Relative motions between cross-fault sites resultd from the 1999 MW7.6 Taiwan Chi-Chi earthquake
-
摘要:
为了获得近断层地震动准确的残余位移信息,提出了一种变步长网格搜索地震动基线校正方法。首先基于1999年我国台湾MW7.6集集地震强震动数据,探讨了近断层地震动的位移特征,然后通过地震动时程初始时刻的校正获得了集集地震多组上、下盘台站之间的相对运动时程数据,分析了分别靠近断层上、下盘场地之间相对运动的位移时程特征。结果显示:近断层地震动的滑冲效应显著,断层的平均滑冲速度可高达1.4 m/s;断层两盘间的相对运动类似于近断层地震动的运动特征,且幅值更大;近断层的残余位移约是断层两盘间最大相对位移的80%.
-
关键词:
- 1999年集集MW7.6地震 /
- 近断层地震动 /
- 跨断层场地 /
- 相对运动 /
- 断层作用
Abstract:In order to obtain more accurate residual displacement information generated by near-fault ground motion, this paper proposed a variable step-grid search method for ground motion baseline correction. The core of this method lies in preserving and accurately reflecting the residual displacement information of faults, and solving the problem of extremely low computational efficiency in traditional grid search methods when there are many digital seismic sampling points. Based on the strong ground motion data of the 1999 MW7.6 Chi-Chi earthquake in Taiwan region, this paper uses the variable step-grid search method for ground motion baseline correction to conduct in-depth research on the ground motion displacement characteristics near faults. By accurately correcting the initial moment of ground motion time history, this study successfully obtained relative ground motion time history data between multiple sets of the hanging and foot wall stations in the Chi-Chi earthquake. And based on this data, the displacement time history characteristics of the relative motion between the hanging and foot wall sites near the fault were analyzed. The research results indicate that the fling-step effect of ground motion is particularly significant in the Chi-Chi earthquake. The maximum displacement and residual displacement of near fault ground motion exceed 8 m and 6 m, respectively, and the average sliding velocity of the fault is as high as 1.4 m/s, fully demonstrating the strong destructive force of the earthquake. This poses challenges to the numerical simulation of fault rupture and related experimental researches. In addition, the relative motion between fault walls also exhibits similar motion characteristics to near fault ground motion, and its amplitude is larger. Therefore, the relative motion data between earthquake fault walls can refer to the time history of near fault ground motion as the input basis for engineering design and analysis. In addition, the residual displacement of the fault is about 80% of the maximum relative displacement between the fault walls. This study provides important information on residual displacement of fault ground motion, which is of great significance to the researches on fields such as earthquake engineering, earthquake warning, and disaster assessment.
-
-
图 3 本文方法与太平洋地震工程研究中心方法处理的TCU068台站近断层地震动位移时程比较
(a) NS分量;(b) EW 分量;(c) UD 分量
Figure 3. Comparison of near fault ground motion displacement time histories of the station TCU068 processed by the method proposed in this study with those from Pacific Earthquake Engineering Research Center
(a) NS component;(b) EW component;(c) UD component
图 4 上盘台站强震动记录三分量EW (左),NS (中),UD (右)分量的位移时程
蓝线表示位移的最值,红线表示位移初始值或最终值,下图同
Figure 4. Displacement time histories of EW (left),NS (middle) and UD (right) components of strong ground motion records at the hanging wall stations
The blue line indicates the extreme displacement,and the red line indicates the initial or final displacement,the same below (c) TCU072;(d) TCU071;(e) TCU089;(f) TCU078
图 8 上、下盘台站强震动相对位移时程典型特征
(a) TCU052-TCU054台站的EW分量;(b) TCU072-TCU067台站的EW分量;(c) TCU072-TCU067台站的UD分量
Figure 8. Typical characteristics of relative displacement time history of strong ground motion records at hanging wall and footwall stations
(a) EW component of the station TCU052-TCU054;(b) EW component of the station TCU072-TCU067;(c) UD component of the station TCU072-TCU067
图 9 集集地震土木工程断层破坏7例
(a) 石岗大坝(TCU068-TCU103);(b) 北丰桥(TCU068-TCU103);(c) 欢乐谷公寓群(TCU068-TCU103);(d) 第一公园大桥(TCU052-TCU054);(e) 光复中学(TUC071-TCU075);(f) 乌溪桥(TUC071-TCU075);(g) 刘眉桥(TCU078-TCU122)
Figure 9. Seven cases of civil engineering fault failure in Chi-Chi earthquake
(a) Shigang Dam (TCU068-TCU103);(b) Beifeng Bridge (TCU068-TCU103);(c) Happy Valley Apartments (TCU068-TCU103);(d) The First Park Bridge (TCU052-TCU054);(e) Guangfu Middle School (TUC071-TCU075);(f) Wuxi Bridge (TUC071-TCU075);(g) Liumei Bridge (TCU078-TCU122)
表 1 1999年台湾集集MW7.6地震强震动台站位置
Table 1 Location of ground motion stations of 1999 MW7.6 Chi-Chi earthquake in Taiwan region
断层盘 台站 东经/° 北纬/° 海拔/km 断层距/km 上盘 TCU068 120.8 24.3 0.276 0.071 TCU052 120.7 24.2 0.170 0.092 TCU072 120.8 24.0 0.363 13.021 TCU071 120.8 24.0 0.187 10.003 TCU089 120.9 23.9 0.020 15.277 TCU078 120.8 23.8 0.272 14.402 下盘 TCU103 120.7 24.3 0.222 5.982 TCU054 120.7 24.2 0.097 7.029 TCU067 120.7 24.1 0.073 0.716 TCU075 120.7 24.0 0.096 1.209 TCU120 120.6 24.0 0.228 7.793 TCU118 120.4 24.0 0.008 30.496 TCU076 120.7 24.0 0.103 3.653 TCU129 120.7 23.9 0.110 3.059 TCU122 120.6 23.8 0.075 10.996 CHY024 120.6 23.8 0.085 12.255 注:数据来源于台湾气象厅公开发行的光盘( Lee et al,2001 )。表 2 1999年集集MW7.6地震上、下盘台站本文所选组对情况
Table 2 Group matching of hanging wall and footwall stations of the 1999 MW7.6 Chi-Chi earthquake in this paper
台站 组队 上盘 TCU068 TCU052 TCU072 TCU071 TCU089 TCU078 下盘 TCU103 TCU054 TCU067 TCU075 TCU075 TCU122 表 3 上盘台站强震动记录位移最大值及残余位移
Table 3 Maximum displacement and residual displacement of strong ground motion records at the hanging wall stations
上盘台站 EW分量 NS分量 UD分量 最大位移/m 残余位移/m 最大位移/m 残余位移/m 最大位移/m 残余位移/m TCU068 7.06 5.81 8.61 5.94 4.52 3.45 TCU052 4.99 3.94 7.18 6.78 3.92 3.16 TCU072 2.02 1.80 2.35 2.00 1.33 1.16 TCU071 1.76 1.19 2.61 0.15 2.26 1.74 TCU089 1.91 1.81 1.37 1.18 0.24 0.03 TCU078 1.21 1.19 0.85 0.66 0.35 0.25 表 4 六对上、下盘台站强震动相对位移最大值及相对残余位移
Table 4 The maximum relative displacement and relative residual displacement of strong ground motion records at six pairs of hanging wall and footwall stations
上、下盘台站 EW分量 NS分量 UD分量 最大相对位移/m 相对残余位移/m 最大相对位移/m 相对残余位移/m 最大相对位移/m 相对残余位移/m TCU068-TCU103 7.54 6.21 9.11 6.47 4.09 3.33 TCU052-TCU054 5.57 4.50 7.81 7.08 3.81 3.29 TCU072-TCU067 3.46 3.02 3.27 2.97 1.59 1.41 TCU071-TCU075 2.89 2.28 2.99 2.52 2.55 1.74 TCU089-TCU076 2.82 2.50 1.72 1.42 0.39 0.26 TCU078-TCU122 2.06 1.82 1.26 1.16 0.35 0.18 表 5 工程破坏现场地表位错与附近断层上、下盘台站位错计算值的比较
Table 5 Comparison of calculated values of surface dislocations at the site of engineering failure with those at the hanging wall and footwall stations nearby faults
工程名称 上、下盘台站 台站间距/km 位错观察值/m 位错计算值/m 数据记录方向 石岗大坝 TCU068-TCU103 6.05 8.00 3.33 上下 北丰桥 5.50 上下 欢乐谷公寓群 3.50 上下 第一公园大桥 TCU052-TCU054 7.12 4.00 3.29 上下 光复中学 TCU071-TCU075 11.21 2.50 1.74 上下 乌溪桥 2.00 2.61 水平 刘眉桥 TCU078-TCU122 25.40 0.20 0.18 上下 -
曹志磊,周琼,葛计划,孙军,隆爱军,龙剑锋,赵希磊. 2019. 郯庐断裂带安徽段及“霍山窗”断层活动特征与地震关联性研究[J]. 大地测量与地球动力学,39(7):681–685. Cao Z L,Zhou Q,Ge J H,Sun J,Long A J,Long J F,Zhao X L. 2019. Fault activity and correlation study of Tan-Lu fault zone and “Huoshan Seismic Window"[J]. Journal of Geodesy and Geodynamics,39(7):681–685 (in Chinese).
陈勇,陈鲲,俞言祥. 2007. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动,27(4):1–7. doi: 10.3969/j.issn.1000-1301.2007.04.001 Chen Y,Chen K,Yu Y X. 2007. Base line correction method for near-fault accelerograms using Chi-Chi main shock record[J]. Journal of Earthquake Engineering and Engineering Vibration,27(4):1–7 (in Chinese).
高波,王峥峥,袁松,申玉生. 2009. 汶川地震公路隧道震害启示[J]. 西南交通大学学报,44(3):336–341. Gao B,Wang Z Z,Yuan S,Shen Y S. 2009. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University,44(3):336–341 (in Chinese).
胡进军. 2009. 近断层地震动方向性效应及超剪切破裂研究[D]. 哈尔滨: 中国地震局工程力学研究所: 126–133. Hu J J. 2009. Directivity Effect of Near-Fault Ground Motion and Super-Shear Rupture[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 126–133 (in Chinese).
胡聿贤. 2006. 地震工程学[M]. 第二版. 北京: 地震出版社: 13–14. Hu Y X. 2006. Earthquake engineering[M]. Second edition. Beijing: Seismological Press: 13–14 (in Chinese).
黄润秋,李为乐. 2009. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,17(1):19–28. Huang R Q,Li W L. 2009. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,17(1):19–28 (in Chinese).
李爽,周洪圆,刘向阳,贾俊峰. 2020. 基于中国规范的近断层区抗震设计谱研究[J]. 建筑结构学报,41(2):7–12. Li S,Zhou H Y,Liu X Y,Jia J F. 2020. Study on near-fault seismic design spectra based on Chinese Code for Seismic Design of Buildings[J]. Journal of Building Structures,41(2):7–12 (in Chinese).
王栋,谢礼立,胡进军. 2008. 倾斜断层不对称分布引起的几何效应:上下盘效应[J]. 地震学报,30(3):271–278. doi: 10.3321/j.issn:0253-3782.2008.03.006 Wang D,Xie L L,Hu J J. 2008. Geometric effects resulting from the asymmetry of dipping fault:Hanging wall/footwall effects[J]. Acta Seismologica Sinica,30(3):271–278 (in Chinese).
王永安,李琼,刘强. 2011. 跨断层形变累积率的变化特征与云南地区强震[J]. 地震研究,34(2):136–142. Wang Y A,Li Q,Liu Q. 2011. Variation of the cumulative rate of cross-fault deformation and strong earthquakes in Yunnan[J]. Journal of Seismological Research,34(2):136–142 (in Chinese).
谢礼立,徐龙军,陶晓燕,杨绪剑. 2021. 跨断层土木工程研究与实验装置研发现状[J]. 工程力学,38(4):20–29. Xie L L,Xu L J,Tao X Y,Yang X J. 2021. Research status of civil engineering structures across faults and the development of experimental devices for fault simulation[J]. Engineering Mechanics,38(4):20–29 (in Chinese).
喻畑,李小军. 2012. 基于NGA模型的汶川地震区地震动衰减关系[J]. 岩土工程学报,34(3):552–558. Yu T,Li X J. 2012. Attenuation relationship of ground motion for Wenchuan earthquake region based on NGA model[J]. Chinese Journal of Geotechnical Engineering,34(3):552–558 (in Chinese).
俞言祥,高孟潭. 2001. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,23(6):615–621. Yu Y X,Gao M T. 2001. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi),Taiwan Province,earthquake[J]. Acta Seismologica Sinica,14(6):654–659.
张红艳,谢富仁. 2013. 天山地区跨断层形变观测与地壳应力特征[J]. 西北大学学报(自然科学版),43(4):617–622. Zhang H Y,Xie F R. 2013. Cross-fault deformation observation and characteristics of crustal stress in Tianshan region[J]. Journal of Northwest University (Natural Science Edition),43(4):617–622 (in Chinese).
周云好,陈章立,缪发军. 2004. 2001年11月14日昆仑山口西MS8.1地震震源破裂过程研究[J]. 地震学报,26(增刊):9–20. Zhou Y H,Chen Z L,Miao F J. 2004. Source process of the 14 November 2001westhern Kunlun mountain MS8.1 earthquake[J]. Acta Seismological Sinica,26(S1):9–20 (in Chinese).
Abrahamson N A. 2000. Near-fault ground motions from the 1999 Chi-Chi earthquake[C]//Proc. of US-Japan Workshop on the Effects of Near-Field Earthquake Shaking. San Francisco, California: Pacific Earthquake Engineering Research Center: 11−13.
Bolt B A. 1999. Earthquakes[M]. Fourth edition. New York: W.H. Freeman and Company: 52–53.
Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1199–1211.
Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
Chao W A,Wu Y M,Zhao L. 2009. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol,14(3):495–504.
Chu D B, Brandenberg S J, Lin P S. 2008. Performance of bridges in liquefied ground during 1999 Chi-Chi earthquake[C]//The 14th WCEE. Beijing: CAEE and IAEE: 13–17.
Dong J J, Wang C D, Lee C T, Liao J J, Pan Y W. 2004. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: A case study in Fengyuan City[J]. Engineering Geology, 71(1/2): 157–179.
Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am,75(5):1225–1246. doi: 10.1785/BSSA0750051225
Kawashima K. 2002. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake[J]. Structural Eng/Earthq Eng, 19(2 Special Issue): 179−197.
Lee W H K, Shin T C, Kuo K W, Chen K C, Wu C F. 2001. CWB free-field strong-motion data from the 21 September Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1370−1376.
Lin M L,Lin C H,Li C H,Liu C Y,Hung C H. 2021. 3D modeling of the ground deformation along the fault rupture and its impact on engineering structures:Insights from the 1999 Chi-Chi earthquake,Shigang District,Taiwan[J]. Eng Geol,281:105993. doi: 10.1016/j.enggeo.2021.105993
Ma K F,Mori J,Lee S J,Yu S B. 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi,Taiwan earthquake[J]. Bull Seismol Soc Am,91(5):1069–1087.
Mccomb H,Ruge A,Neumann F. 1943. The determination of true ground motion by integration of strong-motion records:A symposium[J]. Bull Seismol Soc Am,33(1):1. doi: 10.1785/BSSA0330010001
Ota Y,Watanabe M,Suzuki Y,Yanagida M,Miyawaki A,Sawa H. 2007. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault,Taiwan,with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area[J]. J Asia Earth Sci,31(3):214–225. doi: 10.1016/j.jseaes.2006.07.030
Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett,68(1):199–222. doi: 10.1785/gssrl.68.1.199
Wang G Q,Zhou X Y,Zhang P Z,Igel H. 2002. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi,Taiwan earthquake[J]. Soil Dyn Earthq Eng,22(1):73–96. doi: 10.1016/S0267-7261(01)00047-1
Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044. doi: 10.1785/0120110039
Wang W L,Wang T T,Su J J,Lin C H,Seng C R,Huang T H. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunn Undergr Space Technol,16(3):133–150. doi: 10.1016/S0886-7798(01)00047-5
Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol, 11(2): 159–170.
Xu L J,Zhao G C,Gardoni P,Xie L L. 2018. Quantitatively determining the high-pass filter cutoff period of ground motions[J]. Bull Seismol Soc Am,108(2):857–865. doi: 10.1785/0120170074
Zhao G C,Xu L J,Gardoni P,Xie L L. 2019. A new method of deriving the acceleration and displacement design spectra of pulse-like ground motions based on the wavelet multi-resolution analysis[J]. Soil Dyn Earthq Eng,119:1–10. doi: 10.1016/j.soildyn.2019.01.008
-
期刊类型引用(24)
1. 李鑫月,石磊,李永华. 近震体波走时与重力联合反演华北地区地壳上地幔顶部P波速度结构. 地球物理学报. 2024(04): 1439-1453 . 百度学术
2. 钟世军,吴建平,司政亚,朱红彬,王薇. 基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究. 地震学报. 2024(04): 578-599 . 本站查看
3. Jianping WU,Yaning LIU,Shijun ZHONG,Weilai WANG,Yan CAI,Wei WANG,Jing LIU. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion. Science China(Earth Sciences). 2022(07): 1399-1413 . 必应学术
4. 吴建平,刘雅宁,钟世军,王未来,蔡妍,王薇,刘靖. 鄂尔多斯块体及周边地区岩石圈结构的接收函数与面波联合反演研究. 中国科学:地球科学. 2022(08): 1532-1546 . 百度学术
5. 张丽晓,闫俊岗,张双凤. 基于背景噪声的晋冀鲁豫交界地区瑞利波群速度层析成像. 地震. 2022(01): 155-168 . 百度学术
6. 吴晓娲,秦四清,薛雷,张珂,陈竑然,翟梦阳. 孕震构造块体与相应地震区划分方法. 地质论评. 2021(02): 325-339 . 百度学术
7. 张扬,宫杰,张敏,单菡,王佳,杨驰,李正楷. 江苏及邻区P波速度结构反演研究. 华南地震. 2020(03): 44-48 . 百度学术
8. 王耀,姚华建,房立华,吴建平. 利用区域地震体波走时评价华北地区三维地壳速度结构模型. 地震学报. 2019(02): 139-154+277 . 本站查看
9. 贾晓辉,王晓山,付长华,刘爱文. 邢台地区长周期地震动特征初步分析. 震灾防御技术. 2019(01): 87-96 . 百度学术
10. 陈兆辉,王椿镛,楼海. 鄂尔多斯地块地壳上地幔速度结构及构造意义. 科学通报. 2018(03): 327-339 . 百度学术
11. 李理,王晶. 冀中坳陷衡水–无极构造变换带的特征及其成因机制. 大地构造与成矿学. 2017(01): 69-76 . 百度学术
12. 周铭,徐朝繁,耿伟,魏运浩. 山西地区地壳S波速度结构. 大地测量与地球动力学. 2016(10): 912-917 . 百度学术
13. 毛慧慧,雷建设,滕吉文. 鄂尔多斯盆地北缘南北向剖面上地幔远震P波层析成像. 地球物理学报. 2016(06): 2056-2065 . 百度学术
14. 李红光,王利亚,孙刚,张鹤翔,李伟华. 华北地区中小地震重新定位和地震活动特征研究. 地震. 2015(01): 28-37 . 百度学术
15. 薛友辰,曹现志,许立青,李三忠,赵淑娟,刘鑫,索艳慧,王鹏程,郭玲莉,孔祥超,戴黎明. 遥感技术在断裂研究中的应用——以张家口—蓬莱断裂带为例. 地质科学. 2015(02): 564-580 . 百度学术
16. 陈兆辉,楼海,孟小红,王椿镛,石磊. 鄂尔多斯块体-华北地区地壳上地幔P波三维速度结构. 地球物理学进展. 2014(03): 999-1007 . 百度学术
17. 玄松柏,谈洪波,冯建林,申重阳,李辉. 山西断陷盆地带及其邻区1999—2008年地壳物质密度变化. 大地测量与地球动力学. 2013(05): 7-10+20 . 百度学术
18. 房立华,吴建平,王未来,王长在,杨婷. 华北地区勒夫波噪声层析成像研究. 地球物理学报. 2013(07): 2268-2279 . 百度学术
19. 曹现志,李三忠,刘鑫,索艳慧,赵淑娟,许立青,戴黎明,王鹏程,余珊. 太行山东麓断裂带板内构造地貌反转与机制. 地学前缘. 2013(04): 88-103 . 百度学术
20. 方炜,白超英,彭建兵. 黄土高原及邻区地壳P波速度结构. 地震学报. 2013(03): 315-327+450 . 本站查看
21. 杨婷,吴建平,房立华,王未来,吕作勇. 华北地区地壳上地幔S波三维速度结构. 地球物理学进展. 2012(02): 441-454 . 百度学术
22. 郭慧丽,徐佩芬. 地震层析成像在华北克拉通地区的研究进展. 地球物理学进展. 2011(05): 1557-1565 . 百度学术
23. 张风雪,李永华,吴庆举,丁志峰. FMTT方法研究华北及邻区上地幔P波速度结构. 地球物理学报. 2011(05): 1233-1242 . 百度学术
24. 安美建,赵越,冯梅,杨玉山,胥勤勉,郝俊杰,谭成轩. 什么控制了华北克拉通东部在新近纪的构造活动?. 地学前缘. 2011(03): 121-140 . 百度学术
其他类型引用(20)