal of Theoretical and Applied Mechanics,54(9):2513–2528 (in Chinese).
李冰非,董兴朋,李小凡,司洁戈. 2019. 基于辛-谱元-FK混合方法的保结构远震波场模拟[J]. 地球物理学报,62(11):4339–4352. doi: 10.6038/cjg2019M0688 Li B F,Dong X P,Li X F,Si J G. 2019. Structure-preserving modeling of teleseismic wavefield using symplectic SEM-FK hybrid method[J]. Chinese Journal of Geophysics,62(11):4339–4352 (in Chinese).
李冰非,李小凡,李峰,龚飞. 2021. 基于辛-谱元方法的地球自由振荡保弥散衰减数值模拟[J]. 地球物理学报,64(11):4022–4030. doi: 10.6038/cjg2021P0019 Li B F,Li X F,Li F,Gong F. 2021. Dissipation-preserving simulation for Earth’s free oscillations based on symplectic spectral-element method[J]. Chinese Journal of Geophysics,64(11):4022–4030 (in Chinese).
李鸿晶,王竞雄. 2022. 时域谱元法的质量特性模型及其构建方法[J]. 地震学报,44(1):60–75. doi: 10.11939/jass.20210117 Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method[J]. Acta Seismologica Sinica,44(1):60–75 (in Chinese).
李昊臻,刘少林,董兴朋,蒙伟娟,杨顶辉. 2024. 基于逐元和轴对称谱元的混合方法及远震波场模拟[J]. 地球物理学报,67(5):1819–1831. doi: 10.6038/cjg2023R0180 Li H Z,Liu S L,Dong X P,Meng W J,Yang D H. 2024. Hybrid method based on element-by-element and axisymmetric spectral element method for teleseismic wavefield simulation[J]. Chinese Journal of Geophysics,67(5):1819–1831 (in Chinese).
李琳,刘韬,胡天跃. 2014. 三角谱元法及其在地震正演模拟中的应用[J]. 地球物理学报,57(4):1224–1234. doi: 10.6038/cjg20140419 Li L,Liu T,Hu T Y. 2014. Spectral element method with triangular mesh and its application in seismic modeling[J]. Chinese Journal of Geophysics,57(4):1224–1234 (in Chinese).
李孝波. 2014. 基于谱元法的玉田震害异常研究[D]. 哈尔滨:中国地震局工程力学研究所:1−136. Li X B. 2014. The Investigation of Seismic Damage Anomaly in Yutian Based on Spectral Element Method[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:1−136 (in Chinese).
林伟军,王秀明,张海澜. 2005. 用于弹性波方程模拟的基于逐元技术的谱元法[J]. 自然科学进展,15(9):1048–1057. doi: 10.3321/j.issn:1002-008X.2005.09.004 Lin W J,Wang X M,Zhang H L. 2005. An element-by-element spectral element method for the modeling of elastic wave equation[J]. Progress in Natural Science,15(9):1048–1057 (in Chinese).
林伟军. 2007. 弹性波传播模拟的Chebyshev谱元法[J]. 声学学报,32(6):525–533. doi: 10.3321/j.issn:0371-0025.2007.06.007 Lin W J. 2007. A Chebyshev spectral element method for elastic wave modeling[J]. Acta Acustica,32(6):525–533 (in Chinese).
林伟军,苏畅,Seriani G. 2018. 多网格谱元法及其在高性能计算中的应用[J]. 应用声学,37(1):42–52. doi: 10.11684/j.issn.1000-310X.2018.01.007 Lin W J,Su C,Seriani G. 2018. The poly-grid spectral element method and its implementation in high performance computing[J]. Journal of Applied Acoustics,37(1):42–52 (in Chinese).
刘晶波,廖振鹏. 1989. 离散网格中的弹性波动( Ⅱ ):几种有限元离散模型的对比分析[J]. 地震工程与工程振动,9(2):1–11. Liu J B,Liao Z P. 1989. Elastic wave motion in discrete grids ( Ⅱ ):Comparison of common finite element models[J]. Earthquake Engineering and Engineering Vibration,9(2):1–11 (in Chinese).
刘晶波,廖振鹏. 1990. 离散网格中的弹性波动( Ⅲ ):时域离散化对波传播规律的影响[J]. 地震工程与工程振动,10(2):1–10. Liu J B,Liao Z P. 1990. Elastic wave motion in discrete grids ( Ⅲ ):The effect of discretization in time domain on wave motion[J]. Earthquake Engineering and Engineering Vibration,10(2):1–10 (in Chinese).
刘启方,于彦彦,章旭斌. 2013. 施甸盆地三维地震动研究[J]. 地震工程与工程振动,33(4):54–60. Liu Q F,Yu Y Y,Zhang X B. 2013. Three-dimensional ground motion simulation for Shidian basin[J]. Journal of Earthquake Engineering and Engineering Vibration,33(4):54–60 (in Chinese).
刘少林,李小凡,刘有山,朱童,张美根. 2014. 三角网格有限元法声波与弹性波模拟频散分析[J]. 地球物理学报,57(8):2620–2630. doi: 10.6038/cjg20140821 Liu S L,Li X F,Liu Y S,Zhu T,Zhang M G. 2014. Dispersion analysis of triangle-based finite element method for acoustic and elastic wave simulations[J]. Chinese Journal of Geophysics,57(8):2620–2630 (in Chinese).
刘少林,杨顶辉,徐锡伟,李小凡,申文豪,刘有山. 2021. 模拟地震波传播的三维逐元并行谱元法[J]. 地球物理学报,64(3):993–1005. doi: 10.6038/cjg2021O0405 Liu S L,Yang D H,Xu X W,Li X F,Shen W H,Liu Y S. 2021. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling[J]. Chinese Journal of Geophysics,64(3):993–1005 (in Chinese).
刘少林,杨顶辉,孟雪莉,汪文帅,徐锡伟,李小凡. 2022. 模拟地震波传播的优化质量矩阵Legendre谱元法[J]. 地球物理学报,65(12):4802–4815. doi: 10.6038/cjg2022Q0145 Liu S L,Yang D H,Meng X L,Wang W S,Xu X W,Li X F. 2022. A Legendre spectral element method with optimal mass matrix for seismic wave modeling[J]. Chinese Journal of Geophysics,65(12):4802–4815 (in Chinese).
刘有山,刘少林,张美根,马德堂. 2012. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,27(5):2113–2122. doi: 10.6038/j.issn.1004-2903.2012.05.036 Liu Y S,Liu S L,Zhang M G,Ma D T. 2012. An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation[J]. Progress in Geophysics,27(5):2113–2122 (in Chinese).
刘有山,滕吉文,徐涛,刘少林,司芗,马学英. 2014. 三角网格谱元法地震波场数值模拟[J]. 地球物理学进展,29(4):1715–1726. doi: 10.6038/pg20140430 Liu Y S,Teng J W,Xu T,Liu S L,Si X,Ma X Y. 2014. Numerical modeling of seismic wavefield with the SEM based on triangles[J]. Progress in Geophysics,29(4):1715–1726 (in Chinese).
陆新征,田源,许镇,熊琛. 2021. 城市抗震弹塑性分析[M]. 北京:清华大学出版社:237−317. Lu X Z,Tian Y,Xu Z,Xiong C. 2021. Elastoplastic Analysis of Urban Seismic Resistance[M]. Beijing:Tsinghua University Press:237−317 (in Chinese).
孟雪莉,刘少林,杨顶辉,汪文帅,徐锡伟,李小凡. 2022. 基于优化数值积分的谱元法模拟地震波传播[J]. 石油地球物理勘探,57(3):602–612. Meng X L,Liu S L,Yang D H,Wang W S,Xu X W,Li X F. 2022. Spectral-element method based on optimal numerical integration for seismic waveform modeling[J]. Oil Geophysical Prospecting,57(3):602–612 (in Chinese).
秦国良,徐忠. 2000. 谱元方法求解二维不可压缩Navier-Stokes方程[J]. 应用力学学报,17(4):20–25. doi: 10.3969/j.issn.1000-4939.2000.04.004 Qin G L,Xu Z. 2000. A spectral element method for incompressible Navier-Stokes equations[J]. Chinese Journal of Applied Mechanics,17(4):20–25 (in Chinese).
秦国良,徐忠. 2001. 谱元方法求解正方形封闭空腔内的自然对流换热[J]. 计算物理,18(2):119–124. doi: 10.3969/j.issn.1001-246X.2001.02.005 Qin G L,Xu Z. 2001. Computation of natural convection in two-dimensional cavity using spectral element method[J]. Chinese Journal of Computational Physics,18(2):119–124 (in Chinese).
任骏声,张怀,周元泽,张振,石耀霖. 2024. 基于卷积滤波的谱元法在长时程波场模拟中的应用[J]. 地球物理学报,67(5):1832–1838. doi: 10.6038/cjg2022Q0160 Ren J S,Zhang H,Zhou Y Z,Zhang Z,Shi Y L. 2024. Application of spectral element method based on convolution filtering in long-term wavefield modeling[J]. Chinese Journal of Geophysics,67(5):1832–1838 (in Chinese).
唐杰. 2011. 气枪激发信号传播的谱元法数值模拟研究[J]. 地球物理学报,54(9):2348–2356. doi: 10.3969/j.issn.0001-5733.2011.09.018 Tang J. 2011. Study on SEM numerical simulation of airgun signal transition[J]. Chinese Journal of Geophysics,54(9):2348–2356 (in Chinese).
王竞雄,李鸿晶,邢浩洁. 2022. 水平成层场地地震反应的集中质量切比雪夫谱元分析方法[J]. 地震学报,44(1):76–86. doi: 10.11939/jass.20210091 Wang J X,Li H J,Xing H J. 2022. The Lumped mass Chebyshev spectral element method for seismic response analysis of horizontally layered soil sites[J]. Acta Seismologica Sinica,44(1):76–86 (in Chinese).
王童奎,李瑞华,李小凡,张美根,龙桂华. 2007. 横向各向同性介质中地震波场谱元法数值模拟[J]. 地球物理学进展,22(3):778–784. doi: 10.3969/j.issn.1004-2903.2007.03.018 Wang T K,Li R H,Li X F,Zhang M G,Long G H. 2007. Numerical spectral-element modeling for seismic wave propagation in transversely isotropic medium[J]. Progress in Geophysics,22(3):778–784 (in Chinese).
王童奎,谢占安,付兴深,高文中,刘萱. 2009. 弹性介质中谱元法叠后逆时偏移方法研究[J]. 石油物探,48(4):354–358. doi: 10.3969/j.issn.1000-1441.2009.04.006 Wang T K,Xie Z A,Fu X S,Gao W Z,Liu X. 2009. Spectral-element method for post-stack reverse-time migration in elastic media[J]. Geophysical Prospecting for Petroleum,48(4):354–358 (in Chinese).
汪文帅,李小凡,鲁明文,张美根. 2012. 基于多辛结构谱元法的保结构地震波场模拟[J]. 地球物理学报,55(10):3427–3439. doi: 10.6038/j.issn.0001-5733.2012.10.026 Wang W S,Li X F,Lu M W,Zhang M G. 2012. Structure-preserving modeling for seismic wavefields based upon a multi-symplectic spectral element method[J]. Chinese Journal of Geophysics,55(10):3427–3439 (in Chinese).
汪文帅,李小凡. 2013. 基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用[J]. 数值计算与计算机应用,34(1):20–30. doi: 10.3969/j.issn.1000-3266.2013.01.003 Wang W S,Li X F. 2013. The SEM based on symplectical schemes and its application in modeling the wave propagation in transversely isotropic media[J]. Journal on Numerical Methods and Computer Applications,34(1):20–30 (in Chinese).
汪文帅,张怀,李小凡. 2013. 间断的Galerkin方法在地震波场数值模拟中的应用概述[J]. 地球物理学进展,28(1):171–179. doi: 10.6038/pg20130118 Wang W S,Zhang H,Li X F. 2013. Review on application of the discontinuous Galerkin method for modeling of the seismic wavefield[J]. Progress in Geophysics,28(1):171–179 (in Chinese).
王秀明,Seriani G,林伟军. 2007. 利用谱元法计算弹性波场的若干理论问题[J]. 中国科学:G辑,37(1):41–59. Wang X M,Seriani G,Lin W J. 2007. Some theoretical aspects of elastic wave modeling with a recently developed spectral element method[J]. Science in China:Series G,50(2):185–207.
向新民. 2000. 谱方法的数值分析[M]. 北京:科学出版社:1−327. Xiang X M. 2000. Numerical Analysis of Spectral Methods[M]. Beijing:Science Press:1−327 (in Chinese).
谢志南,章旭斌. 2017. 弱形式时域完美匹配层[J]. 地球物理学报,60(10):3823–3831. doi: 10.6038/cjg20171012 Xie Z N,Zhang X B. 2017. Weak-form time-domain perfectly matched layer[J]. Chinese Journal of Geophysics,60(10):3823–3831 (in Chinese).
谢志南,郑永路,章旭斌. 2018. 常Q滞弹性介质地震波动数值模拟:时域本构优化逼近[J]. 地球物理学报,61(10):4007–4020. doi: 10.6038/cjg2018L0704 Xie Z N,Zheng Y L,Zhang X B. 2018. Optimized approximation for constitution of constant Q viscoelastic media in time domain seismic wave simulation[J]. Chinese Journal of Geophysics,61(10):4007–4020 (in Chinese).
谢志南,郑永路,章旭斌,唐丽华. 2019. 弱形式时域完美匹配层:滞弹性近场波动数值模拟[J]. 地球物理学报,62(8):3140–3154. doi: 10.6038/cjg2019M0425 Xie Z N,Zheng Y L,Zhang X B,Tang L H. 2019. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain[J]. Chinese Journal of Geophysics,62(8):3140–3154 (in Chinese).
邢浩洁,李鸿晶. 2017a. 透射边界条件在波动谱元模拟中的实现:一维波动[J]. 力学学报,49(2):367–379. Xing H J,Li H J. 2017a. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:One dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(2):367–379 (in Chinese).
邢浩洁,李鸿晶. 2017b. 透射边界条件在波动谱元模拟中的实现:二维波动[J]. 力学学报,49(4):894–906. Xing H J,Li H J. 2017b. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:Two dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(4):894–906 (in Chinese).
邢浩洁,李鸿晶. 2017c. 波动切比雪夫谱元模拟的时间积分方法研究[J]. 南京工业大学学报(自然科学版),39(2):70–76. Xing H J,Li H J. 2017c. Investigation of time integration method for Chebyshev spectral element simulation of wave motion[J]. Journal of Nanjing Tech University (Natural Science Edition),39(2):70–76 (in Chinese).
邢浩洁,李鸿晶,杨笑梅. 2017. 基于切比雪夫谱元模型的成层场地地震反应分析[J]. 岩土力学,38(2):593–600. Xing H J,Li H J,Yang X M. 2017. Seismic response analysis of horizontal layered soil sites based on Chebyshev spectral element model[J]. Rock and Soil Mechanics,38(2):593–600 (in Chinese).
邢浩洁,李鸿晶,李小军. 2021a. 一维波动有限元模拟中透射边界的时域稳定条件[J]. 应用基础与工程科学学报,29(3):617–632. Xing H J,Li H J,Li X J. 2021a. Time-domain stability conditions of multi-transmitting formula in one-dimensional finite-element simulation of wave motion[J]. Journal of Basic Science and Engineering,29(3):617–632 (in Chinese).
邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 2021b. 波动数值模拟中的外推型人工边界条件[J]. 力学学报,53(5):1480–1495. Xing H J,Li X J,Liu A W,Li H J,Zhou Z H,Chen S. 2021b. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics,53(5):1480–1495 (in Chinese).
邢浩洁,刘爱文,李小军,陈苏,傅磊. 2022. 多人工波速优化透射边界在谱元法地震波动模拟中的应用[J]. 地震学报,44(1):26–39. doi: 10.11939/jass.20210090 Xing H J,Liu A W,Li X J,Chen S,Fu L. 2022. Application of an optimized transmitting boundary with multiple artificial wave velocities in spectral-element simulation of seismic wave propagation[J]. Acta Seismologica Sinica,44(1):26–39 (in Chinese).
许传炬,林玉闽. 2000. Poiseuille-Bénard流的出口边界条件及其谱元法计算[J]. 力学学报,32(1):1–10. doi: 10.3321/j.issn:0459-1879.2000.01.001 Xu C J,Lin Y M. 2000. Open boundary conditions in simulation by spectral element methods of Poiseuille-Bénard channel flow[J]. Acta Mechanica Sinica,32(1):1–10 (in Chinese).
严珍珍,张怀,杨长春,石耀霖. 2009. 汶川大地震地震波传播的谱元法数值模拟研究[J]. 中国科学:D辑,39(4):393–402. Yan Z Z,Zhang H,Yang C C,Shi Y L. 2009. Spectral element analysis on the characteristics of seismic wave propagation triggered by Wenchuan MS8.0 earthquake[J]. Science in China:Series D,52(6):764–773. doi: 10.1007/s11430-009-0078-z
于彦彦,丁海平,刘启方. 2017. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击,36(2):13–22. Yu Y Y,Ding H P,Liu Q F. 2017. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation[J]. Journal of Vibration and Shock,36(2):13–22 (in Chinese).
于彦彦,芮志良,丁海平. 2023. 三维局部场地地震波散射问题谱元并行模拟方法[J]. 力学学报,55(6):1342–1354. doi: 10.6052/0459-1879-23-052 Yu Y Y,Rui Z L,Ding H P. 2023. Parallel spectral element method for 3D local-site ground motion simulations of wave scattering problem[J]. Chinese Journal of Theoretical and Applied Mechanics,55(6):1342–1354 (in Chinese).
章旭斌,谢志南. 2022. 波动谱元模拟中透射边界稳定性分析[J]. 工程力学,39(10):26–35. doi: 10.6052/j.issn.1000-4750.2021.06.0428 Zhang X B,Xie Z N. 2022. Stability analysis of transmitting boundary in wave spectral element simulation[J]. Engineering Mechanics,39(10):26–35 (in Chinese).
赵靖轩,巴振宁,阔晨阳,刘博佳. 2023. 2022年9月5日泸定MS6.8地震宽频带地震动谱元法模拟[J]. 地震学报,45(2):179–195. doi: 10.11939/jass.20220190 Zhao J X,Ba Z N,Kuo C Y,Liu B J. 2023. Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method[J]. Acta Seismologica Sinica,45(2):179–195 (in Chinese).
周红,高孟潭,俞言祥. 2010. SH波地形效应特征的研究[J]. 地球物理学进展,25(3):775–782. doi: 10.3969/j.issn.1004-2903.2010.03.005 Zhou H,Gao M T,Yu Y X. 2010. A study of topographical effect on SH waves[J]. Progress in Geophysics,25(3):775–782 (in Chinese).
周红. 2018. 九寨沟7.0级地震地表地震动位移及静态位移的模拟研究[J]. 地球物理学报,61(12):4851–4861. doi: 10.6038/cjg2018M0010 Zhou H. 2018. Research on ground motion displacement and static displacement near the fault of Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics,61(12):4851–4861 (in Chinese).
朱伯芳. 1998. 有限单元法原理与应用[M]. 2版. 北京:水利水电出版社:1−176. Zhu B F. 1998. The Finite Element Method Theory and Applications[M]. 2nd ed. Beijing:China Water & Power Press:1−176 (in Chinese).
Abraham J R,Smerzini C,Paolucci R,Lai C G. 2016. Numerical study on basin-edge effects in the seismic response of the Gubbio valley,Central Italy[J]. Bull Earthq Eng,14(6):1437–1459. doi: 10.1007/s10518-016-9890-y
Alford R M,Kelly K R,Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics,39(6):834–842. doi: 10.1190/1.1440470
Antonietti P F,Mazzieri I,Quarteroni A,Rapetti F. 2012. Non-conforming high order approximations of the elastodynamics equation[J]. Comput Methods Appl Mech Eng,209−212:212–238. doi: 10.1016/j.cma.2011.11.004
Asmar N H. 2005. Partial Differential Equations:With Fourier Series and Boundary Value Problems[M]. 2nd ed. Upper Saddle River:Pearson Education:227−321.
Ba Z N,Sang Q Z,Wu M T,Liang J W. 2021. The revised direct stiffness matrix method for seismogram synthesis due to dislocations:From crustal to geotechnical scale[J]. Geophys J Int,227(1):717–734. doi: 10.1093/gji/ggab248
Ba Z N,Wu M T,Liang J W,Zhao J X,Lee V W. 2022. A two-step approach combining FK with SE for simulating ground motion due to point dislocation sources[J]. Soil Dyn Earthq Eng,157:107224. doi: 10.1016/j.soildyn.2022.107224
Ba Z N,Zhao J X,Zhu Z H,Zhou G Y. 2023. 3D physics-based ground motion simulation and topography effects of the 05 September 2022 MW6.6 Luding earthquake,China[J]. Soil Dyn Earthq Eng,172:108048. doi: 10.1016/j.soildyn.2023.108048
Ba Z N,Zhao J X,Wang Y. 2024a. GA-BPNN prediction model of broadband ground motion parameters in Tianjin area driven by synthetic database based on hybrid simulated method[J]. Pure Appl Geophys,181(4):1195–1220. doi: 10.1007/s00024-024-03431-1
Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024b. Nonlinear seismic response of an alluvial basin modelled by spectral element method:Implementation of a Davidenkov constitutive model[J]. J Earthq Eng,28(6):4767–4796.
Ba Z N,Fu J S,Wang F B,Liang J W,Zhang B,Zhang L. 2024c. Physics-based seismic analysis of ancient wood structure:Fault-to-structure simulation[J]. Earthquake Engineering and Engineering Vibration,23(3):727–740. doi: 10.1007/s11803-024-2268-2
Baker J W,Luco N,Abrahamson N A,Graves R W,Maechling P J,Olsen K B. 2014. Engineering uses of physics-based ground motion simulations[C]//Proceedings of the Tenth US Conference on Earthquake Engineering. Anchorage,Alaska:Earthquake Engineering Research Institute:1−11.
Bradley B A. 2019. On-going challenges in physics-based ground motion prediction and insights from the 2010−2011 Canterbury and 2016 Kaikoura,New Zealand earthquakes[J]. Soil Dyn Earthq Eng,124:354–364. doi: 10.1016/j.soildyn.2018.04.042
Briani M,Sommariva A,Vianello M. 2012. Computing Fekete and Lebesgue points:Simplex,square,disk[J]. J Comput Appl Math,236(9):2477–2486. doi: 10.1016/j.cam.2011.12.006
Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 1988. Spectral Methods in Fluid Dynamics[M]. Berlin:Springer-Verlag:1−550.
Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 2006. Spectral Methods:Fundamentals in Single Domains[M]. Berlin:Springer-Verlag:1−552.
Capdeville Y,Gung Y,Romanowicz B. 2005. Towards global earth tomography using the spectral element method:A technique based on source stacking[J]. Geophys J Int,162(2):541–554. doi: 10.1111/j.1365-246X.2005.02689.x
Castelli F,Cavallaro A,Grasso S,Lentini V. 2016. Seismic microzoning from synthetic ground motion earthquake scenarios parameters:The case study of the city of Catania (Italy)[J]. Soil Dyn Earthq Eng,88:307–327. doi: 10.1016/j.soildyn.2016.07.010
Chaljub E,Komatitsch D,Vilotte J P,Capdeville Y,Valette B,Festa G. 2007. Spectral-element analysis in seismology[J]. Adv Geophys,48:365–419.
Chaljub E,Moczo P,Tsuno S,Bard P Y,Kristek J,Käser M,Stupazzini M,Kristekova M. 2010. Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble Valley,France[J]. Bull Seismol Soc Am,100(4):1427–1455. doi: 10.1785/0120090052
Chaljub E,Maufroy E,Moczo P,Kristek J,Hollender F,Bard P Y,Priolo E,Klin P,de Martin F,Zhang Z G,Zhang W,Chen X F. 2015. 3-D numerical simulations of earthquake ground motion in sedimentary basins:Testing accuracy through stringent models[J]. Geophys J Int,201(1):90–111. doi: 10.1093/gji/ggu472
Che C X,Wang X M,Lin W J. 2010. The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations[J]. Appl Geophys,7(2):174–184. doi: 10.1007/s11770-010-0242-9
Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res:Solid Earth,120(3):1762–1786. doi: 10.1002/2014JB011638
Chen M,Niu F L,Tromp J,Lenardic A,Lee C T A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8:15659. doi: 10.1038/ncomms15659
Chen Q,Babuška I. 1995. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[J]. Comput Methods Appl Mech Eng,128(3/4):405–417.
Chen Z W,Huang D R,Wang G. 2023a. Large‐scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthq Eng Struct Dyn,52(4):956–978. doi: 10.1002/eqe.3795
Chen Z W,Huang D R,Wang G. 2023b. A regional scale coseismic landslide analysis framework:Integrating physics-based simulation with flexible sliding analysis[J]. Eng Geol,315:107040. doi: 10.1016/j.enggeo.2023.107040
Cohen G,Joly P,Roberts J E,Tordjman N. 2001. Higher order triangular finite elements with mass lumping for the wave equation[J]. SIAM J Numer Anal,38(6):2047–2078. doi: 10.1137/S0036142997329554
Cohen G C. 2002. Higher-Order Numerical Methods for Transient Wave Equations[M]. Berlin:Springer:1−346.
Cui Y,Poyraz E,Olsen K B,Zhu J,Withers K,Callaghan S,Larkin J,Guest C,Choi D,Chourasia A,Shi Z,Day S M,Maechling P J,Jordan T H. 2013. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers[C]//Proceedings of the International Conference on High Performance Computing,Networking,Storage and Analysis. Denver:IEEE:1−12.
Dauksher W,Emery A F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[J]. Finite Elem Anal Des,26(2):115–128. doi: 10.1016/S0168-874X(96)00075-3
De Basabe J D,Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations[J]. Geophysics,72(6):T81–T95. doi: 10.1190/1.2785046
De Basabe J D,Sen M K,Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation:Grid dispersion[J]. Geophys J Int,175(1):83–93. doi: 10.1111/j.1365-246X.2008.03915.x
De Basabe J D,Sen M K. 2009. New developments in the finite-element method for seismic modeling[J]. Leading Edge,28(5):562–567. doi: 10.1190/1.3124931
De Basabe J D,Sen M K. 2010. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping[J]. Geophys J Int,181(1):577–590. doi: 10.1111/j.1365-246X.2010.04536.x
De Basabe J D,Sen M K. 2015. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface[J]. Geophys J Int,200(1):278–298. doi: 10.1093/gji/ggu389
De Basabe Delgado J D D. 2009. High-Order Finite Element Methods for Seismic Wave Propagation[D]. Austin:The University of Texas at Austin:1−128.
de la Puente J,Käser M,Dumbser M,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes:IV. Anisotropy[J]. Geophys J Int,169(3):1210–1228. doi: 10.1111/j.1365-246X.2007.03381.x
de la Puente J,Dumbser M,Käser M,Igel H. 2008. Discontinuous Galerkin methods for wave propagation in poroelastic media[J]. Geophysics,73(5):T77–T97. doi: 10.1190/1.2965027
de la Puente J,Ampuero J P,Käser M. 2009. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J]. J Geophys Res:Solid Earth,114(B10):B10302.
Dubiner M. 1991. Spectral methods on triangles and other domains[J]. J Sci Comput,6(4):345–390. doi: 10.1007/BF01060030
Dumbser M,Käser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes:Ⅱ . The three-dimensional isotropic case[J]. Geophys J Int,167(1):319–336. doi: 10.1111/j.1365-246X.2006.03120.x
Dumbser M,Käser M,Toro E F. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes:V. Local time stepping and p-adaptivity[J]. Geophys J Int,171(2):695–717. doi: 10.1111/j.1365-246X.2007.03427.x
Espindola-Carmona A E,Peter D B,Parisi L,Mai P M. 2024. Anelastic tomography of the Arabian plate[J]. Bull Seismol Soc Am,114(3):1347–1364. doi: 10.1785/0120230216
Evangelista L,Del Gaudio S,Smerzini C,d’Onofrio A,Festa G,Iervolino I,Landolfi L,Paolucci R,Santo A,Silvestri F. 2017. Physics-based seismic input for engineering applications:A case study in the Aterno river valley,Central Italy[J]. Bull Earthq Eng,15(7):2645–2671. doi: 10.1007/s10518-017-0089-7
Faccioli E,Maggio F,Paolucci R,Quarteroni A. 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method[J]. J Seismol,1(3):237–251. doi: 10.1023/A:1009758820546
Faccioli E,Quarteroni A. 1999. Comment on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures, ” by D. Komatitsch and J.-P. Vilotte[J]. Bull Seismol Soc Am,89(1):331–331.
Feng K W,Huang D R,Wang G,Jin F,Chen Z W. 2022. Physics-based large-deformation analysis of coseismic landslides:A multiscale 3D SEM-MPM framework with application to the Hongshiyan landslide[J]. Eng Geol,297:106487. doi: 10.1016/j.enggeo.2021.106487
Fichtner A,Simutė S. 2018. Hamiltonian Monte Carlo inversion of seismic sources in complex media[J]. J Geophys Res:Solid Earth,123(4):2984–2999. doi: 10.1002/2017JB015249
French S W,Romanowicz B A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography[J]. Geophys J Int,199(3):1303–1327. doi: 10.1093/gji/ggu334
Fu J S,Ba Z N,Wang F B. 2024. A simulation approach for site-city interaction in basin under oblique incident waves and its applications[J]. Soil Dyn Earthq Eng,177:108407. doi: 10.1016/j.soildyn.2023.108407
Gatti F,Touhami S,Lopez-Caballero F,Paolucci R,Clouteau D,Fernandes V A,Kham M,Voldoire F. 2018. Broad-band 3-D earthquake simulation at nuclear site by an all-embracing source-to-structure approach[J]. Soil Dyn Earthq Eng,115:263–280. doi: 10.1016/j.soildyn.2018.08.028
Geng Y H,Qin G L,Wang Y,He W. 2016. The research of space-time coupled spectral element method for acoustic wave equations[J]. Chinese Journal of Acoustics,35(1):29–47.
Giraldo F X,Taylor M A. 2006. A diagonal-mass-matrix triangular-spectral-element method based on cubature points[J]. J Eng Math,56(3):307–322.
Gopalakrishnan S,Chakraborty A,Mahapatra D R. 2008. Spectral Finite Element Method:Wave Propagation,Diagnostics and Control in Anisotropic and Inhomogeneous Structures[M]. London:Springer-Verlag:1−22.
Gottlieb D,Orszag S A. 1977. Numerical Analysis of Spectral Methods:Theory and Applications[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−167.
Grasso S,Maugeri M. 2014. Seismic microzonation studies for the city of Ragusa (Italy)[J]. Soil Dyn Earthq Eng,56:86–97. doi: 10.1016/j.soildyn.2013.10.004
Graves R,Jordan T H,Callaghan S,Deelman E,Field E,Juve G,Kesselman C,Maechling P,Mehta G,Milner K,Okaya D,Small P,Vahi K. 2011. CyberShake:A physics-based seismic hazard model for southern California[J]. Pure Appl Geophys,168(3/4):367–381.
Graves R,Pitarka A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method[J]. Seismol Res Lett,86(1):75–80. doi: 10.1785/0220140101
Han L,Wang J X,Li H J,Sun G J. 2020. A time-domain spectral element method with C1 continuity for static and dynamic analysis of frame structures[J]. Structures,28:604–613. doi: 10.1016/j.istruc.2020.08.074
He C H,Wang J T,Zhang C H,Jin F. 2015. Simulation of broadband seismic ground motions at dam canyons by using a deterministic numerical approach[J]. Soil Dyn Earthq Eng,76:136–144. doi: 10.1016/j.soildyn.2014.12.004
He C H,Wang J T,Zhang C H. 2016. Nonlinear spectral‐element method for 3D seismic‐wave propagation[J]. Bull Seismol Soc Am,106(3):1074–1087. doi: 10.1785/0120150341
Hermann V,Käser M,Castro C E. 2011. Non-conforming hybrid meshes for efficient 2-D wave propagation using the discontinuous Galerkin method[J]. Geophys J Int,184(2):746–758. doi: 10.1111/j.1365-246X.2010.04858.x
Hernández-Aguirre V M,Paolucci R,Sánchez-Sesma F J,Mazzieri I. 2023. Three-dimensional numerical modeling of ground motion in the Valley of Mexico:A case study from the MW3.2 earthquake of July 17,2019[J]. Earthq Spectra,39(4):2323–2351. doi: 10.1177/87552930231192463
Ho L W,Patera A T. 1990. A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows[J]. Comput Methods Appl Mech Eng,80(1/2/3):355–366.
Huang D R,Wang G,Du C Y,Jin F,Feng K W,Chen Z W. 2020. An integrated SEM-Newmark model for physics-based regional coseismic landslide assessment[J]. Soil Dyn Earthq Eng,132:106066. doi: 10.1016/j.soildyn.2020.106066
Huang D R,Wang G,Du C Y,Jin F. 2021. Seismic amplification of soil ground with spatially varying shear wave velocity using 2D spectral element method[J]. J Earthq Eng,25(14):2834–2849. doi: 10.1080/13632469.2019.1654946
Infantino M,Mazzieri I,Özcebe A G,Paolucci R,Stupazzini M. 2020. 3D physics‐based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the north Anatolian fault[J]. Bull Seismol Soc Am,110(5):2559–2576. doi: 10.1785/0120190235
Infantino M,Smerzini C,Lin J Y. 2021. Spatial correlation of broadband ground motions from physics‐based numerical simulations[J]. Earthq Eng Struct Dyn,50(10):2575–2594. doi: 10.1002/eqe.3461
Karaoğlu H,Romanowicz B. 2018. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method[J]. Geophys J Int,213(3):1536–1558. doi: 10.1093/gji/ggy030
Karniadakis G E,Sherwin S J. 2005. Spectral/hp Element Methods for Computational Fluid Dynamics[M]. 2nd ed. New York:Oxford University Press:1−652.
Käser M,Dumbser M. 2006. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes:I. The two-dimensional isotropic case with external source terms[J]. Geophys J Int,166(2):855–877. doi: 10.1111/j.1365-246X.2006.03051.x
Käser M,Dumbser M,De La Puente J,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes: Ⅲ. Viscoelastic attenuation[J]. Geophys J Int,168(1):224–242. doi: 10.1111/j.1365-246X.2006.03193.x
Käser M,Dumbser M. 2008. A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids[J]. Geophysics,73(3):T23–T35. doi: 10.1190/1.2870081
Käser M,Hermann V,de la Puente J. 2008. Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation[J]. Geophys J Int,173(3):990–999. doi: 10.1111/j.1365-246X.2008.03781.x
Kato B,Wang G. 2021. Regional seismic responses of shallow basins incorporating site‐city interaction analyses on high‐rise building clusters[J]. Earthq Eng Struct Dyn,50(1):214–236. doi: 10.1002/eqe.3363
Kato B,Wang G. 2022. Seismic site-city interaction analysis of super-tall buildings surrounding an underground station:A case study in Hong Kong[J]. Bull Earthq Eng,20(3):1431–1454. doi: 10.1007/s10518-021-01295-7
Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soc Am,88(2):368–392. doi: 10.1785/BSSA0880020368
Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822. doi: 10.1046/j.1365-246x.1999.00967.x
Komatitsch D,Vilotte J P. 1999. Reply to comment by E. Faccioli and A. Quarteroni on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures, ” by D. Komatitsch and J.-P. Vilotte[J]. Bull Seismol Soc Am,89(1):332–334.
Komatitsch D,Vilotte J P,Vai R,Castillo-Covarrubias J M,Sánchez-Sesma F J. 1999. The spectral element method for elastic wave equations:Application to 2‐D and 3‐D seismic problems[J]. Int J Numer Methods Eng,45(9):1139–1164. doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
Komatitsch D,Barnes C,Tromp J. 2000a. Wave propagation near a fluid-solid interface:A spectral-element approach[J]. Geophysics,65(2):623–631. doi: 10.1190/1.1444758
Komatitsch D,Barnes C,Tromp J. 2000b. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics,65(4):1251–1260. doi: 10.1190/1.1444816
Komatitsch D,Martin R,Tromp J,Taylor M A,Wingate B A. 2001. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. J Comput Acoust,9(2):703–718. doi: 10.1142/S0218396X01000796
Komatitsch D,Ritsema J,Tromp J. 2002. The spectral-element method,Beowulf computing,and global seismology[J]. Science,298(5599):1737–1742. doi: 10.1126/science.1076024
Komatitsch D,Tromp J. 2002a. Spectral-element simulations of global seismic wave propagation:I. Validation[J]. Geophys J Int,149(2):390–412. doi: 10.1046/j.1365-246X.2002.01653.x
Komatitsch D,Tromp J. 2002b. Spectral-element simulations of global seismic wave propagation:II. Three-dimensional models,oceans,rotation and self-gravitation[J]. Geophys J Int,150(1):303–318. doi: 10.1046/j.1365-246X.2002.01716.x
Komatitsch D,Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophys J Int,154(1):146–153. doi: 10.1046/j.1365-246X.2003.01950.x
Komatitsch D,Liu Q Y,Tromp J,Süss P,Stidham C,Shaw J H. 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. Bull Seismol Soc Am,94(1):187–206. doi: 10.1785/0120030077
Komatitsch D,Martin R. 2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics,72(5):SM155–SM167. doi: 10.1190/1.2757586
Komatitsch D,Erlebacher G,Göddeke D,Michéa D. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J]. J Comput Phys,229(20):7692–7714. doi: 10.1016/j.jcp.2010.06.024
Krishnan S,Ji C,Komatitsch D,Tromp J. 2006. Performance of two 18-story steel moment-frame buildings in southern California during two large simulated San Andreas earthquakes[J]. Earthq Spectra,22(4):1035–1061. doi: 10.1193/1.2360698
Laurenzano G,Priolo E. 2005. Numerical modeling of the 13 December 1990 M5.8 east Sicily earthquake at the Catania accelerometric station[J]. Bull Seismol Soc Am,95(1):241–251. doi: 10.1785/0120030126
Laurenzano G,Priolo E,Tondi E. 2008. 2D numerical simulations of earthquake ground motion:Examples from the Marche region,Italy[J]. J Seismol,12(3):395–412. doi: 10.1007/s10950-008-9095-1
Lee S J,Chen H W,Liu Q Y,Komatitsch D,Huang B S,Tromp J. 2008. Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method[J]. Bull Seismol Soc Am,98(1):253–264. doi: 10.1785/0120070033
Lee S J,Komatitsch D,Huang B S,Tromp J. 2009. Effects of topography on seismic-wave propagation:An example from northern Taiwan[J]. Bull Seismol Soc Am,99(1):314–325. doi: 10.1785/0120080020
Lee U. 2009. Spectral Element Method in Structural Dynamics[M]. Singapore:John Wiley & Sons (Asia) Pte Ltd:1−448.
Liang J W,Wu M T,Ba Z N,Liu Y. 2021. A hybrid method for modeling broadband seismic wave propagation in 3D localized regions to incident P,SV,and SH waves[J]. Int J Appl Mech,13(10):2150119. doi: 10.1142/S1758825121501192
Liu Q F,Yu Y Y,Zhang X B. 2015. Three-dimensional simulations of strong ground motion in the Shidian basin based upon the spectral-element method[J]. Earthq Eng Eng Vib,14(3):385–398. doi: 10.1007/s11803-015-0031-4
Liu Q F,Yu Y Y,Yin D Y,Zhang X B. 2018. Simulations of strong motion in the Weihe basin during the Wenchuan earthquake by spectral element method[J]. Geophys J Int,215(2):978–995. doi: 10.1093/gji/ggy320
Liu Q Y,Polet J,Komatitsch D,Tromp J. 2004. Spectral-element moment tensor inversions for earthquakes in southern California[J]. Bull Seismol Soc Am,94(5):1748–1761. doi: 10.1785/012004038
Liu Q Y,Tromp J. 2006. Finite-frequency kernels based on adjoint methods[J]. Bull Seismol Soc Am,96(6):2383–2397. doi: 10.1785/0120060041
Liu Q Y,Tromp J. 2008. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods[J]. Geophys J Int,174(1):265–286. doi: 10.1111/j.1365-246X.2008.03798.x
Liu Q Y,Gu Y J. 2012. Seismic imaging:From classical to adjoint tomography[J]. Tectonophysics,566−567:31–66. doi: 10.1016/j.tecto.2012.07.006
Liu S L,Yang D H,Dong X P,Liu Q C,Zheng Y C. 2017a. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling[J]. Solid Earth Discussions,8(5):969–986. doi: 10.5194/se-8-969-2017
Liu T,Sen M K,Hu T Y,De Basabe J D,Li L. 2012. Dispersion analysis of the spectral element method using a triangular mesh[J]. Wave Motion,49(4):474–483. doi: 10.1016/j.wavemoti.2012.01.003
Liu Y S,Teng J W,Lan H Q,Si X,Ma X Y. 2014. A comparative study of finite element and spectral element methods in seismic wavefield modeling[J]. Geophysics,79(2):T91–T104. doi: 10.1190/geo2013-0018.1
Liu Y S,Teng J W,Xu T,Badal J. 2017b. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling[J]. J Comput Phys,336:458–480. doi: 10.1016/j.jcp.2017.01.069
Lloyd A J,Wiens D A,Zhu H,Tromp J,Nyblade A A,Aster R C,Hansen S E,Dalziel I W D,Wilson T J,Ivins E R,O’Donnell J P. 2020. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography[J]. J Geophys Res:Solid Earth,125(3). doi: 10.1029/2019JB017823
Lu X Z,Tian Y,Wang G,Huang D R. 2018. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects[J]. Earthq Eng Struct Dyn,47(13):2708–2725. doi: 10.1002/eqe.3108
Ma H. 1993. A spectral element basin model for the shallow water equations[J]. J Comput Phys,109(1):133–149. doi: 10.1006/jcph.1993.1205
Magnoni F,Casarotti E,Komatitsch D,Di Stefano R,Ciaccio M G,Tape C,Melini D,Michelini A,Piersanti A,Tromp J. 2022. Adjoint tomography of the Italian lithosphere[J]. Commun Earth Environ,3(1):69. doi: 10.1038/s43247-022-00397-7
Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,49(5):533–549. doi: 10.1190/1.1441689
Martin R,Komatitsch D,Gedney S D. 2008. A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation[J]. Comput Model Eng Sci,37(3):274–304.
Martin R,Komatitsch D,Gedney S D,Bruthiaux E. 2010. A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)[J]. Comput Model Eng Sci,56(1):17–41.
Mazzieri I,Stupazzini M,Guidotti R,Smerzini C. 2013. SPEED:SPectral Elements in Elastodynamics with Discontinuous Galerkin:A non‐conforming approach for 3D multi‐scale problems[J]. Int J Numer Methods Eng,95(12):991–1010. doi: 10.1002/nme.4532
Michéa D,Komatitsch D. 2010. Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards[J]. Geophys J Int,182(1):389–402.
Moczo P,Kristek J,Halada L. 2000. 3D fourth-order staggered-grid finite-difference schemes:Stability and grid dispersion[J]. Bull Seismol Soc Am,90(3):587–603. doi: 10.1785/0119990119
Morency C,Tromp J. 2008. Spectral-element simulations of wave propagation in porous media[J]. Geophys J Int,175(1):301–345. doi: 10.1111/j.1365-246X.2008.03907.x
Mulder W A. 1999. Spurious modes in finite-element discretizations of the wave equation may not be all that bad[J]. Appl Numer Math,30(4):425–445. doi: 10.1016/S0168-9274(98)00078-6
Mulder W A. 2001. Higher-order mass-lumped finite elements for the wave equation[J]. J Comput Acoust,9(2):671–680. doi: 10.1142/S0218396X0100067X
Mulder W A. 2013. New triangular mass-lumped finite elements of degree six for wave propagation[J]. Prog Electromagn Res,141:671–692. doi: 10.2528/PIER13051308
Mulder W A,Zhebel E,Minisini S. 2014. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation[J]. Geophys J Int,196(2):1123–1133. doi: 10.1093/gji/ggt446
Mullen R,Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation[J]. Int J Numer Methods Eng,18(1):11–29. doi: 10.1002/nme.1620180103
Oliveira S P,Seriani G. 2011. Effect of element distortion on the numerical dispersion of spectral element methods[J]. Commun Comput Phys,9(4):937–958. doi: 10.4208/cicp.071109.080710a
Ostachowicz W,Kudela P,Krawczuk M,Zak A. 2012. Guided Waves in Structures for SHM:The Time-Domain Spectral Element Method[M]. London:John Wiley & Sons:1−334.
Padovani E,Priolo E,Seriani G. 1994. Low and high order finite element method:Experience in seismic modeling[J]. J Comput Acoust,2(4):371–422. doi: 10.1142/S0218396X94000233
Pasquetti R,Rapetti F. 2004. Spectral element methods on triangles and quadrilaterals:Comparisons and applications[J]. J Comput Phys,198(1):349–362. doi: 10.1016/j.jcp.2004.01.010
Paolucci R,Mazzieri I,Smerzini C. 2015. Anatomy of strong ground motion:Near-source records and three-dimensional physics-based numerical simulations of the MW6.0 2012 May 29 Po Plain earthquake,Italy[J]. Geophys J Int,203(3):2001–2020. doi: 10.1093/gji/ggv405
Paolucci R,Evangelista L,Mazzieri I,Schiappapietra E. 2016. The 3D numerical simulation of near-source ground motion during the Marsica earthquake,central Italy,100 years later[J]. Soil Dyn Earthq Eng,91:39–52. doi: 10.1016/j.soildyn.2016.09.023
Paolucci R,Gatti F,Infantino M,Smerzini C,Özcebe A G,Stupazzini M. 2018. Broadband ground motions from 3D physics‐based numerical simulations using artificial neural networks[J]. Bull Seismol Soc Am,108(3A):1272–1286. doi: 10.1785/0120170293
Paolucci R,Smerzini C,Vanini M. 2021. BB‐SPEEDset:A validated dataset of broadband near‐source earthquake ground motions from 3D physics‐based numerical simulations[J]. Bull Seismol Soc Am,111(5):2527–2545. doi: 10.1785/0120210089
Patera A T. 1984. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. J Comput Phys,54(3):468–488. doi: 10.1016/0021-9991(84)90128-1
Pelties C,Käser M,Hermann V,Castro C E. 2010. Regular versus irregular meshing for complicated models and their effect on synthetic seismograms[J]. Geophys J Int,183(2):1031–1051. doi: 10.1111/j.1365-246X.2010.04777.x
Pelties C,de la Puente J,Ampuero J P,Brietzke G B,Käser M. 2012. Three‐dimensional dynamic rupture simulation with a high‐order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. J Geophys Res:Solid Earth,117(B2):B02309.
Pilz M,Parolai S,Stupazzini M,Paolucci R,Zschau J. 2011. Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code[J]. Geophys J Int,187(2):929–945. doi: 10.1111/j.1365-246X.2011.05183.x
Pozrikidis C. 2014. Introduction to Finite and Spectral Element Methods Using MATLAB[M]. 2nd ed. New York:CRC Press:1−793.
Priolo E,Seriani G. 1991. A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[C]//Proceedings of 13th World Congress on Computation and Applied Mathematics. Dublin:Trinity College:551−556.
Priolo E,Carcione J M,Seriani G. 1994. Numerical simulation of interface waves by high‐order spectral modeling techniques[J]. J Acoust Soc Am,95(2):681–693. doi: 10.1121/1.408428
Priolo E. 1999. 2-D spectral element simulations of destructive ground shaking in Catania (Italy)[J]. J Seismol,3(3):289–309. doi: 10.1023/A:1009838325266
Priolo E. 2001. Earthquake ground motion simulation through the 2-D spectral element method[J]. J Comput Acoust,9(4):1561–1581. doi: 10.1142/S0218396X01001522
Rønquist E M,Patera A T. 1987. A Legendre spectral element method for the Stefan problem[J]. Int J Numer Methods Eng,24(12):2273–2299. doi: 10.1002/nme.1620241204
Sawade L,Beller S,Lei W J,Tromp J. 2022. Global centroid moment tensor solutions in a heterogeneous earth:The CMT3D catalogue[J]. Geophys J Int,231(3):1727–1738. doi: 10.1093/gji/ggac280
Schuberth B. 2003. The Spectral Element Method for Seismic Wave Propagation:Theory,Implementation and Comparison to Finite Difference Methods[D]. München:Ludwig Maximilians Universität:1−163.
Seriani G,Priolo E. 1991. High-order spectral element method for acoustic wave modeling[G]//SEG Technical Program Expanded Abstracts 1991. Tulsa:Society of Exploration Geophysicists:1561−1564.
Seriani G,Priolo E,Carcione J,Padovani E. 1992. High-order spectral element method for elastic wave modeling[G]//SEG Technical Program Expanded Abstracts 1992. Tulsa:Society of Exploration Geophysicists:1285−1288.
Seriani G,Priolo E. 1994. Spectral element method for acoustic wave simulation in heterogeneous media[J]. Finite Elem Anal Des,16(3/4):337–348.
Seriani G. 1997. A parallel spectral element method for acoustic wave modeling[J]. J Comput Acoust,5(1):53–69. doi: 10.1142/S0218396X97000058
Seriani G. 1998. 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor[J]. Comput Methods Appl Mech Eng,164(1/2):235–247.
Seriani G. 2004. Double-grid Chebyshev spectral elements for acoustic wave modeling[J]. Wave Motion,39(4):351–360. doi: 10.1016/j.wavemoti.2003.12.008
Seriani G,Oliveira S P. 2007. Optimal blended spectral-element operators for acoustic wave modeling[J]. Geophysics,72(5):SM95–SM106. doi: 10.1190/1.2750715
Seriani G,Oliveira S P. 2008a. Dispersion analysis of spectral element methods for elastic wave propagation[J]. Wave Motion,45(6):729–744. doi: 10.1016/j.wavemoti.2007.11.007
Seriani G,Oliveira S P. 2008b. DFT modal analysis of spectral element methods for acoustic wave propagation[J]. J Comput Acoust,16(4):531–561. doi: 10.1142/S0218396X08003774
Seriani G,Su C. 2012. Wave propagation modeling in highly heterogeneous media by a poly-grid Chebyshev spectral element method[J]. J Comput Acoust,20(2):1240004. doi: 10.1142/S0218396X12400048
Sherwin S J,Karniadakis G E. 1995. A triangular spectral element method;applications to the incompressible Navier-Stokes equations[J]. Comput Methods Appl Mech Eng,123(1/2/3/4):189–229.
Smerzini C,Paolucci R,Stupazzini M. 2011. Comparison of 3D,2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain,Central Italy[J]. Bull Earthq Eng,9(6):2007–2029. doi: 10.1007/s10518-011-9289-8
Smerzini C,Pitilakis K,Hashemi K. 2017. Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite-fault numerical simulations[J]. Bull Earthq Eng,15(3):787–812. doi: 10.1007/s10518-016-9977-5
Smerzini C,Pitilakis K. 2018. Seismic risk assessment at urban scale from 3D physics-based numerical modeling:The case of Thessaloniki[J]. Bull Earthq Eng,16(7):2609–2631. doi: 10.1007/s10518-017-0287-3
Smerzini C,Amendola C,Paolucci R,Bazrafshan A. 2024. Engineering validation of BB-SPEEDset,a data set of near-source physics-based simulated accelerograms[J]. Earthq Spectra,40(1):420–445. doi: 10.1177/87552930231206766
Soto V,Sáez E,Magna-Verdugo C. 2020. Numerical modeling of 3D site-city effects including partially embedded buildings using spectral element methods. Application to the case of Viña del Mar city,Chile[J]. Eng Struct,223:111188. doi: 10.1016/j.engstruct.2020.111188
Stich D,Martín R,Morales J. 2010. Moment tensor inversion for Iberia-Maghreb earthquakes 2005−2008[J]. Tectonophysics,483(3/4):390–398.
Stupazzini M,Paolucci R,Igel H. 2009. Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code[J]. Bull Seismol Soc Am,99(1):286–301. doi: 10.1785/0120080274
Stupazzini M,Infantino M,Allmann A,Paolucci R. 2020. Physics‐based probabilistic seismic hazard and loss assessment in large urban areas:A simplified application to Istanbul[J]. Earthq Eng Struct Dyn,50(1):99–115.
Su C,Seriani G. 2023. Poly-grid spectral element modeling for wave propagation in complex elastic media[J]. J Theor Comput Acoust,31(1):2350003. doi: 10.1142/S2591728523500032
Sun P G,Huang D R. 2023. Regional-scale assessment of earthquake-induced slope displacement considering uncertainties in subsurface soils and hydrogeological condition[J]. Soil Dyn Earthq Eng,164:107593. doi: 10.1016/j.soildyn.2022.107593
Tape C,Liu Q Y,Tromp J. 2007. Finite‐frequency tomography using adjoint methods:Methodology and examples using membrane surface waves[J]. Geophys J Int,168(3):1105–1129. doi: 10.1111/j.1365-246X.2006.03191.x
Tape C,Liu Q Y,Maggi A,Tromp J. 2009. Adjoint tomography of the southern California crust[J]. Science,325(5943):988–992. doi: 10.1126/science.1175298
Tape C,Liu Q Y,Maggi A,Tromp J. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods[J]. Geophys J Int,180(1):433–462. doi: 10.1111/j.1365-246X.2009.04429.x
Taylor M A,Wingate B A,Vincent R E. 2000. An algorithm for computing Fekete points in the triangle[J]. SIAM J Numer Anal,38(5):1707–1720. doi: 10.1137/S0036142998337247
Tian Y,Sun C J,Lu X Z,Huang Y L. 2022. Quantitative analysis of site-city interaction effects on regional seismic damage of buildings[J]. J Earthq Eng,26(8):4365–4385. doi: 10.1080/13632469.2020.1828199
Tian Y,Chen S Y,Liu S M,Lu X Z. 2023a. Influence of tall buildings on city-scale seismic response analysis:A case study of Shanghai CBD[J]. Soil Dyn Earthq Eng,173:108063. doi: 10.1016/j.soildyn.2023.108063
Tian Y,Lu X Z,Huang D R,Wang T. 2023b. SCI effects under complex terrains:Shaking table tests and numerical simulation[J]. J Earthq Eng,27(5):1237–1260. doi: 10.1080/13632469.2022.2074921
Trefethen L N. 2000. Spectral Methods in MATLAB[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−160.
Tromp J,Tape C,Liu Q Y. 2005. Seismic tomography,adjoint methods,time reversal and banana-doughnut kernels[J]. Geophys J Int,160(1):195–216.
Tromp J,Komatitsch D,Liu Q Y. 2008. Spectral-element and adjoint methods in seismology[J]. Commun Comput Phys,3(1):1–32.
van de Vosse F N,Minev P D. 1996. Spectral Element Methods:Theory and Applications[R]. Eindhoven:Eindhoven University of Technology:1−117.
Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics,51(4):889–901. doi: 10.1190/1.1442147
Wang G,Du C Y,Huang D R,Jin F,Koo R C H,Kwan J S H. 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils[J]. Soil Dyn Earthq Eng,115:41–54. doi: 10.1016/j.soildyn.2018.07.018
Wang J X,Li H J,Xing H J. 2022a. A lumped mass Chebyshev spectral element method and its application to structural dynamic problems[J]. Earthq Eng Eng Vib,21(3):843–859. doi: 10.1007/s11803-022-2117-0
Wang J X,Li H J,Sun G J,Han L. 2022b. Free vibration analysis of rectangular thin plates with corner and inner cutouts using C1 Chebyshev spectral element method[J]. Thin Wall Struct,181:110031. doi: 10.1016/j.tws.2022.110031
Wang X C,Wang J T,Zhang L,He C H. 2021a. Broadband ground-motion simulations by coupling regional velocity structures with the geophysical information of specific sites[J]. Soil Dyn Earthq Eng,145:106695. doi: 10.1016/j.soildyn.2021.106695
Wang X C,Wang J T,Zhang L,Li S,Zhang C H. 2021b. A multidimension source model for generating broadband ground motions with deterministic 3D numerical simulations[J]. Bull Seismol Soc Am,111(2):989–1013. doi: 10.1785/0120200221
Wang X C,Wang J T,Zhang C H. 2022c. A broadband kinematic source inversion method considering realistic Earth models and its application to the 1992 Landers earthquake[J]. J Geophys Res:Solid Earth,127(3):e2021JB023216. doi: 10.1029/2021JB023216
Wang X C,Wang J T. 2023. A physics‐based spectral matching (PBSM) method for generating fully site‐related ground motions[J]. Earthq Eng Struct Dyn,52(9):2812–2829. doi: 10.1002/eqe.3897
Wang X C,Wang J T,Zhang C H. 2023. Deterministic full-scenario analysis for maximum credible earthquake hazards[J]. Nat Commun,14(1):6600. doi: 10.1038/s41467-023-42410-3
Wu M T,Ba Z N,Liang J W. 2022. A procedure for 3D simulation of seismic wave propagation considering source-path-site effects:Theory,verification and application[J]. Earthq Eng Struct Dyn,51(12):2925–2955. doi: 10.1002/eqe.3708
Xie Z N,Komatitsch D,Martin R,Matzen R. 2014. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[J]. Geophys J Int,198(3):1714–1747. doi: 10.1093/gji/ggu219
Xie Z N,Matzen R,Cristini P,Komatitsch D,Martin R. 2016. A perfectly matched layer for fluid-solid problems:Application to ocean-acoustics simulations with solid ocean bottoms[J]. J Acoust Soc Am,140(1):165–175. doi: 10.1121/1.4954736
Xie Z N,Zheng Y L,Cristini P,Zhang X B. 2023. Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain[J]. Earthq Eng Eng Vib,22(2):407–421. doi: 10.1007/s11803-023-2170-3
Xing H J,Li X J,Li H J,Liu A W. 2021a. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling[J]. Soil Dyn Earthq Eng,140:106218. doi: 10.1016/j.soildyn.2020.106218
Xing H J,Li X J,Li H J,Xie Z N,Chen S L,Zhou Z H. 2021b. The theory and new unified formulas of displacement-type local absorbing boundary conditions[J]. Bull Seismol Soc Am,111(2):801–824. doi: 10.1785/0120200155
Yu Y Y,Ding H P,Liu Q F. 2017. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. Bull Earthq Eng,15(11):4661–4679. doi: 10.1007/s10518-017-0154-2
Yu Y Y,Ding H P,Zhang X B. 2021. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF):SH problem[J]. J Seismol,25(3):967–985. doi: 10.1007/s10950-021-09995-y
Yu Y Y,Ding H P,Zhang X B. 2024. Formulation and performance of multi-transmitting formula with spectral element method in 2D ground motion simulations under plane-wave incidence:SV wave problem[J]. J Earthq Eng,28(7):1837–1860. doi: 10.1080/13632469.2023.2268748
Zhang L,Wang J T,Xu Y J,He C H,Zhang C H. 2020. A procedure for 3D seismic simulation from rupture to structures by coupling SEM and FEM[J]. Bull Seismol Soc Am,110(3):1134–1148. doi: 10.1785/0120190289
Zhang M Z,Zhang L,Wang X C,Su W,Qiu Y X,Wang J T,Zhang C H. 2023. A framework for seismic response analysis of dams using numerical source‐to‐structure simulation[J]. Earthq Eng Struct Dyn,52(3):593–608. doi: 10.1002/eqe.3774
Zhou H,Chen X F. 2010. A new technique to synthesize seismography with more flexibility:The Legendre spectral element method with overlapped elements[J]. Pure Appl Geophys,167(11):1365–1376. doi: 10.1007/s00024-010-0106-0
Zhou H,Jiang H. 2015. A new time-marching scheme that suppresses spurious oscillations in the dynamic rupture problem of the spectral element method:The weighted velocity Newmark scheme[J]. Geophys J Int,203(2):927–942. doi: 10.1093/gji/ggv341
Zhou H,Li J T,Chen X F. 2020. Establishment of a seismic topographic effect prediction model in the Lushan MS7.0 earthquake area[J]. Geophys J Int,221(1):273–288. doi: 10.1093/gji/ggaa003
Zhu C Y,Qin G L,Zhang J Z. 2011. Implicit Chebyshev spectral element method for acoustics wave equations[J]. Finite Elem Anal Des,47(2):184–194. doi: 10.1016/j.finel.2010.09.004
Zhu H J,Bozdağ E,Tromp J. 2015. Seismic structure of the European upper mantle based on adjoint tomography[J]. Geophys J Int,201(1):18–52. doi: 10.1093/gji/ggu492
Zhu H J,Komatitsch D,Tromp J. 2017. Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray[J]. Geophys J Int,211(1):349–377. doi: 10.1093/gji/ggx305
Zienkiewicz O C,Taylor R L,Zhu J Z. 2013. The Finite Element Method:Its Basis and Fundamentals[M]. 7th ed. Oxford:Butterworth-Heinemann:257−460.
-
期刊类型引用(19)
1. 陈颖,田雯,吴庆举,姚志祥. 长宁—昭通页岩气示范区小微地震地方性震级测定. 地球物理学报. 2024(03): 947-959 . 百度学术
2. 孙文韬,宣言,江汶乡,王友彪,宋斌. 近断裂带铁路地震预警系统台站布设方案及评价方法. 中国铁道科学. 2023(02): 200-210 . 百度学术
3. 支明,徐佳静,孙丽. 地震自动速报综合触发系统产出结果评估. 中国地震. 2023(01): 154-165 . 百度学术
4. 支明,梁建宏,孙丽,徐泰然,梁皓,刘敬光. 地震自动速报中常用震级测定方法的适用性研究. 中国地震. 2023(04): 868-882 . 百度学术
5. 牟剑英,向巍,李攀攀,徐宁. 广西测震台网台站地方性震级偏差分析. 地震地磁观测与研究. 2022(02): 18-26 . 百度学术
6. 胡宝慧,张浩,教智博,雷凯悦. 地震台站噪声水平和台网监测能力自动化程序的实现. 防灾减灾学报. 2022(03): 42-47 . 百度学术
7. 徐一斐,赵韬,邵若潼,张雪娟. 新的震级国家标准在陕西地震台网的应用. 地震地磁观测与研究. 2021(05): 12-20 . 百度学术
8. 朱飞鸿,柴旭超,王文青,郭啟倩,张晓曈. 模拟地震图纸数字化存储信息录入的设计与实现. 地震学报. 2020(01): 101-108+121 . 本站查看
9. 赵建通,马宝君,梁阿全,李俊秋,高双玲. 镜泊湖火山台网监测能力和火山活动性分析. 防灾减灾学报. 2020(04): 57-62 . 百度学术
10. 林彬华,金星,陈惠芳,于培青,于伟恒,张燕明,张丽娜,蔡杏辉. 川滇地区烈度计台站测定震级校正分析. 地震地磁观测与研究. 2020(05): 1-9 . 百度学术
11. 刘伟,王庆良,王丽艳,柴旭超,王文青,朱飞鸿. 区域地震台网历史震相数据整合与共享服务. 地震地磁观测与研究. 2020(05): 200-208 . 百度学术
12. 张玲. 山西台网新国家标准震级标度与传统震级标度测定地方性震级的对比分析. 山西地震. 2019(02): 8-11 . 百度学术
13. 康清清,顾勤平,于悦颖,钱婷,黄群,霍祝青. 江苏及邻区地方性震级量规函数的研究. 中国地震. 2019(03): 521-530 . 百度学术
14. 龙锋,蒋长胜,祁玉萍,刘自凤,傅莺. 联合概率法在合并相邻台网地震目录中的应用:以2014年鲁甸序列为例. 地球物理学报. 2018(07): 2815-2827 . 百度学术
15. 刘瑞丰,陈运泰,王丽艳. 新的震级国家标准的技术要点与主要特点. 地震地磁观测与研究. 2018(01): 1-11 . 百度学术
16. 唐淋,祁国亮,苏金蓉,黄春梅,傅莺,颜利君. 新国家标准震级标度与传统震级标度对比研究. 地震学报. 2018(02): 121-131 . 本站查看
17. 项月文,陈浩,肖孟仁,曾文敬,肖健. 江西地区地方性震级的量规函数与台基校正值研究. 中国地震. 2018(01): 122-132 . 百度学术
18. 晏绮云,董俊,李传江. 江西测震台网新、旧震级国家标准测定地方性震级的对比分析. 国际地震动态. 2018(09): 22-27 . 百度学术
19. Liu Ruifeng,Wang Liyan. The Key Technical Points and Main Characteristics of the New National Standard of Magnitude. Earthquake Research in China. 2018(03): 301-314 . 必应学术
其他类型引用(4)