2017年精河MS6.6地震的断层参数和破裂过程

王平川 张勇 冯万鹏

王平川,张勇,冯万鹏. 2021. 2017年精河MS6.6地震的断层参数和破裂过程. 地震学报,43(2):137−151 doi: 10.11939/jass.20200057
引用本文: 王平川,张勇,冯万鹏. 2021. 2017年精河MS6.6地震的断层参数和破裂过程. 地震学报,43(2):137−151 doi: 10.11939/jass.20200057
Wang P C,Zhang Y,Feng W P. 2021. Fault parameters and rupture process of the Jinghe MS6.6 earthquake in 2017. Acta Seismologica Sinica,43(2):137−151 doi: 10.11939/jass.20200057
Citation: Wang P C,Zhang Y,Feng W P. 2021. Fault parameters and rupture process of the Jinghe MS6.6 earthquake in 2017. Acta Seismologica Sinica43(2):137−151 doi: 10.11939/jass.20200057

2017年精河MS6.6地震的断层参数和破裂过程

doi: 10.11939/jass.20200057
基金项目: 国家自然科学基金(41822401)和国家重点研发计划(2018YFC1503705)联合资助
详细信息
    通讯作者:

    张勇,e-mail:zhang-yong@pku.edu.cn

  • 中图分类号: P315.3

Fault parameters and rupture process of the Jinghe MS6.6 earthquake in 2017

  • 摘要: 利用远震资料、近场强震资料和合成孔径雷达干涉同震形变资料确定了2017年8月9日精河MS6.6地震的断层面参数及震源破裂细节。为得到可靠的断层几何参数,发展了一套基于InSAR数据滑动分布反演的三维格点搜索流程,对本次地震断层面的走向、倾角和震源深度进行了格点搜索。结果显示,地震断层面走向为95°,倾角为47°,震源深度为14 km。基于搜索得到的断层模型进行破裂过程联合反演的结果显示:精河MS6.6地震为一次单侧破裂事件,最大滑动量约为0.8 m,滑动区域集中在断层面上震源以西5—15 km,沿倾向15—25 km,破裂主要发生在10 km深度以下区域。断层面上的平均滑动角为106°。整个破裂过程释放的标量地震矩为3.6×1018 N·m,对应矩震级为MW6.3。破裂过程持续约9 s,期间的破裂速度约为2.1—2.6 km/s。由于地震破裂主要集中在10 km以下,未来可能需要关注该区域0—10 km发生潜在地震的可能性。

     

  • 图  1  2017年8月9日精河MS6.6地震及其附近地区的构造示意图

    Figure  1.  Geological background of the Jinghe MS6.6 earthquake on August 9,2017

    图  2  基于InSAR滑动分布反演的格点搜索流程示意图

    Figure  2.  Flow chart of the grid search based on the InSAR slip inversions

    图  3  搜索得到的256个SFP点的分布

    图(a)—(c)分别为倾角与走向、震源所在子断层沿倾向方向序数(简称序数)与走向、序数与倾角剖面所显示的SPF三维空间分布,圆圈表示SFP点,其尺寸对应残差大小;图(d)—(f)分别为与图(a)—(c)对应的SFP分布密度;图(g)—(i)分别为已选取的SFP=[95,47,10]为中心,搜索空间中的走向截面、倾角截面和序数截面的平均残差

    Figure  3.  Distribution of the searched 256 SFPs

    Figs.(a)− (c) show the SFP distribution in the cross sections of strike-dip,ordinal number of subfault along dip the epicenter located in (“ordinal”for short)-strike,and ordinal-dip,respectively,where the circles indicate the SFPs. The size of the circle denotesthe residuals,and circle color represents the number of SFPs. Figs.(d)−(f) show the density distribution of SFP correspon-ding to Figs.(a)− (c),respectively. Figs.(g)−(i) show the average residuals in the search space (selected SPF=[95,47,10] centered) in the cross section of strike,dip and ordinal,respectively

    图  4  基于远震资料、近场强震资料和InSAR资料的地震破裂过程联合反演结果

    (a) 滑动分布和震源时间函数;(b) 子断层上的子震源时间函数;(c) 每2 s积累的滑动量分布快照

    Figure  4.  Joint inversion results of rupture process based on teleseismic,near-field strong-motion and InSAR data

    (a) Slip distribution and source time function;(b) Subfault source time functions;(c) Snapshots ofthe slip accumulated at each 2-second interval

    图  5  联合反演的观测与合成资料比较

    (a) 观测(黑线)与合成(红线)远震地震波;(b) 观测(黑线)与合成(红线)近场强震地震波;(c) 观测与合成InSAR数据

    Figure  5.  Comparison of the observed and synthetic data of the joint inversion

    (a) Observed (in black) and synthetic (in red) teleseismic data; (b) Observed (in black) and synthetic (in red) strong-motion data;(c) Observed and synthetic InSAR data

    图  6  矩心破裂传播速度

    (a) 矩心的位置、时间和平均移动速度,图中时间为破裂开始后经过的时间 ;(b) 矩心的位置、时间和地震矩加权平均移动速度;(c) 破裂传播速度-时间曲线

    Figure  6.  Rupture velocity of the moment centroid

    (a) The location,time and average velocity of the centroid,the time represents the duration after the rupture;(b) The location,time and moment-weighted average velocity of the centroid;(c) Velocity-time curves

    图  7  南倾节面与北倾节面对应的SFP残差分布

    Figure  7.  Residuals of the SFPs for south-dipping and north-dipping nodal planes

    图  8  不同类型数据反演得到的滑动分布和震源时间函数

    (a) 远震、近场强震和InSAR数据联合反演;(b) 远震数据反演;(c) InSAR数据反演;(d) 近场强震数据反演

    Figure  8.  Slip distributions and source time functions of inversions with different data

    (a) Joint inversion of teleseismic,strong-motion and InSAR data;(b) Inversion of teleseismic data;(c) Inversion of InSAR data;(d) Inversion of strong-motion data

    表  1  研究机构发布的2017年精河MS6.6地震震源定位结果和矩张量解

    Table  1.   Epicenter locations and focal mechanism solutions of the 2017 Jinghe MS6.6 earthquake released by different research institutes

    研究机构北纬/°东经/°震源深度/km节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    CENC 44.270 82.890 11 76 44 80 269 47 99
    USGS 44.302 82.832 20 92 60 92 269 30 87
    GFZ 44.330 82.840 24 85 47 81 277 44 99
    注:GFZ为德国地学中心German Research Centre for Geosciences的缩写.
    下载: 导出CSV

    表  2  本文所用雷达数据信息

    Table  2.   Information of the radar data used in this study

    轨道信息轨道方向时间信息空间基线/m时间基线/d采样点个数
    震前图震后图
    T85升轨2017-08-082017-08-14− 92.2373 285
    T63降轨2017-08-072017-08-13−119.6374 271
    下载: 导出CSV
  • 阿里木江·亚力昆,常想德,孙静,李帅,胡伟华. 2017. 2017年8月9日精河6.6级地震灾害损失及灾后恢复重建经费评估[J]. 中国地震,33(4):781–788. doi: 10.3969/j.issn.1001-4683.2017.04.035
    Alimujiang Yalikun,Chang X D,Sun J,Li S,Hu W H. 2017. Assessment of disaster losses and reconstruction after the Jinghe earthquake with MS6.6 in Xinjiang on August 9,2017[J]. Earthquake Research in China,33(4):781–788 (in Chinese).
    白兰淑,刘杰,张莹莹,吴清,安艳茹. 2017. 2017年精河6.6级地震余震序列重新定位和发震构造[J]. 中国地震,33(4):703–711. doi: 10.3969/j.issn.1001-4683.2017.04.026
    Bai L S,Liu J,Zhang Y Y,Wu Q,An Y R. 2017. Relocation of the 2017 MS6.6 Jinghe,Xinjiang earthquake sequence and its seismogenic structure[J]. Earthquake Research in China,33(4):703–711 (in Chinese).
    常想德,孙静,李帅. 2017. 2017年8月9日精河6.6级地震烈度分布与房屋震害特征分析[J]. 中国地震,33(4):771–780. doi: 10.3969/j.issn.1001-4683.2017.04.034
    Chang X D,Sun J,Li S. 2017. Analysis of seismic intensity distribution and characteristics of housing earthquake damage of the Jinghe MS6.6 earthquake on August 9,2017[J]. Earthquake Research in China,33(4):771–780 (in Chinese).
    陈建波,沈军,李军,杨继林,胡伟华,赵欣,曾宪伟. 2007. 北天山西段库松木楔克山山前断层新活动特征初探[J]. 西北地震学报,29(4):335–340.
    Chen J B,Shen J,Li J,Yang J L,Hu W H,Zhao X,Zeng X W. 2007. Preliminary study on new active characteristics of Kusongmuxieke mountain front fault in the west segment of north Tianshan[J]. Northwestern Seismological Journal,29(4):335–340 (in Chinese).
    何骁慧,李涛,吴传勇,郑文俊,张培震. 2020. 基于区域地震波形的2017年新疆精河MS6.6地震破裂方向性及发震构造研究[J]. 地球物理学报,63(4):1459–1471. doi: 10.6038/cjg2020N0309
    He X H,Li T,Wu C Y,Zheng W J,Zhang P Z. 2020. Resolving the rupture directivity and seismogenic structure of the 2017 Jinghe MS6.6 earthquake with regional seismic waveforms[J]. Chinese Journal of Geophysics,63(4):1459–1471 (in Chinese).
    姜祥华,韩颜颜,杨文,孟令媛. 2017. 2017年精河MS6.6地震序列及震源特征初步分析[J]. 中国地震,33(4):682–693. doi: 10.3969/j.issn.1001-4683.2017.04.024
    Jiang X H,Han Y Y,Yang W,Meng L Y. 2017. Preliminary analysis of the 2017 Jinghe MS6.6 earthquake sequence and its seismic source characteristics[J]. Earthquake Research in China,33(4):682–693 (in Chinese).
    梁尚鸿,李幼铭,束沛镒,朱碚定. 1984. 利用区域地震台网P、S振幅比资料测定小震震源参数[J]. 地球物理学报,27(3):249–257. doi: 10.3321/j.issn:0001-5733.1984.03.005
    Liang S H,Li Y M,Shu P Y,Zhu B D. 1984. On the determining of source parameters of small earthquakes by using amplitude ratios of P and S from regional network observations[J]. Acta Geophysica Sinica,27(3):249–257 (in Chinese).
    刘传金,邱江涛,王金烁. 2018. 基于升降轨Sentinel-1 SAR影像研究精河MS6.6地震震源机制[J]. 大地测量与地球动力学,38(11):1111–1116.
    Liu C J,Qiu J T,Wang J S. 2018. The 2017 Jinghe MS6.6 earthquake inversion from ascending and descending Sentinel-1 observations[J]. Journal of Geodesy and Geodynamics,38(11):1111–1116 (in Chinese).
    刘建明,高荣,王琼,聂晓红. 2017. 2017年8月9日精河6.6级地震序列重定位与发震构造初步研究[J]. 中国地震,33(4):663–670. doi: 10.3969/j.issn.1001-4683.2017.04.022
    Liu J M,Gao R,Wang Q,Nie X H. 2017. Relocation of the Jinghe MS6.6 earthquake sequence on August 9,2017 and analysis of the seismogenic structure[J]. Earthquake Research in China,33(4):663–670 (in Chinese).
    单新建, 屈春燕, 龚文瑜, 赵德政, 张迎峰, 张国宏, 宋小刚. 2017. 2017年8月9日新疆精河6.6级地震InSAR分析结果[EB/OL]. [2020-03-24]. http://www.eq-igl.ac.cn/upload/files/2017/8/18104254388.pdf.
    Shan X J, Qu C Y, Gong W Y, Zhao D Z, Zhang Y F, Zhang G H, Song X G. 2017. InSAR Analysis for the August 9, 2017, Jinghe, Xinjiang, MS6.6 Earthquake[EB/OL]. [2020-03-24]. http://www.eq-igl.ac.cn/upload/files/2017/8/18104254388.pdf (in Chinese).
    施贺青,张占彪,陈云锅,何平,原绍文. 2019. 利用InSAR数据约束反演2017年MW6.3精河地震同震破裂模型[J]. 大地测量与地球动力学,39(11):1106–1111.
    Shi H Q,Zhang Z B,Chen Y G,He P,Yuan S W. 2019. Constraints on coseismic rupture model of the 2017 MW6.3 Jinghe earthquake from InSAR data[J]. Journal of Geodesy and Geodynamics,39(11):1106–1111 (in Chinese).
    徐志国,梁姗姗,刘杰,邹立晔,刘敬光. 2019. 2017年新疆精河MS6.6主震震源机制解反演及余震序列重定位[J]. 地球物理学进展,34(4):1357–1365. doi: 10.6038/pg2019CC0213
    Xu Z G,Liang S S,Liu J,Zou L Y,Liu J G. 2019. Focal mechanism solution and relocation of the aftershock sequences of the 2017 Jinghe MS6.6 earthquake in Xinjiang[J]. Progress in Geophysics,34(4):1357–1365 (in Chinese).
    翟亮,张晓东,王伟君. 2019. 2017年8月9日精河MS6.6地震余震序列精定位及发震构造分析[J]. 地震学报,41(3):314–328.
    Zhai L,Zhang X D,Wang W J. 2019. Precise location and seismogenic structure analysis of aftershock sequence of Jinghe MS6.6 earthquake on August 9,2017[J]. Acta Seismologica Sinica,41(3):314–328 (in Chinese).
    张勇, 许力生, 陈运泰. 2017. 2017年8月9日新疆精河6.6级地震(应急处置科技产品报告)[EB/OL]. [2020-03-24]. http://www.cea-igp.ac.cn/tpxw/275885.html.
    Zhang Y, Xu L S, Chen Y T. 2017. Earthquake Summary Poster for the August 9, 2017, Jinghe, Xinjiang, MS6.6 Earthquake[EB/OL]. [2020-03-24]. http://www.cea-igp.ac.cn/tpxw/275885.html (in Chinese).
    Abdrakhmatov K Y,Aldazhanov S A,Hager B H,Hamburger M W,Herring T A,Kalabaev K B,Makarov V I,Molnar P,Panasyuk S V,Prilepin M T,Reilinger R E,Sadybakasov I S,Souter B J,Trapeznikov Y A,Tsurkov V Y,Zubovich A V. 1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates[J]. Nature,384(6608):450–453. doi: 10.1038/384450a0
    Dreger D S,Helmberger D V. 1993. Determination of source parameters at regional distances with three-component sparse network data[J]. J Geophys Res:Solid Earth,98(B5):8107–8125. doi: 10.1029/93JB00023
    Feng W P, Omari K, Samsonov S V. 2016. An automated InSAR processing system: Potentials and challenges[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing SymposiumIGARSS). Beijing: IEEE: 3209–3210.
    Gong W Y,Zhang Y F,Li T,Wen S Y,Zhao D Z,Hou L Y,Shan X J. 2019. Multi-sensor geodetic observations and modeling of the 2017 MW6.3 Jinghe earthquake[J]. Remote Sens,11(18):2157. doi: 10.3390/rs11182157
    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
    Hartzell S,Iida M. 1990. Source complexity of the 1987 Whittier Narrows,California,earthquake from the inversion of strong motion records[J]. J Geophys Res:Solid Earth,95(B8):12475–12485. doi: 10.1029/JB095iB08p12475
    Horikawa H. 2001. Earthquake doublet in Kagoshima,Japan:Rupture of asperities in a stress shadow[J]. Bull Seismol Soc Am,91(1):112–127. doi: 10.1785/0119990131
    Kanamori H. 1993. W phase[J]. Geophys Res Lett,20(16):1691–1694. doi: 10.1029/93GL01883
    Kilb D,Gomberg J,Bodin P. 2002. Aftershock triggering by complete Coulomb stress changes[J]. J Geophys Res:Solid Earth,107(B4):ESE 2-1–ESE 2-14. doi: 10.1029/2001JB000202
    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth’s crust[C]//EGU General Assembly 2013. Vienna: EGU: 317.
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154.
    Patton H. 1980. Reference point equalization method for determining the source and path effects of surface waves[J]. J Geophys Res:Solid Earth,85(B2):821–848. doi: 10.1029/JB085iB02p00821
    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    Wallace T C,Helmberger D V. 1982. Determining source parameters of moderate-size earthquakes from regional waveforms[J]. Phys Earth Planet Inter,30(2/3):185–196.
    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions[J]. Bull Seismol Soc Am,89(3):733–741.
    Ward S N,Barrientos S E. 1986. An inversion for slip distribution and fault shape from geodetic observations of the 1983,Borah Peak,Idaho,earthquake[J]. J Geophys Res:Solid Earth,91(B5):4909–4919. doi: 10.1029/JB091iB05p04909
    Yagi Y,Mikumo T,Pacheco J,Reyes G. 2004. Source rupture process of the Tecoman,Colima,Mexico earthquake of 22 January 2003,determined by joint inversion of teleseismic body-wave and near-source data[J]. Bull Seismol Soc Am,94(5):1795–1807. doi: 10.1785/012003095
    Zhang X,Xu L S,Luo J,Feng W P,Du H L,Li L,Yi L,Zheng C,Li C L. 2020. Source characteristics of the 2017 MS6.6 (MW6.3) Jinghe earthquake in the northeastern Tien Shan[J]. Seismol Res Lett,91(2A):745–757. doi: 10.1785/0220190194
    Zhang Y,Feng W P,Chen Y T,Xu L S,Li Z H,Forrest D. 2012. The 2009 L’Aquila MW6.3 earthquake:A new technique to locate the hypocentre in the joint inversion of earthquake rupture process[J]. Geophys J Int,191(3):1417–1426.
    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  666
  • HTML全文浏览量:  271
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-07-06
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回