Turn off MathJax
Article Contents
Gao J,Yu Y Q. 2023. Ocean bottom seismograph orientation and crustal structure of the Woodlark Rift. Acta Seismologica Sinica,45(3):1−21 doi: 10.11939/jass.20220091
Citation: Gao J,Yu Y Q. 2023. Ocean bottom seismograph orientation and crustal structure of the Woodlark Rift. Acta Seismologica Sinica45(3):1−21 doi: 10.11939/jass.20220091

Ocean bottom seismograph orientation and crustal structure of the Woodlark Rift

doi: 10.11939/jass.20220091
  • Received Date: 2022-06-07
  • Rev Recd Date: 2022-10-06
  • Available Online: 2022-12-14
  • The Woodlark Rift in southeastern Papua New Guinea is a young continental rift and develops within the collision zone between the Australian and SW Pacific Plates, which offers an ideal location to explore the crustal structure beneath the incipient rift under a convergent setting. However, the sea water layer makes it difficult to collect high-quality seismic data, and the common step is to deploy the ocean bottom seismographs (OBSs) in a free-fall way. Therefore, mis-orientation of horizontal components of the OBS usually leads to failure of applying the inversion techniques such as the receiver function to the three-component waveforms. In this study, we employed both P-wave and Rayleigh-wave polarization analyses to determine all available OBS orientations, and then used the recorded teleseismic waveforms to conduct a receiver function study on the crustal structure beneath the Woodlark rift. The number of the receiver function traces has greatly increased after the orientation corrections and the crustal structures can be better constrained based on the results from P-wave polarization analysis. Contrasting crustal structures were revealed beneath the Kiribishi Basin and the Goodenough Basin where the rift axis is located. The crust beneath the Goodenough Basin is deciphered to thin towards the rift axis with an average of (33.3±2.42) km, while a much thinner crust is observed beneath the Kiribisi Basin with a mean value of (24.1±5.44) km. High vP/vS ratios were determined at all stations, which may be attributed to the Papuan ultramafic body and dehydration melting of subducted slab segments.


  • loading
  • [1]
    Hu H,Ruan A G,You Q Y,Li J B,Hao T Y,Long J P. 2016. Using OBS teleseismic receiver functions to invert lithospheric structure:A case study of the southwestern subbasin in the South China Sea[J]. Chinese Journal of Geophysics,59(4):1426–1434 (in Chinese).
    Huang H B,Qiu X L,Xu Y,Zeng G P. 2011. Crustal structure beneath the Xisha Islands of the South China Sea simulated by the teleseismic receiver function method[J]. Chinese Journal of Geophysics,54(11):2788–2798 (in Chinese).
    Qiu X L,Zeng G P,Xu Y,Hao T Y,Li Z X,Priestley K,McKenzie D. 2006. The crustal structure beneath the Shidao station on Xisha Islands of South China Sea[J]. Chinese Journal of Geophysics,49(6):1720–1729 (in Chinese).
    Abers G A,Ferris A,Craig M,Davies H,Lerner-Lam A L,Mutter J C,Taylor B. 2002. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea[J]. Nature,418(6900):862–865. doi: 10.1038/nature00990
    Abers G A,Eilon Z,Gaherty J B,Jin G,Kim Y,Obrebski M,Dieck C. 2016. Southeast Papuan crustal tectonics:Imaging extension and buoyancy of an active rift[J]. J Geophys Res:Solid Earth,121(2):951–971. doi: 10.1002/2015JB012621
    Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms[J]. Bull Seismol Soc Am,81(6):2504–2510. doi: 10.1785/BSSA0810062504
    Baker G E,Stevens J L. 2004. Backazimuth estimation reliability using surface wave polarization[J]. Geophys Res Lett,31(9):L09611.
    Baldwin S L,Lister G S,Hill E J,Foster D A,McDougall I. 1993. Thermochronologic constraints on the tectonic evolution of active metamorphic core complexes,D’Entrecasteaux Islands,Papua New Guinea[J]. Tectonics,12(3):611–628. doi: 10.1029/93TC00235
    Baldwin S L,Monteleone B D,Webb L E,Fitzgerald P G,Grove M,June Hill E. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea[J]. Nature,431(7006):263–267. doi: 10.1038/nature02846
    Biemiller J,Boulton C,Wallace L,Ellis S,Little T,Mizera M,Niemeijer A,Lavier L. 2020. Mechanical implications of creep and partial coupling on the world’s fastest slipping low-angle normal fault in southeastern Papua New Guinea[J]. J Geophys Res:Solid Earth,125(10):e2020JB020117.
    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophys Geosyst, 4(3): 1027.
    Davies H L,Smith I E. 1971. Geology of eastern Papua[J]. GSA Bull,82(12):3299–3312. doi: 10.1130/0016-7606(1971)82[3299:GOEP]2.0.CO;2
    Davies H L,Jaques A L. 1984. Emplacement of ophiolite in Papua New Guinea[J]. Geol Soc Lond Spec Publ,13(1):341–349. doi: 10.1144/GSL.SP.1984.013.01.27
    Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Statist Sci,1(1):54–75.
    Eilon Z,Abers G A,Jin G,Gaherty J B. 2014. Anisotropy beneath a highly extended continental rift[J]. Geochem Geophys Geosyst,15(3):545–564.
    Eilon Z,Abers G A,Gaherty J B,Jin G. 2015. Imaging continental breakup using teleseismic body waves:The Woodlark Rift,Papua New Guinea[J]. Geochem Geophys Geosyst,16(8):2529–2548.
    Ellis S M,Little T A,Wallace L M,Hacker B R,Buiter S J H. 2011. Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks[J]. Earth Planet Sci Lett,311:427–438. doi: 10.1016/j.jpgl.2011.09.031
    Ferris A,Abers G A,Zelt B,Taylor B,Roecker S. 2006. Crustal structure across the transition from rifting to spreading:The Woodlark rift system of Papua New Guinea[J]. Geophys J Int,166(2):622–634. doi: 10.1111/j.1365-246X.2006.02970.x
    Finlayson D M,Muirhead K J,Webb J P,Gibson G,Furumoto A S,Cooke R J S,Russell A J. 1976. Seismic investigation of the Papuan Ultramafic Belt[J]. Geophys J R astr Soc,44(1):45–59. doi: 10.1111/j.1365-246X.1976.tb00274.x
    Finlayson D M,Drummond B J,Collins C D M,Connelly J B. 1977. Crustal structures in the region of the Papuan Ultramafic Belt[J]. Phys Earth Planet Inter,14(1):13–29. doi: 10.1016/0031-9201(77)90043-7
    Fitz G,Mann P. 2013. Evaluating upper versus lower crustal extension through structural reconstructions and subsidence analysis of basins adjacent to the D’Entrecasteaux Islands,eastern Papua New Guinea[J]. Geochem Geophys Geosyst,14(6):1800–1818.
    Gordon S M,Little T A,Hacker B R,Bowring S A,Korchinski M,Baldwin S L,Kylander-Clark A R C. 2012. Multi-stage exhumation of young UHP-HP rocks:Timescales of melt crystallization in the D’Entrecasteaux Islands,southeastern Papua New Guinea[J]. Earth Planet Sci Lett,351/352:237–246. doi: 10.1016/j.jpgl.2012.07.014
    Hill E J,Baldwin S L,Lister G S. 1992. Unroofing of active metamorphic core complexes in the D’Entrecasteaux Islands,Papua New Guinea[J]. Geology,20(10):907–910. doi: 10.1130/0091-7613(1992)020<0907:UOAMCC>2.3.CO;2
    Holbrook W S, Mooney W D, Christensen N I. 1992. The seismic velocity structure of the deep continental crust[G]//Continental Lower Crust. New York: Elsevier: 21–43.
    Hung T D,Yang T,Le B M,Yu Y Q,Xue M,Liu B H,Liu C G,Wang J,Pan M H,Huong P T,Liu F,Morgan J P. 2021. Crustal structure across the extinct mid-ocean ridge in South China Sea from OBS receiver functions:Insights into the spreading rate and magma supply prior to the ridge cessation[J]. Geophys Res Lett,48(3):e2020GL089755.
    Jin G,Gaherty J B,Abers G A,Kim Y,Eilon Z,Buck W R. 2015. Crust and upper mantle structure associated with extension in the Woodlark Rift,Papua New Guinea from Rayleigh-wave tomography[J]. Geochem Geophys Geosyst,16(11):3808–3824.
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    Laske G. 1995. Global observation of off-great-circle propagation of long-period surface waves[J]. Geophys J Int,123(1):245–259. doi: 10.1111/j.1365-246X.1995.tb06673.x
    Lim H,Kim Y,Song T R A,Shen X Z. 2018. Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition[J]. Geophys J Int,212(3):1747–1765. doi: 10.1093/gji/ggx515
    Little T A,Hacker B R,Gordon S M,Baldwin S L,Fitzgerald P G,Ellis S,Korchinski M. 2011. Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands,Papua New Guinea[J]. Tectonophysics,510(1/2):39–68.
    Liu K H,Gao S S. 2010. Spatial variations of crustal characteristics beneath the Hoggar swell,Algeria,revealed by systematic analyses of receiver functions from a single seismic station[J]. Geochem Geophys Geosyst,11(8):Q08011.
    Lus W Y,McDougall I,Davies H L. 2004. Age of the metamorphic sole of the Papuan Ultramafic Belt ophiolite,Papua New Guinea[J]. Tectonophysics,392(1/2/3/4):85–101.
    Martinez F,Goodliffe A M,Taylor B. 2001. Metamorphic core complex formation by density inversion and lower-crust extrusion[J]. Nature,411(6840):930–934. doi: 10.1038/35082042
    Monteleone B D,Baldwin S L,Webb L E,Fitzgerald P G,Grove M,Schmitt A K. 2007. Late Miocene-Pliocene eclogite facies metamorphism,D’Entrecasteaux Islands,SE Papua New Guinea[J]. J Metamorph Geol,25(2):245–265. doi: 10.1111/j.1525-1314.2006.00685.x
    Niu F L,Li J. 2011. Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthquake Science,24(1):3–13. doi: 10.1007/s11589-011-0764-8
    Selby N D. 2001. Association of Rayleigh waves using backazimuth measurements:Application to test ban verification[J]. Bull Seismol Soc Am,91(3):580–593. doi: 10.1785/0120000068
    Stachnik J C,Sheehan A F,Zietlow D W,Yang Z H,Collins J,Ferris A. 2012. Determination of New Zealand ocean bottom seismometer orientation via Rayleigh-wave polarization[J]. Seismol Res Lett,83(4):704–713. doi: 10.1785/0220110128
    Tregoning P,Lambeck K,Stolz A,Morgan P,Mcclusky S C,van der Beek P,Mcqueen H,Jackson R J,Little R P,Laing A,Murphy B. 1998. Estimation of current plate motions in Papua New Guinea from Global Positioning System observations[J]. J Geophys Res:Solid Earth,103(B6):12181–12203. doi: 10.1029/97JB03676
    van Ufford A Q,Cloos M. 2005. Cenozoic tectonics of New Guinea[J]. AAPG Bull,89(1):119–140. doi: 10.1306/08300403073
    Wallace L M,Stevens C,Silver E,McCaffrey R,Loratung W,Hasiata S,Stanaway R,Curley R,Rosa R,Taugaloidi J. 2004. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea:Implications for mechanics of microplate rotations in a plate boundary zone[J]. J Geophys Res:Solid Earth,109(B5):B05404.
    Watanabe T. 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors[J]. Geophys Res Lett,20(24):2933–2936. doi: 10.1029/93GL03170
    Webb L E,Baldwin S L,Little T A,Fitzgerald P G. 2008. Can microplate rotation drive subduction inversion?[J]. Geology,36(10):823–826. doi: 10.1130/G25134A.1
    Yu Y Q,Tilmann F,Zhao D P,Gao S S,Liu K H. 2022. Continental break-up under a convergent setting:Insights from P wave radial anisotropy tomography of the Woodlark rift in Papua New Guinea[J]. Geophys Res Lett,49(5):e2022GL098086.
    Zelt B C,Taylor B,Goodliffe A M. 2001. 3-D crustal velocity structure at the rift tip in the western Woodlark Basin[J]. Geophys Res Lett,28(15):3015–3018. doi: 10.1029/2001GL012864
    Zeng S J,Zheng Y,Niu F L,Ai S X. 2021. Measurements of seismometer orientation of the first phase CHINArray and their implications on vector-recording-based seismic studies[J]. Bull Seismol Soc Am,111(1):36–49. doi: 10.1785/0120200129
    Zha Y,Webb S C,Menke W. 2013. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophys Res Lett,40(14):3585–3590. doi: 10.1002/grl.50698
    Zheng Y F. 2009. Fluid regime in continental subduction zones:Petrological insights from ultrahigh-pressure metamorphic rocks[J]. J Geol Soc,166(4):763–782. doi: 10.1144/0016-76492008-016R
    Zhu G H,Yang H F,Lin J,You Q Y. 2020. Determining the orientation of ocean-bottom seismometers on the seafloor and correcting for polarity flipping via polarization analysis and waveform modeling[J]. Seismol Res Lett,91(2A):814–825. doi: 10.1785/0220190239
    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 《伍德拉克裂谷地区的海底地震仪方位和地壳结构》附件.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (164) PDF downloads(29) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint