张宇,王兰炜,胡哲,张兴国,娄晓宇. 2024. 点源干扰源定位方法及其在地电场观测中的实际应用. 地震学报,46(1):106−119. doi: 10.11939/jass.20220153
引用本文: 张宇,王兰炜,胡哲,张兴国,娄晓宇. 2024. 点源干扰源定位方法及其在地电场观测中的实际应用. 地震学报,46(1):106−119. doi: 10.11939/jass.20220153
Zhang Y,Wang L W,Hu Z,Zhang X G,Lou X Y. 2024. Location method of point interference source and its practical application in geoelectric field observation. Acta Seismologica Sinica46(1):106−119. doi: 10.11939/jass.20220153
Citation: Zhang Y,Wang L W,Hu Z,Zhang X G,Lou X Y. 2024. Location method of point interference source and its practical application in geoelectric field observation. Acta Seismologica Sinica46(1):106−119. doi: 10.11939/jass.20220153

点源干扰源定位方法及其在地电场观测中的实际应用

Location method of point interference source and its practical application in geoelectric field observation

  • 摘要: 我国地震地电场观测时的漏电干扰问题会影响到观测质量和地震监测效能。针对这一实际问题,本文提出了点源干扰源定位方法。该方法首先建立地表点源对地电场观测影响模型,根据模型计算点源对地电场观测的干扰幅度,然后求解干扰源相对于中心电极的位置。将定位方法应用于高邮地震台和汉王地震台实际干扰源排查工作中,定位结果与实际干扰源位置基本一致,测区外干扰源定位误差小于2%,测区内干扰源定位误差小于20 m,并对影响计算误差的因素进行了分析。两个台站的实际应用表明:本文提出的定位方法为地电观测实践中查找点源漏电干扰源提供解决方案,能够有效地定位点源干扰源位置,提高干扰排查效率。

     

    Abstract: China’s seismic network currently comprises 113 geoelectric field monitoring stations. To effectively utilize geoelectric field monitoring data for earthquake prediction, it is crucial to accurately differentiate between seismic and non-seismic anomalies. However, with the rapid development of China’s economy, agricultural production, and industrial construction around these monitoring stations, interference from electrical equipment leakage has escalated. This interference represents a significant non-seismic anomaly that adversely affects the quality of observation data and its application efficiency.  1) The impact of electrical equipment leakage on geoelectric field observation can be characterized as follows:   2) The observation curve exhibits significant steps, peaks, or dips.  3) The daily variation pattern of the geoelectric field is suppressed.  4) The amplitude of each component of the geoelectric field varies due to the relative positions of the leakage points.  5) The interference in each channel begins and ends at the same time, synchronized with the leakage period, although the degree of influence may differ.  6) The interference amplitude is inversely proportional to the distance between the interference source and the electrode and directly proportional to the magnitude of the leakage current.  Leakage interference within the measurement area constitutes a non-seismic anomaly that significantly impacts the quality of the observation data. Therefore, it is essential to identify and promptly investigate sources of interference in daily earthquake monitoring to minimize data loss caused by such interference. Currently, two types of interference sources can be identified based on examples encountered by stations: point source interference and dipole source interference. However, there is currently no high-precision positioning algorithm available for point sources.  This study established a point source interference model based on a uniform semi-infinite space, analyzed the theoretical influence amplitude of point sources on geoelectric field observation through model theory, proposed a point source interference localization method, and applied the algorithm to the actual interference investigation work of Gaoyou Station in Jiangsu Province and Hanwang Station in Gansu Province.  The position of the interference source was calculated based on the observed interference shape and change amplitude. The positioning direction and area were consistent with the actual interference source position. The positioning error of interference sources outside the measurement area was less than 2%, and the positioning error of interference sources inside the measurement area was less than 20 meters.   The main sources of positioning calculation errors are as follows: First, this method establishes a point source model based on a uniform semi-infinite medium, but the underground medium of the station is not completely uniform and isotropic. The non-uniform structure of the underground electrical properties will affect the propagation of electric field signals, resulting in certain calculation errors. However, this error has a relatively small effect, and the source of interference can still be located in a small area. Second, when the observation data is interfered with, the interference signal and the ground electric field observation signal are superimposed, and the ground electric field is constantly changing, making it difficult to accurately extract the interference amplitude. Inaccurate extraction of the interference amplitude leads to errors in the calculation results. In subsequent applications, multiple positioning calculations can be used to calculate the average and minimize the error in the calculation results. The positioning algorithm proposed in this article provides a sound solution for identifying point source leakage interference.

     

/

返回文章
返回