面向地下结构的最优地震动峰值指标随埋深变化规律

赵密 郭梦园 钟紫蓝 杜修力

赵密,郭梦园,钟紫蓝,杜修力. 2022. 面向地下结构的最优地震动峰值指标随埋深变化规律. 地震学报,43(0):1−12 doi: 10.11939/jass.20210094
引用本文: 赵密,郭梦园,钟紫蓝,杜修力. 2022. 面向地下结构的最优地震动峰值指标随埋深变化规律. 地震学报,43(0):1−12 doi: 10.11939/jass.20210094
Zhao M,Guo M Y,Zhong Z L,Du X L. 2022. Variation law of optimal seismic peak intensity measures for underground structures with burial depth. Acta Seismologica Sinica,43(0):1−12 doi: 10.11939/jass.20210094
Citation: Zhao M,Guo M Y,Zhong Z L,Du X L. 2022. Variation law of optimal seismic peak intensity measures for underground structures with burial depth. Acta Seismologica Sinica43(0):1−12 doi: 10.11939/jass.20210094

面向地下结构的最优地震动峰值指标随埋深变化规律

doi: 10.11939/jass.20210094
基金项目: 北京自然科学基金(JQ19029)和国家自然科学基金面上项目(51978020)共同资助
详细信息
    通讯作者:

    钟紫蓝,e-mail:zilanzhong@bjut.edu.cn

  • 中图分类号: TU449

Variation law of optimal seismic peak intensity measures for underground structures with burial depth

  • 摘要: 选取了50条实际地震动,采用一维场地等效线性化方法对均匀半空间场地和成层半空间场地进行地震响应分析,同时基于效益性评价最优地震动峰值指标(峰值加速度PGA,峰值速度PGV,峰值位移PGD)随埋深变化的规律。研究结果表明:对于选取的两类场地,最优地震动峰值指标均随埋深的改变而变化,埋深浅时PGA效益性最优,随着埋深的增加,效益性最优逐渐由PGA转变到PGV;PGA和PGV转折的交点位置随场地的不同而不同,且该转折交点位置与场地剪切波速呈线性相关。

     

  • 图  1  剪切模量比和阻尼比随剪应变变化曲线

    Figure  1.  Shear modulus ratio and damping ratio varying with the shear strain

    图  2  表3中地震动的5%阻尼比伪加速度谱

    Figure  2.  Pseudo acceleration response spectra with 5% modal damping ratio for earthquake motions in Table 3

    图  3  场地工程需求参数示意图

    Figure  3.  Diagram of site’s EDP

    图  4  lnEDP-lnIM回归分析图

    Figure  4.  lnEDP-lnIM regression analysis plot

    图  5  均匀半空间场地中ζ随埋深变化图

    (a) 场地1;(b) 场地 2;(c) 场地 3;d) 场地 4;e) 场地 5;f) 场地 6;g))场地 7;h) 场地 8 ;i) 场地 9;j) 场地 10

    Figure  5.  ζvarying with burial depth in homogeneous half-space sites

    a) Site 1;b) Site 2;c) Site 3;d) Site 4;e) Site 5;f) Site 6;g) Site 7;h) Site 8;i) Site 9;j) Site 10

    图  6  成层半空间场地11—18中ζ随埋深变化图

    a) 场地 11;b) 场地 12;c) 场地 13;d) 场地 14;e) 场地 15;f) 场地 16;g) 场地 17;h) 场地 18

    Figure  6.  ζvarying with burial depth in layered half-space sites 11−18

    a) Site 11;b) Site 12;c) Site 13;d) Site 14;e) Site 15;f) Site 16;g) Site 17;h) Site 18

    图  7  最优IM的转折深度与剪切波速的关系

    Figure  7.  The depth of the transition for optimal IM varying with shear wave velocity

    表  1  均匀半空间场地信息

    Table  1.   Information of homogeneous half-space sites

    场地序号密度/(kg·m−3剪切波速/(m·s−1场地类别
    11 80085
    21 820100
    31 850150
    41 920200
    51 920250
    61 970300
    71 970350
    82 100400
    92 100450
    102 300500
    下载: 导出CSV

    表  2  成层半空间场地信息

    Table  2.   Information of layered half-space sites

    场地序号分层土类号厚度/m泊松比密度/(kg·m−3剪切波速/(m·s−1场地类别
    11土层1400.421 820113
    基岩60.202 300500
    12土层2400.381 850166
    基岩60.202 300500
    13土层3400.351 920210
    基岩60.202 300500
    14土层4400.261 920254
    基岩60.202 300500
    15土层5400.301 970312
    基岩60.202 300500
    16土层5400.301 970360
    基岩60.202 300500
    17土层5400.272 100425
    基岩60.202 300500
    18土层5400.272 100493
    基岩60.202 300500
    下载: 导出CSV

    表  3  本研究中使用的地震动记录

    Table  3.   Earthquake motions records used in this study.

    编号地震名称年份vS30/(m·s−1地震动分量断层距/kmPGA/gPGV/(cm·s−1PGD/cm
    1 Kern County 1952 514.99 SBA042 82.19 0.090 11.41 3.43
    SBA132 0.132 19.07 5.49
    2 Lytle Creek 1970 667.13 DCF090 20.24 0.172 3.57 0.40
    DCF180 0.162 6.50 0.99
    3 San Fernando 1971 529.09 PPP000 38.97 0.104 4.95 1.26
    PPP270 0.138 5.46 1.09
    4 Northern Calif-07 1975 518.98 SCP070 63.64 0.074 2.13 0.09
    SCP160 0.108 2.28 0.09
    5 Livermore-01 1980 517.06 A3E146 30.59 0.065 3.91 0.79
    A3E236 0.057 2.68 0.50
    6 Anza (Horse Canyon)-01 1980 724..89 PFT045 17.26 0.099 2.04 0.18
    PFT135 0.122 5.19 0.59
    7 Coalinga-01 1983 522.74 TM2000 42.92 0.026 3.61 1.13
    TM2090 0.037 5.72 1.43
    8 Taiwan SMART1(25) 1983 671.52 25EO2EW 92.04 0.020 1.45 0.36
    25EO2NS 0.020 2.50 0.44
    9 Borah Peak_ID-02 1983 612.78 HAU000 49.02 0.029 0.63 0.07
    HAU090 0.033 0.52 0.08
    10 Morgan Hill 1984 543.63 SJL270 31.88 0.081 7.31 3.74
    SJL360 0.070 5.22 2.20
    11 Veroia_Greece 1984 551.30 NS 16.89 0.032 3.13 0.26
    WE 0.044 3.94 0.35
    12 N. Palm Springs 1986 532.85 H01000 54.82 0.054 1.70 0.13
    H01090 0.049 1.28 0.16
    13 Chalfant Valley-02 1986 529.39 MAM020 36.47 0.042 2.15 0.60
    MAM290 0.048 3.17 0.70
    14 Taiwan SMART1(45) 1986 671.52 45EO2EW 51.35 0.136 14.42 6.72
    45EO2NS 0.142 12.54 6.61
    15 Whittier Narrows-01 1987 508.08 PKC000 36.12 0.158 7.73 1.08
    PKC090 0.163 7.71 1.08
    16 Loma Prieta 1989 517.06 A3E000 52.53 0.079 6.14 4.64
    A3E090 0.084 7.07 4.27
    17 Griva_Greece 1990 551.30 NS 33.29 0.103 11.03 1.22
    WE 0.098 8.69 0.89
    18 Cape Mendocino 1992 518.98 SHL000 28.78 0.229 6.92 0.39
    SHL090 0.189 6.30 0.52
    19 Landers 1992 659.09 SIL000 50.85 0.050 3.76 1.93
    SIL090 0.040 5.08 4.04
    20 Big Bear-01 1992 509.10 CUC090 59.87 0.051 3.42 0.59
    CUC180 0.032 1.95 0.43
    21 Northridge-01 1994 572.57 ATB000 46.91 0.046 3.20 1.82
    ATB090 0.068 4.16 1.97
    22 Kobe_Japan 1995 609.00 CHY000 49.91 0.092 5.32 2.86
    CHY090 0.110 4.12 0.97
    23 Kozani_Greece-01 1995 579.40 L 49.66 0.019 1.40 0.27
    T 0.019 1.49 0.26
    24 Hector Mine 1999 724.89 PFT090 89.98 0.036 5.12 1.77
    PFT360 0.027 2.30 1.90
    25 Duzce_Turkey 1999 782.00 N 25.88 0.053 5.75 5.28
    E 0.025 9.98 11.58
    下载: 导出CSV
  • [1] 陈健云,李静,韩进财,徐强. 2017. 地震动强度指标与框架结构响应的相关性研究[J]. 振动与冲击,36(3):105–112.
    [2] Chen J Y,Li J,Han J C,Xu Q. 2017. Correlation between ground motion intensity indexes and seismic responses of frame structures[J]. Journal of Vibration and Shock,36(3):105–112 (in Chinese).
    [3] 崔光耀,伍修刚,王明年,林国进. 2017. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术,54(2):9–16.
    [4] Cui G Y,Wu X G,Wang M N,Lin G J. 2017. Earthquake damages and characteristics of highway tunnels in the 8.0-magnitude Wenchuan earthquake[J]. Modern Tunnelling Technology,54(2):9–16 (in Chinese).
    [5] 董正方,朱红云,蔡宝占,闫超. 2017. 不同埋深处土质场地地下结构地震内力变化规律[J]. 工程抗震与加固改造,39(5):143–148.
    [6] Dong Z F,Zhu H Y,Cai B Z,Yan C. 2017. Law of internal force changes for understructures in soil site with different depth under earthquake[J]. Earthquake Resistant Engineering and Retrofitting,39(5):143–148 (in Chinese).
    [7] 耿方方,丁幼亮,谢辉,李爱群,宋建永,李万恒,王玉倩. 2013. 近断层地震动作用下长周期结构的地震动强度指标[J]. 东南大学学报(自然科学版),43(1):203–208.
    [8] Geng F F,Ding Y L,Xie H,Li A Q,Song J Y,Li W H,Wang Y Q. 2013. Ground motion intensity indices for long period structures subjected to near-fault ground motion[J]. Journal of Southeast University (Natural Science Edition),43(1):203–208 (in Chinese).
    [9] 李长青,戚承志,罗健. 2011. 地下结构埋深对结构自身响应的影响分析[J]. 防灾减灾工程学报,31(增刊1):167–172.
    [10] Li C Q,Qi C Z,Luo J. 2011. Study of influence of buried depth on seismic response of underground structures[J]. Journal of Disaster Prevention and Mitigation Engineering,31(S1):167–172 (in Chinese).
    [11] 李雪红,李晔暄,吴迪,徐秀丽,李枝军. 2014. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击,33(23):184–189.
    [12] Li X H,Li Y X,Wu D,Xu X L,Li Z J. 2014. Correlation between ground motion intensity and structural seismic response[J]. Journal of Vibration and Shock,33(23):184–189 (in Chinese).
    [13] 卢啸,陆新征,叶列平,李梦珂. 2014. 适用于超高层建筑的改进地震动强度指标[J]. 建筑结构学报,35(2):15–21.
    [14] Lu X,Lu X Z,Ye L P,Li M K. 2014. Development of an improved ground motion intensity measure for super high-rise buildings[J]. Journal of Building Structures,35(2):15–21 (in Chinese).
    [15] 于天昊. 2016. 近场地震动下适于单层网壳结构响应评估的地震动强度参数[D]. 天津: 天津大学: 1–92.
    [16] Yu T H. 2016. Ground Motion Intensity Measures for the Evaluation of Effects of Pulse-type Ground Motions on the Response of Single-layer Reticulated Shells[D]. Tianjin: Tianjin University: 1–92 (in Chinese).
    [17] 于翔. 2002. 地下建筑结构应充分考虑抗震问题:1995年阪神地震破坏的启示[J]. 工程抗震,(4):17–20.
    [18] Yu X. 2002. Anti-seismic action should be sufficiently considered in constructing metro:Illumine of the 1995 Hyogoken-Nanbu earthquake[J]. Earthquake Resistant Engineering,(4):17–20 (in Chinese).
    [19] 于晓辉. 2012. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学: 61–90.
    [20] Yu X H. 2012. Probabilistic Seismic Fragility and Risk Analysis of Reinforced Concrete Frame Structures[D]. Harbin: Harbin Institute of Technology: 61–90 (in Chinese).
    [21] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011-2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–21.
    [22] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2010. GB 50011-2010 Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press: 18–21 (in Chinese).
    [23] 钟紫蓝,申轶尧,甄立斌,张成明,赵密,杜修力. 2020. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报,42(3):486–494.
    [24] Zhong Z L,Shen Y Y,Zhen L B,Zhang C M,Zhao M,Du X L. 2020. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering,42(3):486–494 (in Chinese).
    [25] 左占宣,李爽,翟长海,谢礼立. 2019. 结构周期延长对倒塌分析中地震动强度指标选择的影响[J]. 建筑结构学报,40(5):141–148.
    [26] Zuo Z X,Li S,Zhai C H,Xie L L. 2019. Influence of structural period elongation on ground motion intensity index in collapse analysis[J]. Journal of Building Structures,40(5):141–148 (in Chinese).
    [27] Akkar S,Özen Ö. 2005. Effect of peak ground velocity on deformation demands for SDOF systems[J]. Earthq Eng Struct Dyn,34(13):1551–1571. doi: 10.1002/eqe.492
    [28] An X H,Shawky A A,Maekawa K. 1997. The collapse mechanism of a subway station during the Great Hanshin Earthquake[J]. Cem Concr Compos,19(3):241–257. doi: 10.1016/S0958-9465(97)00014-0
    [29] Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    [30] Chen Z Y,Wei J S. 2013. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Nat Hazards,65(3):1683–1702. doi: 10.1007/s11069-012-0437-5
    [31] Cornell C A,Jalayer F,Hamburger R O,Foutch D A. 2002. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. J Struct Eng,128(4):526–533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    [32] Dávalos H,Miranda E. 2019. Evaluation of bias on the probability of collapse from amplitude scaling using spectral-shape-matched records[J]. Earthq Eng Struct Dyn,48(8):970–986. doi: 10.1002/eqe.3172
    [33] FEMA P695. 2009. Quantification of building seismic performance factors[R]. Washington: Federal Emergency Management Agency: 280–281.
    [34] Hashash Y M A,Hook J J,Schmidt B,Yao J I C. 2001. Seismic design and analysis of underground structures[J]. Tunn Undergr Space Technol,16(4):247–293. doi: 10.1016/S0886-7798(01)00051-7
    [35] Liu T,Chen Z Y,Yuan Y,Shao X Y. 2017. Fragility analysis of a subway station structure by incremental dynamic analysis[J]. Adv Struct Eng,20(7):1111–1124. doi: 10.1177/1369433216671319
    [36] Luco N,Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthq Spectra,23(2):357–392. doi: 10.1193/1.2723158
    [37] Nau J M,Hall W J. 1984. Scaling methods for earthquake response spectra[J]. J Struct Eng,110(7):1533–1548. doi: 10.1061/(ASCE)0733-9445(1984)110:7(1533)
    [38] Padgett J E,Nielson B G,DesRoches R. 2008. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthq Eng Struct Dyn,37(5):711–725. doi: 10.1002/eqe.782
    [39] Pitilakis K,Tsinidis G,Leanza A,Maugeri M. 2014. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dyn Earthq Eng,67:1–15. doi: 10.1016/j.soildyn.2014.08.009
    [40] Riddell R. 2007. On ground motion intensity indices[J]. Earthq Spectra,23(1):147–173. doi: 10.1193/1.2424748
    [41] Scawthorn C,O’Rourke T D,Blackburn F T. 2006. The 1906 San Francisco earthquake and fire:enduring lessons for fire protection and water supply[J]. Earthq Spectra,22(S2):135–158.
    [42] Wang W L,Wang T T,Su J J,Lin C H,Seng C R,Huang T H. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol,16(3):133–150. doi: 10.1016/S0886-7798(01)00047-5
    [43] Yang C T,Xie L L,Li A Q,Jia J B,Zeng D M. 2019. Ground motion intensity measures for seismically isolated RC tall buildings[J]. Soil Dyn Earthq Eng,125:105727. doi: 10.1016/j.soildyn.2019.105727
    [44] Yang D X,Pan J W,Li G. 2009. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions[J]. Earthq Eng Struct Dyn,38(11):1257–1280. doi: 10.1002/eqe.889
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-15
  • 网络出版日期:  2022-01-13

目录

    /

    返回文章
    返回