The effect of P wave velocity on the H-k stacking results of receiver functions
-
摘要: 从公式推导、 不同模型数值试验和实际资料处理等3个方面, 系统研究了P波速度vPP对接收函数H(地壳厚度)-k(波速比)叠加搜索结果的影响. 结果表明, vPP的变化与H正相关, 与k负相关; 且地壳模型越复杂, vPP对H的影响越大.Abstract: This paper systematically investigates the effect of P wave velocity on the H-k stacking results of receiver functions by three aspects of theoretical analyses, numerical tests and observed data processing. The results show that the P wave velocity is positively correlated with crustal depth H, and negatively correlated with wave velocity ratio k. Moreover, the more complex the crust model is, the larger effect P wave velocity has on H.
-
Keywords:
- P wave velocity /
- H-k stacking /
- receiver function
-
-
图 3 单层模型数值试验结果
(a) 理论接收函数; (b)、 (c)和(d)分别表示vPP为预设值、 小于预设值0.3 km/s和大于预设值0.3 km/s时H-k方法的搜索结果. 白色“+”为数据计算得到的结果, 黑色圆点表示预设模型; (e)和(f)分别表示数值模拟试验中地壳厚度H和波速比k随vPP的变化
Figure 3. Numerical test for the one-layer model
(a) Theoretical receiver functions; (b--d) H-k stacking results with default vPP, smaller vPP (0.3 km/s less than default vPP ) and larger vPP (0.3 km/s larger than default vPP), respectively. The white crosses represent the calculated values, black dots represent the default values, gray bars represent the stacking amplitude of receiver functions;(e) H versus vPP in numerical tests; (f) k versus vPP in numerical tests
图 4 双层模型数值试验结果
(a) 理论接收函数; (b)、 (c)和(d)分别表示vPP为预设值、 小于预设值0.3 km/s和大于预设值0.3 km/s时H-k方法的搜索结果.白色“+”为数据计算得到的结果, 黑色圆点表示预设模型; (e)和(f)分别表示数值模拟试验中地壳厚度H和波速比k随vPP的变化
Figure 4. Numerical test for the two-layered model
(a) Theoretical receiver functions; (b--d) H-k stacking results with default vPP, smaller vPP (0.3 km/s less than default vPP ) and larger vPP (0.3 km/s larger than default vPP), respectively. The white crosses represent the calculated values, black dots represent the default values, gray bars represent the stacking amplitude of receiver functions; (e) H versus vPP in numerical tests; (f) k versus vPP in numerical tests
图 5 存在一低速梯度带的双层模型数值试验结果
(a) 理论接收函数; (b)、 (c)和(d)分别表示vPP为预设值、 小于预设值0.3 km/s和大于预设值0.3 km/s时 H-k方法的搜索结果. 白色“+”为数据计算得到的结果, 黑色圆点表示预设模型; (e)和(f)分别 表示数值模拟试验中地壳厚度H和波速比k随vPP的变化
Figure 5. Numerical test for the two-layered model with a gradient structure
(a) Theoretical receiver functions; (b--d) H-k stacking results with default vPP, smaller vPP (0.3 km/s less than default vPP ) and larger vPP (0.3 km/s larger than default vPP), respectively. The white crosses represent the calculated values, black dots represent the default values, gray bars represent the stacking amplitude of receiver functions; (e) H versus vPP in numerical tests; (f) k versus vPP in numerical tests
图 6 不同vPP值对应的天水台实际资料处理结果
(a) 天水台观测接收函数; (b), (c), (d)和(e)分别表示vPP为6.10, 6.20, 6.31, 6.38 km/s时H-k的搜索叠加结果
Figure 6. Example of TSS station with different vPP
(a) Observed receiver functions; (b) H-k stacking results with vPP=6.10 km/s; (c) H-k stacking results with vPP=6.20 km/s; (d) H-k stacking results with vPP=6.31 km/s; (e) H-k stacking results with vPP=6.38 km/s
图 7 3种模型中vPP及vPP变化率对H-k结果的影响
(a) H与vPP关系; (b) H变化率与vPP变化率关系; (c) k值与vPP关系; (d) k变化率与vPP变化率关系
Figure 7. The influence of vPP and variation rate of vPP on the H-k results for the three models
(a) H versus vPP; (b) The variation rate of H versus the variation rate of vPP; (c) k versus vPP; (d) The variation rate of k versus the variation rate of vPP
表 1 天水台各模型的接收函数H-k方法搜索结果
Table 1 H-k stacking results of TSS station for three different models
-
葛粲, 郑勇, 熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报, 54(10): 2538-2548. Ge C, Zheng Y, Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China craton[J]. Chinese Journal of Geophysics, 54(10): 2538-2548 (in Chinese).
郭震, 唐有彩, 陈永顺, 宁杰远, 冯永革, 岳汉. 2012. 华北克拉通东部地壳和上地幔结构的接收函数研究[J]. 地球物理学报, 55(11): 3591-3600. Guo Z, Tang Y C, Chen Y S, Ning J Y, Feng Y G, Yue H. 2012. A study on crustal and upper mantle structures in east part of North China craton using receiver functions[J]. Chinese Journal of Geophysics, 55(11): 3591-3600 (in Chinese).
黄海波, 丘学林, 胥颐, 曾钢平. 2011. 利用远震接收函数方法研究南海西沙群岛下方地壳结构[J]. 地球物理学报, 54(11): 2788-2798. Huang H B, Qiu X L, Xu Y, Zeng G P. 2011. Crustal structure beneath the Xisha Islands of the South China Sea simulated by the teleseismic receiver function method[J]. Chinese Journal of Geophysics, 54(11): 2788-2798 (in Chinese).
李清河. 1991. 天水地区S波速度结构[J]. 西北地震学报, 13(增刊): 48-54. Li Q H. 1991. The velocity structure of S-waves in Tianshui area[J]. Northwestern Seismological Journal, 13(Suppl.): 48-54 (in Chinese).
李少华, 王彦宾, 梁子斌, 何少林, 曾文浩. 2012.甘肃东南部地壳速度结构的区域地震波形反演[J]. 地球物理学报, 55(4): 1186-1197. Li S H, Wang Y B, Liang Z B, He S L, Zeng W H. 2012. Crustal structure in southeastern Gansu from regional seismic waveform inversion[J]. Chinese Journal of Geophysics, 55(4): 1186-1197 (in Chinese).
李永华, 吴庆举, 安张辉, 田小波, 曾融生, 张瑞青, 李红光. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报, 49(5): 1359-1368. Li Y H, Wu Q J, An Z H, Tian X B, Zeng R S, Zhang R Q, Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics, 49(5): 1359-1368 (in Chinese).
刘琼林, 王椿镛, 姚志祥, 常利军, 楼海. 2011. 华北克拉通中西部地区地壳厚度与波速比研究[J]. 地球物理学报, 54(9): 2213-2224. Liu Q L, Wang C Y, Yao Z X, Chang L J, Lou H. 2011. Study on crustal thickness and velocity ratio in mid-western North China craton[J]. Chinese Journal of Geophysics, 54(9): 2213-2224 (in Chinese).
刘文学, 刘贵忠, 周刚, 李欣, 张慧民, 徐恒垒. 2011. 新疆和周边地区地壳厚度和vP/vS比值变化的接收函数约束[J]. 地球物理学报, 54(8): 2034-2041. Liu W X, Liu G Z, Zhou G, Li X, Zhang H M, Xu H L. 2011. Crustal thickness and vP/vS ratio variations of Xinjing and surrounding regions constrained by receiver function stacking[J]. Chinese Journal of Geophysics, 54(8): 2034-2041 (in Chinese).
沈旭章, 梅秀萍, 杨辉. 2011. 汶川地震破裂带地壳速度结构研究[J]. 地球物理学进展, 26(2): 477-488. Shen X Z, Mei X P, Yang H. 2011. Study on the crustal structures beneath Wenchuan earthquake rupture zone[J]. Progress in Geophysics, 26(2): 477-488 (in Chinese).
王峻, 刘启元, 陈九辉, 李顺成, 郭飚, 李昱. 2009. 首都圈地区的地壳厚度及泊松比[J]. 地球物理学报, 52(1): 57-66. Wang J, Liu Q Y, Chen J H, Li S C, Guo B, Li Y. 2009. The crustal thickness and Poisson's ratio beneath the Capital Circle region[J]. Chinese Journal of Geophysics, 52(1): 57-66 (in Chinese).
查小惠, 孙长青, 李聪. 2013. 倾斜界面和各向异性地层对H-k搜索结果的影响[J]. 地球物理学进展, 28(1): 121-131. Zha X H, Sun C Q, Li C. 2013. The effects of dipping interface and anisotropic layer on the result of H-k method[J]. Progress in Geophysics, 28(1): 121-131 (in Chinese).
Aki K, Richards P G. 2002. Quantitative Seismology[M]. 2nd ed. Sausalito: University Science Books: 146-202.
Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves[J]. J Geophys Res, 84(B9): 4749-4762.
Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am, 89(5): 1395-1400.
Lombardi D, Braunmiller J, Kissling E. 2007. Moho depth and Poisson's ratio in the Western-Central Alps from receiver functions[J]. Geophys J Int, 173(1): 249-264. doi:10.1111/j.1365-246X.2007.03706.x.
Ma Y L, Zhou H L. 2007. Crustal thicknesses and Poisson's ratios in China by joint analysis of teleseismic receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett, 34(12): L12304. doi:10.1029/2007GL029848.
Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis[J]. Earth Planet Sci Lett, 303(3/4): 291-298.
Ramesh D S, King R, Yuan X. 2002. Receiver function analysis of the North American crust and upper mantle[J]. Geophys J Int, 150(1): 91-108.
Ramesh D S, Kawakatsu H, Watada S, Yuan X. 2005. Receiver function images of the central Chugoku region in the Japanese islands using Hi-net data[J]. Earth Planets Space, 57(4): 271-280.
Shen X Z, Mei X P, Zhang Y S. 2011. The crustal and upper-mantle structures beneath the northeastern margin of Tibet[J]. Bull Seismol Soc Am, 101(6): 2782-2795. doi:10.1785/0120100112.
Tomlinson J P, Denton P, Maguire P K H, Booth D C. 2006. Analysis of the crustal velocity structure of the British Isles using teleseismic receiver functions[J]. Geophys J Int, 167(1): 223-237.
Wang P, Wang L S, Mi N, Liu J H, Li H, Yu D Y, Xu M J, Wang X C, Guo Z W. 2010. Crustal thickness and average vP/vS ratio variations in southwest Yunnan, China, from teleseismic receiver functions[J]. J Geophys Res, 115(B11): B11308. doi:10.1029/2009JB006651.
Yang H Y, Hu J F, Li G Q, Zhao H, Wen L M. 2011. Analysis of the crustal thickness and Poisson's ratio in eastern Tibet from teleseismic receiver functions[J]. Geophy J Int, 186(3): 1380-1386. doi:10.1111/j.1365-246X.2011.05118.
Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver function[J]. J Geophs Res, 105(B2): 2969-2980.
-
期刊类型引用(5)
1. 吴微微,梁明剑,龙锋,苏金蓉,陈学芬. 青川断裂及邻区现今地震活动性研究. 地震研究. 2023(02): 188-203 . 百度学术
2. 黄雄南,杨晓平,胡宗凯,杨海波. 白龙江断裂西段晚第四纪构造活动特征研究. 震灾防御技术. 2023(04): 701-717 . 百度学术
3. 靳志同,万永革,刘兆才,黄骥超,李瑶,杨帆. 2017年九寨沟M_S7.0地震对周围地区的静态应力影响. 地球物理学报. 2019(04): 1282-1299 . 百度学术
4. 程佳,姚生海,刘杰,姚琪,宫会玲,龙海云. 2017年九寨沟地震所受历史地震黏弹性库仑应力作用及其后续对周边断层地震危险性的影响. 地球物理学报. 2018(05): 2133-2151 . 百度学术
5. ZHANG Chongyuan,WU Manlu,CHEN Qunce,LIAO Chunting. Piezomagnetic In-situ Stress Monitoring and its Application in the Longmenshan Fault Zone. Acta Geologica Sinica(English Edition). 2014(05): 1592-1602 . 必应学术
其他类型引用(11)