逆断层错动对隧道工程影响的数值模拟

邱兆文 喻烟 杜义 周正华

邱兆文,喻烟,杜义,周正华. 2021. 逆断层错动对隧道工程影响的数值模拟. 地震学报,43(2):237−244 doi: 10.11939/jass.20200049
引用本文: 邱兆文,喻烟,杜义,周正华. 2021. 逆断层错动对隧道工程影响的数值模拟. 地震学报,43(2):237−244 doi: 10.11939/jass.20200049
Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica,43(2):237−244 doi: 10.11939/jass.20200049
Citation: Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica43(2):237−244 doi: 10.11939/jass.20200049

逆断层错动对隧道工程影响的数值模拟

doi: 10.11939/jass.20200049
基金项目: 国家自然科学基金项目(U1839202,41374049)资助
详细信息
    通讯作者:

    喻烟,e-mail:yutian0721@yeah.net

  • 中图分类号: P 315.9

Numerical analysis of effect of reverse fault dislocation on tunnel engineering

  • 摘要: 由于断层错动导致的围岩永久变形会对隧道结构产生危害,为研究隧道在逆断层错动下的变形与受力特征,本文以成兰铁路穿越北川—映秀断裂的跃龙门隧道工程为研究对象,利用Abaqus软件建立穿越逆断层隧道结构的数值模型,选择参数和设定边界条件,模拟分析在逆断层错动作用下隧道衬砌结构的受力与变形情况。结果表明:逆断层错动引起隧道衬砌结构发生了“S”状弯曲变形,衬砌结构的纵向应力随断层位错量的增加而增加,整体表现为衬砌顶部与底部所受拉压应力分布相反;衬砌顶部拉压应力值均大于底部,且衬砌顶部和底部的压应力值均大于拉应力。

     

  • 图  1  衬砌结构模型示意图

    (a) 模型整体;(b) 衬砌-破碎带相交方式

    Figure  1.  Schematic diagram of lining structure model

    (a) Whole model;(b) Lining fracture zone intersection mode

    图  2  逆断层错动方式

    Figure  2.  Dislocation mode of reverse fault

    图  3  断层(a)和衬砌(b)竖向位移云图

    Figure  3.  Vertical displacement nephogram of fault (a) and lining (b)

    图  4  逆断层倾角为30°时不同竖向位错分量的衬砌竖向位移

    Figure  4.  Vertical displacement curves of lining with different vertical dislocation components at 30° dip angle of reverse fault

    图  5  逆断层倾角为45° (a)和60° (b)时不同竖向位错分量的衬砌竖向位移

    Figure  5.  Vertical displacement curves of lining with different vertical dislocation components at 45° (a) and 60° (b) dip angle of reverse fault

    图  6  倾角为30°的逆断层竖向位错为50cm时的衬砌纵向应力云图

    Figure  6.  Longitudinal stress nephogram of lining with vertical dislocation of 50 cm in 30° dip reverse fault

    图  7  不同竖向位错作用下衬砌纵向应力曲线

    纵坐标为正值表示拉应力,为负值表示压应力(a) 逆断层倾角为30°;(b) 逆断层倾角为45°; (c) 逆断层倾角为60°;

    Figure  7.  Longitudinal stress curves of lining under different vertical dislocations

    Tensile stress is indicated when longitudinal stress is positive,and negative denotes compressive stress (a) The dip angle of reverse fault is 30°;(b) The dip angle of reverse fault is 45°;(c) The dip angle of reverse fault is 60°

    图  8  竖向位错为50 cm时不同倾角逆断层作用下衬砌的竖向位移曲线(a)和纵向应力曲线(b)

    Figure  8.  Vertical displacement curves (a) and longitudinal stress curves (b) of lining under the action of reverse faults with different dip angles when the vertical dislocation is 50 cm

    表  1  介质物理力学参数

    Table  1.   Physical mechanics parameters of medium

    材料密度
    /(kg·m−3
    弹性模量
    /MPa
    泊松比黏聚力
    /MPa
    内摩擦角
    围岩2300100000.2500.2530
    破碎带200050000.3000.3025
    衬砌2500300000.167
    下载: 导出CSV

    表  2  拉压应力分布区间和最大值

    Table  2.   Range and maximum value of tensile and compressive stress distribution

    断层倾角/°衬砌位置受拉区间/m拉应力最大值/MPa受压区间/m压应力最大值/MPa
    30顶部400—44041440—500123
    底部460—50023400—460101
    45顶部400—44047440—500167
    底部460—50029400—460118
    60顶部400—44046440—500143
    底部460—50034400—460108
    下载: 导出CSV
  • 陈熹. 2017. 活动断层错动下跨断层隧道动力响应及破坏机理研究[D]. 成都: 西南交通大学: 10–19.
    Chen X. 2017. Study on Dynamic Response and Failure Mechanism of the Crossing-Fault Tunnel Under the Action of Active Fault[D]. Chengdu: Southwest Jiaotong University: 10–19 (in Chinese).
    胡辉. 2013. 穿越活动断层的隧道减震结构研究[D]. 成都: 西南交通大学: 55–57.
    Hu H. 2013. Study on Aseismic Structure for Tunnel Passing Through Active Fault[D]. Chengdu: Southwest Jiaotong University: 55–57 (in Chinese).
    焦鹏飞,来弘鹏. 2019. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报,52(2):106–117.
    Jiao P F,Lai H P. 2019. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal,52(2):106–117 (in Chinese).
    邵润萌. 2011. 断层错动作用下隧道工程损伤及岩土失效扩展机理研究[D]. 北京: 北京交通大学: 13–28.
    Shao R M. 2011. Study on the Mechanism of Tunnel Damage and Geotechnical Failure Propagation Due to Fault Rupture[D]. Beijing: Beijing Jiaotong University: 13–28 (in Chinese).
    孙飞,张志强,易志伟. 2019. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学,40(8):3037–3044.
    Sun F,Zhang Z Q,Yi Z W. 2019. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics,40(8):3037–3044 (in Chinese).
    熊炜,范文,彭建兵,邓龙胜,闫芙蓉. 2010. 正断层活动对公路山岭隧道工程影响的数值分析[J]. 岩石力学与工程学报,29(增刊):2845–2852.
    Xiong W,Fan W,Peng J B,Deng L S,Yan F R. 2010. Numerical analysis of effect of normal fault activity on road mountain tunnel project[J]. Chinese Journal of Rock Mechanics and Engineering,29(S1):2845–2852 (in Chinese).
    张丽芬,姚运生. 2013. 震源动力学破裂过程数值模拟研究[J]. 地震学报,35(4):604–615. doi: 10.3969/j.issn.0253-3782.2013.04.014
    Zhang L F,Yao Y S. 2013. Review on numerical simulation of dynamic rupture process of earthquake source[J]. Acta Seismologica Sinica,35(4):604–615 (in Chinese).
    赵宝平. 2018. 逆断层错动对公路隧道影响研究[J]. 公路,63(11):329–332.
    Zhao B P. 2018. Study on the influence of reverse fault dislocation on highway tunnel[J]. Highway,63(11):329–332 (in Chinese).
    Kontogianni V A,Stiros S C. 2003. Earthquakes and seismic faulting:Effects on tunnels[J]. Turkish J Earth Sci,12(1):153–156.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  197
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-05-27
  • 网络出版日期:  2021-06-18
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回